36
Basics of fMRI Preprocessing Douglas N. Greve [email protected]

Basics of fMRI Preprocessing Douglas N. Greve [email protected]

Embed Size (px)

Citation preview

Page 1: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

Basics of fMRI Preprocessing

Douglas N. [email protected]

Page 2: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

2

fMRI Analysis Overview

Higher Level GLM

First Level GLM Analysis

First Level GLM Analysis

Subject 3

First Level GLM Analysis

Subject 4

First Level GLM Analysis

Subject 1

Subject 2

CX

CX

CX

CX

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

Raw Data

Raw Data

Raw Data

Raw Data

CX

Page 3: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

3

Preprocessing

• Assures that assumptions of the analysis are met• Time course comes from a single location• Uniformly spaced in time• Spatial “smoothness”

• Analysis – separating signal from noise

Page 4: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

4

Input 4D Volume

64x64x35

85x1

Page 5: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

5

Preprocessing

• Start with a 4D data set1. Motion Correction2. Slice-Timing Correction3. B0 Distortion Correction4. Spatial Normalization5. Spatial Smoothing• End with a 4D data set

• Can be done in other orders• Not everything is always done• Note absence of temporal filtering

Page 6: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

6

Motion

• Analysis assumes that time course represents a value from a single location• Subjects move• Shifts can cause noise, uncertainty

• Edge of the brain and tissue boundaries

Page 7: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

7

Motion

• Sometimes effect on signal is positive, sometimes negative

Page 8: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

8

One Effect of Uncorrected Motion on fMRI Analysis

• Ring-around-the-brain From Huettel, Song, McCarthy

Page 9: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

9

Motion CorrectionTemplateTargetReference

InputTime Point

Difference(Error)

• Adjust translation and rotation of input time point to reduce absolute difference. • Requires spatial interpolation

Page 10: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

10

Motion Correction

•Motion correction reduces motion•Not perfect

Raw Corrected

Page 11: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

11

Motion Correction

• Motion correction parameters• Six for each time point• Sometimes used as nuisance regressors• How much motion is too much?

Page 12: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

12

Slice Timing

Ascending Interleaved

• Volume not acquired all at one time• Acquired slice-by-slice• Each slice has a different delay

Page 13: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

• Volume = 30 slices• TR = 2 sec• Time for each slice = 2/30 = 66.7 ms

0s

2s

Effect of Slice Delay on Time Course

Page 14: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

14

Slice Timing Correction

• Temporal interpolation of adjacent time points• Usually sinc interpolation• Each slice gets a different interpolation• Some slices might not have any interpolation• Can also be done in the GLM• You must know the slice order!

X

TR1 TR2 TR3

Slic

e

Page 15: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

15

• Every other slice is bright• Interleaved slice acquisition• Happens with sequential, harder to see

Motion, Slice Timing, Spin History

Page 16: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

16

Motion, Slice Timing, Spin HistoryS

lice

• In TR3 subject moved head up • Red is now the first slice• Pink is now not in the FoV

• Red has not seen an RF pulse before (TR=infinite) and so will be very bright• Other slices have to wait longer to see an RF pulse, ie, the TR increases slightly, causes brightening.• Direction of intensity change depends on a lot of things

TR1 TR2 TR3

Page 17: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

17

B0 Distortion

• Metric (stretching or compressing)• Intensity Dropout• A result of a long readout needed to get an entire slice in a single shot.• Caused by B0 Inhomogeneity

Stretch

Dropout

Page 18: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

B0 Map

Echo 2

TE2

Magnitude

Echo 1

TE1

Phase

Voxel Shift Map

Page 19: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

19

Voxel Shift Map

• Units are voxels (3.5mm)• Shift is in-plane• Blue = PA, Red AP• Regions affected near air/tissue boundaries

• sinuses

Page 20: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

20

B0 Distortion Correction

• Can only fix metric distortion• Dropout is lost forever

Page 21: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

21

B0 Distortion Correction

• Can only fix metric distortion• Dropout is lost forever• Interpolation• Need:

• “Echo spacing” – readout time• Phase encode direction

• More important for surface than for volume• Important when combining from different scanners

Page 22: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

22

Spatial Normalization

• Transform volume into another volume• Re-slicing, re-gridding

• New volume is an “atlas” space• Align brains of different subjects so that a given voxel represents the “same” location.• Similar to motion correction• Preparation for comparing across subjects• Volume-based• Surface-based• Combined Volume-surface-based (CVS)

Page 23: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

23

Spatial Normalization

Subject 1

Subject 2

Subject 1

Subject 2

MNI305MNI152

Native Space MNI305 Space

Affine (12 DOF) Registration

Page 24: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

24

Subject 1 Subject 2 aligned with Subject 1 (Subject 1’s Surface)

Problems with Affine (12 DOF) Registration

Page 25: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

25

Surface RegistrationSubject 1 Subject 2 (Before)

Subject 2 (After)

Page 26: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

26

Surface RegistrationSubject 1 Subject 2 (Before)

Subject 2 (After) • Shift, Rotate, Stretch• High dimensional (~500k)• Preserve metric properties• Take variance into account• Common space for group analysis (like Talairach)

Page 27: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

27

Spatial Smoothing

• Replace voxel value with a weighted average of nearby voxels (spatial convolution)• Weighting is usually Gaussian• 3D (volume)• 2D (surface)• Do after all interpolation, before computing a standard deviation• Similarity to interpolation• Improve SNR• Improve Intersubject registration• Can have a dramatic effect on your results

Page 28: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

Spatial Smoothing

Full-Width/Half-max

• Spatially convolve image with Gaussian kernel.• Kernel sums to 1• Full-Width/Half-max: FWHM = /sqrt(log(256)) = standard deviation of the Gaussian

0 FWHM 5 FWHM 10 FWHM

2mm FWHM

10mm FWHM

5mm FWHM

Full Max

Half Max

Page 29: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

29

Spatial Smoothing

Page 30: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

30

Effect of Smoothing on Activation

• Working memory paradigm• FWHM: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Page 31: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

31

Volume- vs Surface-based Smoothing

• 5 mm apart in 3D• 25 mm apart on surface• Averaging with other tissue types (WM, CSF)• Averaging with other functional areas

14mm FWHM

Page 32: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

32

Choosing the FWHM• No hard and fast rules • Matched filter theorem – set equal to activation size

• How big is that?• Changes with brain location• Changes with contrast• May change with subject, population, etc

• Two voxels – to meet the assumptions of Gaussian Random Fields (GRF) for correction of multiple comparisons

Page 33: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

33

Temporal filtering• Replace value at a given time point with a weighted average of its neighbors• Should/Is NOT be done as a preprocessing step – contrary to what many people think.• Belongs in analysis.

Page 34: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

34

fMRI Analysis Overview

Higher Level GLM

First Level GLM Analysis

First Level GLM Analysis

Subject 3

First Level GLM Analysis

Subject 4

First Level GLM Analysis

Subject 1

Subject 2

CX

CX

CX

CX

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

PreprocessingMC, STC, B0

SmoothingNormalization

Raw Data

Raw Data

Raw Data

Raw Data

CX

Page 35: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

35

Preprocessing

• Start with a 4D data set1. Motion Correction - Interpolation2. Slice-Timing Correction3. B0 Distortion Correction - Interpolation4. Spatial Normalization - Interpolation5. Spatial Smoothing – Interpolation-like• End with a 4D data set

• Can be done in other orders• Note absence of temporal filtering

Page 36: Basics of fMRI Preprocessing Douglas N. Greve greve@nmr.mgh.harvard.edu

36