Author
day-kem-quy-nhon-official
View
218
Download
1
Embed Size (px)
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 1
CHNG 1CHNG 1
D LIU D LIU
1
vv
THNG KTHNG K
NI DUNG CHNHNI DUNG CHNH
Thng k v cc ng dng trong kinh doanh v
kinh t
D li
2
D liu
Ngun d liu
Thng k m t
Thng k suy din
THNG K V NG DNG TRONG THNG K V NG DNG TRONG KINH DOANH V KINH TKINH DOANH V KINH T
Thng k l mt Ngh thut v Khoa hc v:
Thu thp
3
Phn tch
Trnh by
V gii thch D LIU
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 2
THNG K V NG DNG TRONG THNG K V NG DNG TRONG KINH DOANH V KINH TKINH DOANH V KINH T
ng dng trong kinh doanh v kinh t:
Cc ng dng ca thng k rt hin nhin trong nhiu
4
lnh vc
Thng k c s dng :
Thng bo cho cng chng
D bo cho vic lp k hoch v ra quyt nh
THNG K V NG DNG TRONG THNG K V NG DNG TRONG KINH DOANH V KINH TKINH DOANH V KINH T
ng dng trong kinh doanh v kinh t:
Cc lnh vc kinh doanh v kinh t da trn cc k thut v thng tin thng k:
5
k thut v thng tin thng k:
K ton
Ti chnh
Tip th
Sn xut
Kinh t
THNG K V NG DNG TRONG THNG K V NG DNG TRONG KINH DOANH V KINH TKINH DOANH V KINH T
Cc phn mm thng k so vi Excel
Cc phn mm thng k thng l Hp en MINITABMINITAB: l mt phn mm thng k c ngun gc
6
c thit k ti i hc Penn State c bit dnh cho sinh vin.
SAS: SAS: Statistical Analysis System H thng phn tch thng k
SPSS: SPSS: Statistical Package for the Social Science Phn mm thng k cho khoa hc x hi
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 3
THNG K V NG DNG TRONG THNG K V NG DNG TRONG KINH DOANH V KINH TKINH DOANH V KINH TCc phn mm thng k so vi Excel
S dng Excel phn tch thng k bi v: Excel sn c cc vn phng
Excel mnh gii quyt cc vn thng k thng
7
Excel mnh gii quyt cc vn thng k thng gp
Ngi s dng c th hiu c ngha ca cc vn thng k
Cc nh qun l v ra quyt nh thnh cng l nhng ngi c th hiu v s dng cc thng tin mt cch hiu qu nht
D LIUD LIU
D liu D liu l cc s kin v con s c thu thp, phn
tch v tng kt trnh by v gii thch
8
Tp d liu l tt c cc d liu c thu thp cho mt nghin cu c th
Thang o D liu nh tnh so vi nh lng D liu cho so vi chui thi gian
D LIUD LIU
Cc phn t, cc bin v cc quan st Phn t l tan b thc th da vo d liu c thu
thp
9
Bin l cc c tnh c quan tm i vi cc phn t
Quan st l tp cc i lng o lng c thu thp
i vi mt phn t c th
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 4
D LIUD LIU
VariablesVariablesStockStock Annual Earn/Annual Earn/
CompanyCompany Exchange Sales($M) Sh.($)Exchange Sales($M) Sh.($)
DataramDataram AMEXAMEX 73.1073.10 0.860.86
10
ElementsElements Data SetData Set DatumDatum
EnergySouthEnergySouth OTCOTC 74.0074.00 1.671.67KeystoneKeystone NYSENYSE 365.70365.70 0.86 0.86 LandCareLandCare NYSENYSE 111.40111.40 0.330.33PsychemedicsPsychemedics AMEXAMEX 17.6017.60 0.130.13
Cu hi?Cu hi?
Tham kho Bng 1.1:B D LIU CA 5 LAI CHNG KHAN:
11
C bao nhiu phn t trong b d liu ny ? C bao nhiu bin trong b d liu ny? C bao nhiu quan st trong b d liu ny? C bao nhiu s lng d liu trong b d liu
ny?
D LIUD LIU
Thang o Xc nh lng thng tin c trong d liu v ch ra s tng kt d liu v phn tch thng k no l thch hp nht
12
Thang o ch danh
Thang o th t
Thang o khong
Thang o t l
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 5
D LIUD LIU Thang o ch danh
S dng nhn hiu hoc tn nhn dng mt thuc tnh ca phn t bng s hoc khng bng s
Thang o th tC c tnh ca thang o ch danh v c th dng sp hng hoc th t d liu bng s hoc khng bng sTh kh
13
Thang o khongC c tnh ca thang o th t v khong cch gia cc quan st c din t di dng cc n v o lng c nh lun lun bng s
Thang o t lC c tnh ca thang o khong v t l ca 2 gi tr l c ngha lun lun bng s(Cha gi tr Zero C ngha l khng c g)
D LIUD LIU
D liu nh tnh so vi nh lng
D liu nh tnh
D liu nh tnh l cc nhn hiu hay tn c dng
14
D liu nh tnh l cc nhn hiu hay tn c dng
nhn dng v c trng cho mi phn t
BIn nh tnh l bin vi d liu nh tnh
D liu nh tnh s dng thang o ch danh hoc thang
o th t; c th o bng s hoc khng bng s
D LIUD LIU
D liu nh tnh so vi nh lng
D liu nh lng
15
D liu nh lng l d liu cho bit s lng bao nhiu
ca mt i lng no
Bin nh lng l bin vi d liu nh lng
D liu nh tnh s dng thang o khong hoc thang o
t l; lun o bng s
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 6
D LIUD LIU
D liu nh tnh so vi nh lng
S khc nhau gia d liu nh lng v nh
16
tnh Cc php tnh s hc thng thng ch c ngha i vi
d liu nh lng
Tuy nhin, khi d liu nh tnh c ghi nhn nh cc gi tr bng s th cc php tnh s hc s cho ra cc kt qu khng c ngha
Cu hi ?Cu hi ?
Hy pht biu xem cc bin sau y bin no l bin nh tnh, bin no l bin nh lung v hy ch ra thang o thch hp cho mi bin.
T i
17
Tui Gii tnh Th hng trong lp Nhit Thu nhp
D LIUD LIU
D liu cho v d liu chui thi gian
D liu cho l cc d liu c thu thp trong cng
18
p g g
hay gn cng mt thi im
D liu chui thi gian l cc d liu c thu thp
trong cc thi im lin tip nhau
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 7
NGUN D LIU NGUN D LIU
Ngun d liu c th thu thp t:
Cc ngun hin c:
19
Internet tr thnh mt ngun d liu quan trng
Cc nghin cu thng k:
Nghin cu th nghim
Nghin cu quan st
NGUN D LIUNGUN D LIU
Cc sai s ca thu thp d liu Mt sai s trong thu thp d liu xy ra khi gi tr ca d
liu thu thp c khng bng vi gi ng/thc c
20
c t mt qui trnh thu thp ng
S dng d liu sai c th xu hn khng s dng bt k d liu no
GIGO Garbage In Garbage Out Rc vo Rc Ra
THNG K M TTHNG K M T
Thng k m t: Thu thp, Tng kt v M t d liu
Cc phng php c s dng tng kt d liu:
Lp Bng
21
Lp Bng
Th
Bng s
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 8
THNG K M TTHNG K M T
Thng k m t:
Cc tham s thng k
22
g
Tn s
Phn phi xc sut
THNG K SUY DINTHNG K SUY DIN
Tng th l tp tt c cc phn t cn quantm trong mt nghin cu c th
Mu l mt tp con ca tng th
23
p g
Thng k suy din: l qu trnh s dng dliu thu thp c t mu c lng hockim nh cc gi thuyt thng k v cc ctrng ca tng th
THNG K SUY DINTHNG K SUY DIN
Ly MuLy Mu
24
Tng thTng thNN
MuMunn
c Lngc LngKim nh gi thuytKim nh gi thuyt
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 9
CHNG 2CHNG 2
TRNH BY TRNH BY
25
BNG BNG v BIU BNG BNG v BIU
NI DUNG CHNHNI DUNG CHNH
Tng kt d liu nh tnh
Tng kt d liu nh lng
26
Phn tch d liu khm ph: Trnh by dng
cnh v l
th phn tn im v bng cho
TNG KT D LIU NH TNH TNG KT D LIU NH TNH
Phn phi tn sPhn phi tn s l mt bng tng kt mt tp d
liu trong trnh by tn s (hay s) ca cc gi tr
27
g y ( y ) g
quan st c trong mi lp ca cc lp khng trng
ln nhau
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 10
TNG KT D LIU NH TNHTNG KT D LIU NH TNHD LIU T MT MU GM 50 LON NC GII KHT
Coke Classic Sprite Pepsi-ColaDiet Coke Coke Classic Coke ClassicPepsi-Cola Diet Coke Coke ClassicDiet Coke Coke Classic Coke ClassicCoke Classic Diet Coke Pepsi-ColaCoke Classic Coke Classic Dr Pepper
28
Coke Classic Coke Classic Dr.PepperDr.Pepper Sprite Coke ClassicDiet Coke Pepsi-Cola Diet CokePepsi-Cola Coke Classic Pepsi-ColaPepsi-Cola Coke Classic Pepsi-ColaCoke Classic Coke Classic Pepsi-ColaDr.Pepper Pepsi-Cola Pepsi-ColaSprite Coke Classic Coke ClassicCoke Classic Sprite Dr.PepperDiet Coke Dr.Pepper Pepsi-ColaCoke Classic Pepsi-Cola SpriteCoke Classic Diet Coke
TNG KT D LIU NH TNHTNG KT D LIU NH TNH
PHN PHI TN SCA LON NC GII KHT
Nc gii kht Tn s
29
Nc gii kht Tn sCoke Classic 19Diet Coke 8Dr.Pepper 5Pepsi-Cola 13Sprite 5Tng 50
TNG KT D LIU NH TNHTNG KT D LIU NH TNH
Phn phi tn s tng i v tn s phn trm Phn phi tn s tng i: Mt bng tng kt tp
t d li t t h b t t i h
30
mt d liu trong trnh by tn s tng i ngha l, t s ca tng s cc gi tr quan st c trong mi lp ca cc lp khng trng ln nhau
Tn s tng i ca 1 lp = Tn s ca 1 lp / n
Tn s phn trm = Tn s tng i* 100
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 11
TNG KT D LIU NH TNHTNG KT D LIU NH TNH
Phn phi tn s tng i v tn s phn trm
31
Phn phi tn s tng i: Mt bng tng kt tp
mt d liu trong trnh by phn trm ca tng s
cc gi tr quan st c trong mi lp ca cc lp
khng trng ln nhau
TNG KT D LIU NH TNHTNG KT D LIU NH TNH
PHN PHI TN S TNG I v PHN TRMCA LON NC GII KHT
Nc gii kht Tn s tng i Tn s phn trm
32
Nc gii kht Tn s tng i Tn s phn trmCoke Classic .38 38Diet Coke .16 16Dr.Pepper .10 10Peppsi-Cola .26 26Sprite .10 10
Tng 1.00 100
TNG KT D LIU NH TNHTNG KT D LIU NH TNHBiu hnh thanh v biu hnh trnBIU HNH THANH CA NC GII KHT
1820
33
02468
1012141618
CokeClassic
Diet Coke Dr. Pepper Pepsi- Cola Sprite
Nc gii kht
Tn
s
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 12
TNG KT D LIU NH TNHTNG KT D LIU NH TNH
Biu hnh thanh v biu hnh trn
BIU HNH TRN CA NC GII KHT
34
Coke Classic
38%
Diet Coke16%
Dr. Pepper10%
Pepsi- Cola26%
Sprite10%
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Phn phi tn sPhn phi tn s l mt bng tng kt mt tp d
liu trong trnh by tn s (hay s) ca cc gi tr
35
g y ( y ) g
quan st c trong mi lp ca cc lp khng trng
ln nhau
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Phn phi tn s Xy dng mt phn phi tn s
Thu thp d liu mu
36
Xc nh s lp khng trng lp
Xc nh chiu rng ca mi lp
Xc nh cc gii hn ca mi lp
m s cc gi tr d liu c trong mi lp
Tng kt cc tn s ca lp vo trong mt bng phn phi tn s
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 13
TNG KT D LIU NH LNGTNG KT D LIU NH LNGPhn phi tn s S lp (K): 5 K 20 Chiu rng lp
Chiu rng lp = (Gi tr ln nht Gi tr nh nht) / K
37
Cc gii hn ca lpCc gii hn ca lp l s ln nht v nh nht thuc v lp
Gii hn di ca lp = S nh nht
Gii hn trn ca lp = S ln nht
S khc bit gia gii hn di ca cc lp lin nhau s cho ta chiu rng ca lp
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Phn phi tn s Cc bin gii ca lp
Cc bin ca lp l cc ng phn chia gia cc
38
Cc bin ca lp l cc ng phn chia gia cc
lp
im gia ca lp
im gia ca lp l gi tr nm gia cc gii
hn di v gii hn trn ca lp
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
CC THI GIAN KIM TON CUI NM(Tnh theo s ngy)
39
12 14 19 1815 15 18 1720 27 22 2322 21 33 2814 18 16 13
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 14
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
PHN PHI TN S I VI D LIU THI GIAN KIM TAN
Thi gian kim tan Tn s
40
g(ngy)10-14 415-19 820-24 525-29 230-34 1Tng 20
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Phn phi tn s tng i v tn s phn trm
41
Tn s tng i ca 1 lp = Tn s ca 1 lp / n
Tn s phn trm = Tn s tng i* 100
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
PHN PHI TN S TNG I V TN S PHN TRM
I VI D LIU THI GIAN KIM TAN
Thi i T t i T h t
42
Thi gian Tn s tng i Tn s phn trm(ngy)10-14 .20 2015-19 .40 4020-24 .25 2525-29 .10 1030-34 .05 5Tng 1.00 100
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 15
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Biu im
Trc honh trnh by min cc gi tr ca d liu.
43
Mi gi tr c biu th bng mt im nm trn trc
01234
10 15 20 25 30 35
Thi gian kim tan tnh theo ngy
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Biu tn s
Mt biu tn s c xy dng bng t cc
44
bin quan tm trn trc honh v tn s, tn s
tng i, tn s phn trm trn trc tung
Biu tn s m t dng ca tp d liu
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
6789
45
0
1
2
3
4
0 5 10 15 20 25 30 35
012345
5 10 15 20 25 30 35Thi gian kim tan tnh theo ngy
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 16
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
Cc phn phi tch ly
Phn phi tn s tch ly trnh by s cc quan
46
st c gi tr nh hn hoc bng gii hn trn
ca lp ca mi lp
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
CC PHN PHI TN S TCH LY, TN S TNG I TCH LY V TN S PHN TRM TCH LY
I VI D LIU THI GIAN KIM TAN
Thi gian (ngy) Tn s Tn s tng i Tn s %Tch ly Tch ly Tch ly
47
Tch ly Tch ly Tch ly
Nh hn hoc bng 14 4 .20 20Nh hn hoc bng 19 12 .60 60Nh hn hoc bng 24 17 .85 85Nh hn hoc bng 29 19 .95 95Nh hn hoc bng 34 20 1.00 100
TNG KT D LIU NH LNGTNG KT D LIU NH LNG
OgiveOgive l th ca phn phi tch ly
25
48
0
5
10
15
20
5 10 15 20 25 30 35
Thi gian kim tan tnh theo ngy
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 17
PHN TCH D LIU KHM PH: PHN TCH D LIU KHM PH: TRNH BY DNG CNH V LTRNH BY DNG CNH V L
Trnh by dng cnh v l: Mt k thut phn
tch khm ph theo sp hng cc th t ca
49
tch khm ph theo sp hng cc th t ca
d liu nh lng v cho thy su sc v dng
ca phn phi cng mt lc
PHN TCH D LIU KHM PH: PHN TCH D LIU KHM PH: TRNH BY DNG CNH V LTRNH BY DNG CNH V L
S CU HI C TR LI NG K THI NNG KHIU
112 72 69 97 10773 92 76 86 73
50
126 128 118 127 12482 104 132 134 8392 108 96 100 92115 76 91 102 8195 141 81 80 10684 119 113 98 7538 98 115 106 95100 85 94 106 119
PHN TCH D LIU KHM PH: PHN TCH D LIU KHM PH: TRNH BY DNG CNH V LTRNH BY DNG CNH V L
6 8 9
7 2 3 3 5 6 6
8 0 1 1 2 3 4 5 6
9 1 2 2 2 4 5 5 6 7 8 8
51
9 1 2 2 2 4 5 5 6 7 8 8
10 0 0 2 4 6 6 6 7 8
11 2 3 5 5 8 9 9
12 4 6 7 8
13 2 4
14 1
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 18
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
Bng cho Bng cho l mt tng kt di dng bng ca d
liu gm 2 bin. Cc gi tr ca mt bin c trnh
52
liu gm 2 bin. Cc gi tr ca mt bin c trnh
by theo cc hng. Cc gi tr ca mt bin khc
c trnh by theo cc ct
Bng cho c s dng rng ri trong vic xem xt
mi quan h gia hai bin
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
BNG CHO V NH GI CHT LNG V GI CA CC BA N TI 300 NH HNG LOS-ANGELES
Gi ba n
53
Gi ba nCht lng $10-19 $20-29 $30-39 $40-49 TngTt 42 40 2 0 84Rt tt 34 64 46 6 150Xut sc 2 14 28 22 66Tng 78 118 76 28 300
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
PHN TRM TNH THEO HNG I VI MI LOI CHT LUNG
Gi ba nCht lng $10 19 $20 29 $30 39 $40 49 Tng
54
Cht lng $10-19 $20-29 $30-39 $40-49 TngTt 50.0 47.6 2.4 0.0 100Rt tt 22.7 42.7 30.6 4.0 100Xut sc 3.0 21.2 42.4 33.4 100
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 19
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
th phn tn im v ng xu hng
Mt th phn tn im l mt trnh by di dng th i h h i bi Mt bi
55
th v mi quan h ca hai bin. Mt bin c trnh by trn trc honh v bin khc c trnh by trn trc tung
Mt ng xu hng l mt ng cho thy mt cch gn ng mi quan h gia hai bin
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
D LIU MU I VI CA HNG THIT B STEREO V M THANHTun S thng v Doanhs ($100s)
x y1 2 50
56
1 2 502 5 573 1 414 3 545 4 546 1 387 5 638 3 489 4 5910 2 46
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
th phn tn im th phn tn im i vi ca hn thit b Stereo v m thanh
60
65
57
35
40
45
50
55
60
0 1 2 3 4 5 6
Sales ($100s)
Number of commercials
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 20
TH PHN TN IM TH PHN TN IM v BNG CHOv BNG CHO
th phn tn im Cc loi quan h c miu t bng th phn tn im
58
Quan h ng bin Dng nh khng quan h Quan h nghch bin
CC QUI TRNH BNG BIU V TH CC QUI TRNH BNG BIU V TH I VI TNG KT D LIU I VI TNG KT D LIU
D LIU
D liu nh tnh
D liu nh lng
59
Phng php Bng
Phng php th
Phng php Bng
Phng php th
Phn phi tn s
Phn phi tn s tng i
Phn phi tn s phn trm
Bng cho
Biu hnh thanh
Biu hnh trn
Phn phi tn s
Phn phi tn s tng i
Phn phi tn s tch ly
Phn phi tn s tng i tch ly
Cnh v l - Bng cho
Biu im
Biu tn s
Biu tn s tch ly (Ogive)
th phn tn im
CHNG 3CHNG 3
CC I LNGCC I LNG
60
CC I LNGCC I LNG
BNG SBNG S
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 21
CC NI DUNG CHNHCC NI DUNG CHNH
Gii thiu i lng v v tr i lng v s bin thin
61
i lng v dng phn phi, v tr tng i v nhn dng cc im c bit
Phn tch d liu khm ph i lng v s lin h gia 2 bin Trung bnh c trng s v x l d liu nhm
GII THIUGII THIU
Mt i lng m t l mt con s n gin
c tnh ton t d liu mu cung cp thng
62
tin v d liu tng th
C hai loi i lng m t:
i lng v v tr
i lng v s bin thin
GII THIUGII THIU
Tham s ca tng th (population parameter) l mt gi tr bng s c dng nh mt i lng tng kt i vi mt d liu ca tng th
63
lng tng kt i vi mt d liu ca tng th
Cc tr thng k ca mu (sample statistics) c dng nh mt i lng tng kt i vi mt mu
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 22
CC I LNG V V TR CC I LNG V V TR (measure of location)(measure of location)
Mt s cc i lng v v tr l: S trung bnh (Mean)
S trung v (Median)
64
S trung v (Median)
S yu v (Mode)
S phn v (Percentiles)
S t phn (Quartiles)
CC I LNG V V TRCC I LNG V V TR
S trung bnh S trung bnh c s dng ph bin nht o
lng v tr
65
Trung bnh ca tng th:
Trung bnh ca mu:
Nx
nx
x
CC I LNG V V TRCC I LNG V V TR
S yu v (Md)
S trung v l gi tr gia tp d liu c sp xp
66
theo th t
n l s l, Md l gi tr gia tp d liu
n l s chn, Md l trung bnh ca hai gi tr gia
tp d liu
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 23
CC I LNG V V TRCC I LNG V V TR
S yu v (Mo)
S yu v l gi tr d liu xut hin vi tn s
67
ln nht
Bimodal c hai s yu v
Multimodal > two hai s yu v
CC I LNG V V TRCC I LNG V V TR
S phn v
S phn v pth l gi tr c t nht p % s hng ca
68
tp d liu c gi tr nh hn hoc bng gi tr ny,
v c t nht (100-p) % s hng ca tp d liu c
gi tr ln hn hoc bng gi tr ny
Phn v 50th l s trung v
CC I LNG V V TRCC I LNG V V TR
S phn vXc nh phn v pth
Bc 1: Sp xp tp d liu theo th t tng dn
69
Bc 1: Sp xp tp d liu theo th t tng dn
Bc 2: tnh ch s i:
Bc 3: Nu i khng l s nguyn lm trn ln trn. S
nguyn k tip > i s ch v tr ca phn v pth.
Nu i l s nguyn, phn v pth l trung bnh ca 2 gi tr d liu v tr i v i + 1
n*i 100p
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 24
CC I LNG V V TRCC I LNG V V TR
S t phn
S t phn ch n thun l cc s phn v c th, s
70
chia tp d liu ra lm 4 phn, c gi tn l:
Q1 = s t phn th nht = P25%
Q2 = s t phn th hai = P50% = Median
Q3 = s t phn th ba = P75%
CC I LNG V S BIN THINCC I LNG V S BIN THIN
i lng v s bin thin c s dng m t xu hng ca cc gi tr d liu phn tnxung quanh gi tr trung bnh.Mt i l bi thi
71
Mt s i lng v s bin thin: Khong bin thin (Range) Khong bin thin ni t phn (Interquartile Range) Phng sai (Variance) lch chun (Standard Deviation) H s bin thin (Coefficient of variation)
CC I LNG V S BIN THINCC I LNG V S BIN THIN
Khong bin thin Range = Gi tr ln nht Gi tr nh nht
hay Range = Max Min
72
Range Max Min
Khong bin thin ni t phn (IQR) IQR = Q3 Q1
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 25
CC I LNG V S BIN THINCC I LNG V S BIN THIN
Phng sai
Phng sai ca tng th:
Nx 2i2
73
Phng sai ca mu:
N
1n
xxs
2i2
CC I LNG V S BIN THINCC I LNG V S BIN THIN
lch chun lch chun l cn bc hai ca phng sai. lch chun v phng sai c s dng ph bin o lng s bin thin
74
lng s bin thin
H s bin thin
22 ss
100*XS100*
MeanDeviation StandardCV
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
Dng phn phi lch (Skewness) l i lng v dng ca phn
phi ca tp d liu
75
phi ca tp d liu i vi d liu lch v bn tri, lch s m i vi d liu lch v bn phi, lch s dng Nu d liu i xng, lch s bng 0
i vi phn phi i xng, s trung bnh v s trung v s bng nhau
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 26
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
Tr thng k Z (Z-Scores)Tr thng k Z thng c gi l gi tr chun ha
xxiZ
76
Zi: l s lch chun m Xi cch xa gi tr trungbnh
si
iZ
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
nh l Chebyshev
nh l Chebyshev c s dng pht biu v phn
77
trm ca cc s hng s nm trong mt con s c th
ca lch chun tnh t gi trung bnh
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
nh l Chebyshev
Ti thiu (1-1/Z2) ca cc s hng c trong mi tp
78
( ) g g
d liu s phi nm trong Z lch chun tnh t
s trung bnh, khi Z > 1.
hay
Prob 2z11zsxxzsx
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 27
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
nh l Chebyshev
i vi mi tp d liu
79
p
Prob
Prob
Prob
%75 s2xx2s-x
%89 s3xx3s-x
%94 s4xx4s-x
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
Qui tc kinh nghim
i vi mi tp d liu c phn phi dng hnh chung:
80
Prob
Prob
Prob
%68 s1xx1s-x
%95 s2xx2s-x
%7.99 s3xx3s-x
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
MT PHN PHI DNG HNH CHUNG I XNG
81
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 28
CC I LNG V DNG PHN PHI, V TR CC I LNG V DNG PHN PHI, V TR TNG I V NHN DNG CC IM C BITTNG I V NHN DNG CC IM C BIT
Nhn dng cc im c bit (outliers)
Cc im c bit l cc gi tr thi cc (ln khc
82
thng hoc nh khc thng)
S dng Z nhn dng im c bit: mi gi tr
d liu vi Z nh hn 3 hoc ln hn +3 l im
c bit
PHN TCH D LIU KHM PHPHN TCH D LIU KHM PH
M hnh 5-im Gi tr nh nht = Min
S t phn th nht = Q1
83
1
S t phn th hai = Q2 = Median
S t phn th ba = Q3 Gi tr ln nht = Max
Mt cch gn ng, 25% ca cc gi tr d liu gia cc s k nhau trong m hnh 5-im
PHN TCH D LIU KHM PHPHN TCH D LIU KHM PH
Biu hp (Box plot):
Biu hp l tng kt d liu bng th
84
Biu hp l tng kt d liu bng th
Outliers
Whiskers
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 29
PHN TCH D LIU KHM PHPHN TCH D LIU KHM PH
Upper Limit Lower Limit Median Q1 Q3
85
0
1
2
3
4
1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
*
Outlier
IQR1.5(IQR) 1.5(IQR)
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
ng phng sai (Covariance) ng phong sai o lng s lin h tuyn tnh gia 2
bin.
86
ng phng sai ca tng th:
ng phng sai ca mu:
N
yx yixixy
1nyyxx
s iixy
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
ng phng sai
sxy > 0 Quan h ng bin
87
sxy < 0 Quan h nghch bin
Gi tr ca ng phng sai ph thuc n v o
lng ca x v y
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 30
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
60
65
III . .0s) = 3x
TH PHN TN IM C PHN CHIA
I VI C HNG THIT B STEREO V M THANH
88
35
4045
50
55
0 1 2 3 4 5 6
IVIII
....
...
S thng v
Doa
nh s
($10
0
= 51y
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
. .yGII THCH V NG PHNG SAI CA MU
89
....
....
.
.
Sxy dng:(x v y c quan h tuyn
tnh ng bin ) x
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
.Sxy gn bng 0:(x v y khng c quan h yGII THCH V NG PHNG SAI CA MU
90
. .. ..
. .
. ..
..
. . . .
(x v y khng c quan h tuyn tnh )
x
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 31
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
y
GII THCH V NG PHNG SAI CA MU
....Sxy m:(x v y c quan h tuyn
91
x
....
. ..
.
(x v y c quan h tuyn tnh nghch bin )
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
H s tng quan (Correlation Coefficient) Mt i lng bng s o lng mi quan h
tuyn tnh gia 2 bin H s tng quan Pearson
92
H s tng quan Pearson
Tng th: Mu: yx
xyxy
yx
xyxy ss
sr
2i
2i
iixy
yyxx
yyxxrr
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
H s tng quanCc tnh cht quan trng ca r: -1 r 1
93
r cng ln th mi quan h tuyn tnh cng mnh.
r = 0 -> khng c quan h tuyn tnh gia X vY
r = 1 hoc r = -1 X v Y tng quan tuyn tnh hon ton
Du ca r cho thy mi quan h gia X v Y l ng bin hay nghch bin
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 32
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
25
30
35
dred
s)
..
. .y
25
30
35
dred
s)
..
. .y
94
0
5
10
15
20
25
10 20 30 40 50 60 70
Income (thousand)
Squa
re fo
otag
e (h
und
. ..
. ..
.
x0
5
10
15
20
25
10 20 30 40 50 60 70
Income (thousand)
Squa
re fo
otag
e (h
und
. ..
. ..
.
x
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
. ..... .
..
. .
y y y
th phn tn im i vi cc gi tr r khc nhau
95
.
.
... . .
.... .. .
..
.. . . .
. .x x xr = 0 r = 1 r = -1
I LNG V S LIN H I LNG V S LIN H GIA 2 BINGIA 2 BIN
yy y
th phn tn im i vi cc gi tr r khc nhau
96
... .
. .. . . .
. ... .
... ..
... .
.
.. .
... .
. . .....
. .
y
x
y
x
y
xr = .5r = -.8r = 0.9
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 33
TRUNG BNH C TRNG S V TRUNG BNH C TRNG S V X L D LIU NHMX L D LIU NHM
Trung bnh c trng s (The weighted Mean)
Trung bnh ca tp d liu c c bng cch
97
gn mi gi tr d liu mt trng s phn nh
tm quan trng ca n trong tp d liu
i
ii
wx*w
x
TRUNG BNH C TRNG S V TRUNG BNH C TRNG S V X L D LIU NHMX L D LIU NHM
D liu nhm (Grouped data)
D liu c sn trong cc lp c tng kt bng
98
D liu c sn trong cc lp c tng kt bng
phn phi tn s. Cc gi tr ring ca tp d liu gc
s khng c ghi nhn
TRUNG BNH C TRNG S V TRUNG BNH C TRNG S V X L D LIU NHMX L D LIU NHM
D liu nhm
Trung bnh ca d liu nhm
99
Tng th
Mu
NM*f ii
nM*f
x ii
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 34
TRUNG BNH C TRNG S V TRUNG BNH C TRNG S V X L D LIU NHMX L D LIU NHM
D liu nhm
Phng sai ca d liu nhm
100
Tng th
Mu
NM*f 2ii2
1n
xM*fs
2ii2
CHNG 4CHNG 4
GII THIU GII THIU
101
vvXC SUTXC SUT
NI DUNG CHNHNI DUNG CHNH
Th nghim, qui tc m v xc nh xc sut Bin c v xc sut ca bin c Mt s mi quan h cn bn ca xc sut
102
Xc sut c iu kin nh l Bayes
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 35
TH NGHIM, QUI TC M v TH NGHIM, QUI TC M v XC NH XC SUTXC NH XC SUT
Th nghim (Experiment) Th nghim l mi qu trnh to ra kt qu c nh ngha r rng
103
Khng gian mu (Sample space) im ca mu l mt kt qu c th ca mt th
nghim
Khng gian mu l tp hp ca tt c cc im c th c ca mu (cc kt qu ca th nghim)
TH NGHIM, QUI TC M v TH NGHIM, QUI TC M v XC NH XC SUTXC NH XC SUT
Qui tc m S cy l mt phng tin th rt hu ch trong
vic xc nh cc im ca mu ca mt th nghim c lin quan n nhiu bc.
104
Qui tc m i vi th nghim nhiu bc
S kt qu ca th nghim = (n1)x(n2)x.. x(nk) Qui tc m i vi t hp
S t hp ca N phn t c chn n trong mt ln l:
!nN!n!N
nN
TH NGHIM, QUI TC M v TH NGHIM, QUI TC M v XC NH XC SUTXC NH XC SUT
Yu cu cn bn ca xc sutGi Ei l kt qu ca th nghim 0 P(Ei) 1
105
P(Ei) = 1
Cc phng php xc nh xc sut Phng php c in Phng php tn s tng i Phng php ch quan
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 36
TH NGHIM, QUI TC M v TH NGHIM, QUI TC M v XC NH XC SUTXC NH XC SUT
Phng php c in
Mt phng php xc nh xc sut thch hp khi tt c cc
kt qu ca th nghim c cng kh nng xy ra
106
Phng php tn s tng i
Mt phng php xc nh xc sut thch hp khi c sn
d liu (d liu lch s) c lng t l ca s ln kt
qu th nghim s xy ra nu th nghim c lp li vi
mt s ln ln
TH NGHIM, QUI TC M v TH NGHIM, QUI TC M v XC NH XC SUTXC NH XC SUT
Phng php ch quan
Mt phng php xc nh xc sut da trn c s
h
107
phn on
Mt xc sut ch quan l mt mc tin tng ca c
nhn i vi vic xy ra mt kt qu ca th nghim
BIN C v BIN C v XC SUT CA BIN CXC SUT CA BIN C
Bin cMt bin c l mt tp hp ca cc kt qu ca th nghim
108
g
Xc sut ca bin cXc sut ca mt bin c bt k s bng vi tngcc xc sut ca cc kt qu ca th nghim
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 37
MT S MI QUAN H CN BN MT S MI QUAN H CN BN CA XC SUTCA XC SUT
Phn b/ph ca bin c
Phn ph ca bin c A l bin c cha tt c kt
qu ca mu m khng thuc v A
109
qu ca mu m khng thuc v A
P(A) = 1 P(Ac)
Bin c Bin c AA AAcc
Khng gian mu SKhng gian mu S
MT S MI QUAN H CN BN MT S MI QUAN H CN BN CA XC SUTCA XC SUT
BIn c HI ca 2 bin c: A BA B l bin c cha tt c cc kt qu ca th nghim thuc A hoc B, hoc c hai
110
Bin c Bin c AA Bin cBin cBB
Khng gian mu SKhng gian mu S
MT S MI QUAN H CN BN MT S MI QUAN H CN BN CA XC SUTCA XC SUT
Bin c GIAO ca 2 bin c: A B A B l bin c cha tt c cc kt qu ca th nghim thuc A v B
Khng gian mu SKhng gian mu S
111
Phn giaoPhn giao
Bin c Bin c AA Bin c Bin c BB
Khng gian mu SKhng gian mu S
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 38
MT S MI QUAN H CN BN MT S MI QUAN H CN BN CA XC SUTCA XC SUT
Php cng xc sut P(A B) = P(A) + P(B) P(A B) BIn c cch bit
112
Hai bin c dc gi l cch bit nu hai bin c khng c cc im phn giao.
A v B l hai bin c cch bit: P(A B) = 0
Php cng xc sut i vi hai bin c cch bit
P(A B) = P(A) + P(B)
XC SUT C IU KINXC SUT C IU KIN
Xc sut c iu kin
hay
)B(PBAP)B\A(P
BAP
113
Cc bin c c lpNu A v B l hai bin c c lp th:
P(A\B) = P(A) hay P(B\A) = P(B)
)A(PBAP)A\B(P
XC SUT C IU KINXC SUT C IU KIN
Php nhn xc sut
P(A B) = P(B). P(A\B) = P(A). P(B\A)
114
Php nhn xc sut i vi hai bin c c lp
P(A B) = P(A). P(B)
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 39
NH L BAYESNH L BAYES
Cc xc sut tin nghim: Cc c lng ban u v xc sut ca cc bin c
Xc sut hu nghim: Cc xc sut c sa li
115
g ca cc bin c da trn cc thng tin b sung
nh l Bayes
)B(P)BA(P
)A\B(P)A(P)A\B(P)A(P)A\B(P)A(P)B\A(P 1
2211
111
CHNG 5CHNG 5
PHN PHI XC SUTPHN PHI XC SUT
116
PHN PHI XC SUTPHN PHI XC SUTRI RCRI RC
NI DUNG CHNHNI DUNG CHNH
Cc bin ngu nhin
Cc phn phi xc sut ri rc
117
Gi tr k vng v phng sai ca bin ri rc
Phn phi xc sut nh thc
Phn phi xc sut Poisson
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 40
BIN NGU NHINBIN NGU NHIN
Bin ngu nhin
Mt bin ngu nhin l mt m t bng s ca kt qu ca th nghim
118
q g
Bin ngu nhin ri rc
Mt bin ngu nhin ri rc c th nhn mt s m c ca cc gi tr trong mt khong
BIN NGU NHINBIN NGU NHIN
Bin ngu nhin lin tc
Mt bin ngu nhin lin tc c gi nh c th nhn mi gi tr trong mt khong
119
th nhn mi gi tr trong mt khong
Mi gi tr c th c trong khong ny
2 3 4 5 6 7 8 X
X: height, in feet
PHN PHI XC SUT RI RCPHN PHI XC SUT RI RC
Phn phi xc sut i vi mt bin ngu nhin s m t lm th no cc xc sut c phn phi theo cc gi tr ca bin ngu nhin
120
Mt phn phi xc sut i vi mt bin ngu nhin ri rc X l mt danh sch cc gi tr c th c ca bin X v cc xc sut tng ng
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 41
PHN PHI XC SUT RI RCPHN PHI XC SUT RI RC
Mt phn phi xc sut c th c trnh by di dng: Bng th ( th t )
121
th ( th tn s) Cng thc (Hm s)
x 1 2 3 4 5 6P (x) 1/6 1/6 1/6 1/6 1/6 1/6
1 2 3 4 5 6
1/6X
c sut
PHN PHI XC SUT RI RCPHN PHI XC SUT RI RC
Hm xc sut ri rc f(x) l mt hm xc nh xc sut i vi mi gi tr ca bin X
f(x) = Prob (X=x)
122
Cc iu kin yu cu i vi hm xc sut ri rc
0 f(x) 1
f(x) = 1
PHN PHI XC SUT RI RCPHN PHI XC SUT RI RC
Hm phn phi xc sut ri rc u
f(x) = 1/n
123
n = s cc gi tr c th c ca bin ngu nhin ri rc
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 42
GI TR K VNG v PHNG SAI GI TR K VNG v PHNG SAI ca BIN NGU NHIN RI RCca BIN NGU NHIN RI RC
Gi tr k vngE (x) = = x * f(x)
Phng sai
124
Var (x) = 2 = (x - )2 * f(x)or
2 = x2 * f(x) - 2
lch chun
2
PHN PHI XC SUT NH THCPHN PHI XC SUT NH THC
Mt th nghim nh thcMt th nghim nh thc c 4 tnh cht:
Th nghim gm c mt chui n ln th tng t
125
Hai kt qu c th c cho mi ln th: thnh cng v tht bi
Xc sut ca thnh cng, p, khng thay i ln th ny sang ln th khc. V vy, xc sut ca tht bi, 1-p, khng thay i ln th ny sang ln th khc
Cc ln th c lp vi nhau
PHN PHI XC SUT NH THCPHN PHI XC SUT NH THC
Hm xc sut nh thc
xnx p1pxn
)x(f
126
Gi tr k vng v phng sai ca phn phi xc sut nh thc
Gi tr k vng: E(x) = = np
Phng sai: 2 = np (1-p)
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 43
PHN PHI XC SUT POISSONPHN PHI XC SUT POISSON
Cc tnh cht ca Th nghim Poisson
Xc sut ca mt s kin s ging nhau cho bt k
2 kh di
127
2 khong c cng di
Vic xy ra hay khng xy ra trong 1 khong bt k
s c lp vi vic xy ra hay khng xy ra trong 1
khong bt k khc
PHN PHI XC SUT POISSONPHN PHI XC SUT POISSON
Hm xc sut Poisson
= Gi tr k vng hay s trung bnh ca s kin trong
!xe)x(f
x
128
g y g gmt khong.
Gi tr k vng v phng sai ca phn phi xc sut Poisson Gi tr k vng: E(x) =
Phng sai: Var(x) =
CHNG 6CHNG 6
PHN PHI XC SUTPHN PHI XC SUT
129
PHN PHI XC SUTPHN PHI XC SUTLIN TCLIN TC
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 44
NI DUNG CHNHNI DUNG CHNH
Gii thiu
Phn phi xc sut u
130
Phn phi xc sut chun
Tnh gn ng phn phi chun cho phn phi
nh thc
GII THIUGII THIU
Mt bin ngu nhin lin tc l mt gi tr ngu nhin c th nhn bt k gi tr no trong mt khong hay tp hp cc khong
131
Mt Phn phi xc sut i vi mt bin ngu nhin lin tc c c trng bi mt Hm mt xc sut (Probability Density Function PDF)
GII THIUGII THIU
Cc din tch di ng cong mt xc sut l cc xc sut f(x)
ty
132
a bx
SDen
si
b
a
dx)x(fS)bXa(P
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 45
GII THIUGII THIU
Mt s cc phn phi xc sut ph bin i vi
bin lin tc:
Phn phi u (Uniform Distribution)
133
Phn phi u (Uniform Distribution)
Phn phi chun (Normal Distribution)
PHN PHI XC SUT UPHN PHI XC SUT U
Hm mt xc sut ca phn phi u
elsewhere0
bxa forab
1)x(f
f(x)
134
elsewhere0( )
x
Den
sity
h
a b
PHN PHI XC SUT UPHN PHI XC SUT U
Gi tr k vng v phng sai ca phn phi u
bab
135
12
abdx)x(fx)x(Var
2badx)x(f.x)x(E
2b
a
22
a
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 46
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
Hm mt xc sut ca phn phi chun
2
2
2x
e21)x(f
136
Vi = Trung bnh = lch chun = 3.14159e = 2.71828X N (, 2)
2
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
ng cong chun
Dng ca f(x) i xng, ging dng hnh chung
137
ng cong chun c 2 tham s, v . Chng
xc nh v tr v dng ca phn phi
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
1 2 3
138
1 2 3
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 47
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
1
139
X
2
1 < 2
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUNf(x)
S
140
a b x
S
P( a < X < b) = S
P ( - < X < + ) = 68.26%
P ( - 2 < X < + 2) = 95.44%
P ( - 3 < X < + 3) = 99.72%
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
Phn phi xc sut chun chun ha
Phn phi xc sut chun chun ha l mt phn phi chun
c trung bnh bng 0 v phng sai bng 1
141
Mt bin ngu nhin chun chun ha Z l mt bin tun
theo phn phi xc sut chun chun ha
Z N (0,12)
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 48
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
Mt bin chun chun ha Nu X N (, 2) th bin chun chun ha Z c trung bnh bng 0, phng sai bng 1 v Z N (0, 12)
142
XZ
a b x
f(x)
S
- 3 - 2 - + +2 +3
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUNf(x)
143
Z
S
-3 -2 -1 Za 0 1 Zb 2 3
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
X N(, 2) Z N (0, 12)
XZ
144
P (a < X < b) = P (Za < Z < Zb) = S
aZa
bZb
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 49
PHN PHI XC SUT CHUNPHN PHI XC SUT CHUN
S dng bng din tch ca ng cong chun tm gi tr ca S f(x)
145
Z S or S Z
z
S
-3 -2 -1 0 1 2 3
Using table Using table
TNH GN NG PHN PHI CHUN TNH GN NG PHN PHI CHUN CHO PHN PHI NH THCCHO PHN PHI NH THC
Khi chng ta gp mt vn ca phn phi nh thc vi s ln th ln, chng ta c th mun tnh gn ng xc sut ca phn phi nh thc
146
n > 20
np 5
n(1-p) 5
Vi n cho trc, tnh gn ng phn phi chun cho phn phi nh thc s tt nht khi p= 0.5
TNH GN NG PHN PHI CHUN TNH GN NG PHN PHI CHUN CHO PHN PHI NH THCCHO PHN PHI NH THC
Khi s dng phn phi chun tnh gn ng cho phn phi nh thc, chng ta t
= np
147
Vo trong nh ngha ca ng cong chun
)p1(np
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 50
TNH GN NG PHN PHI CHUN TNH GN NG PHN PHI CHUN CHO PHN PHI NH THCCHO PHN PHI NH THC
Nhn t iu chnh lin tc l gi tr 0.5, ngha l
cng hoc tr vo gi tr ca X khi s dng
148
phn phi xc sut chun lin tc tnh gn
ng cho phn phi xc sut nh thc ri rc
CHNG 7CHNG 7
LY MULY MU
149
LY MULY MUvv
PHN PHI MUPHN PHI MU
NI DUNG CHNHNI DUNG CHNH
Gii thiu vn ly mu Ly mu ngu nhin n gin c lng im
150
Gii thiu phn phi mu Phn phi mu ca trung bnh mu Phn phi mu ca t l mu Cc tnh cht ca c lng im Cc phng php ly mu khc
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 51
GII THIU VN LY MUGII THIU VN LY MU
Mt Tng th l tp hp tt c cc phn t cn
quan tm trong mt nghin cu.
151
Mt Mu l mt tp hp con ca tng th.
Mc ch ca thng k suy din l thu thp
thng tin v tng th t cc thng tin c trong
mu.
GII THIU VN LY MUGII THIU VN LY MU
Ly mu ngu nhin
Tng thN (C) Mu
152
c lngKim nh Gi thuyt
N (C) (Trung bnh) ( lch chun)p (T l)
Mun
s x
p
GII THIU VN LY MUGII THIU VN LY MU
Cc tr thng k mu: Mt c trng ca mu,
nh l trung bnh mu , lch chun mu s, x
153
t l mu .Gi tr ca tr thng k mu c
dng c lng gi tr tham s ca tng th
p
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 52
LY MU NGU NHIN N GINLY MU NGU NHIN N GIN
nh ngha ca mu ngu nhin n gin v qu trnh la chn mt the mu ngu nhin n gin ty thc vo tng th l hu hn hay v hn.
154
Tng th hu hn thng c nh ngha bng mt danh sch.
Tng th v hn thng c nh ngha l mt qu trnh ang din ra. Cc phn t ca tng th v hn c th khng lit k c
LY MU NGU NHIN N GINLY MU NGU NHIN N GIN
Ly mu t tng th hu hn Mt mu ngu nhin n gin c mu n t tng th
hu hn c N l mt mu c chn sao cho mi mu c th vi c mu n u c cng xc sut c
155
mu c th vi c mu n u c cng xc sut c chn
S mu ngu nhin n gin c mu n khc nhau t tng th hu hn c N l:
)!nN(!n!N
LY MU NGU NHIN N GINLY MU NGU NHIN N GIN
Ly mu t tng th hu hn Ly mu khng thay th: Khi mt phn t c
chn vo mu th n c ly ra khi tng th v khng th c chn ln th hai
156
khng th c chn ln th hai
Ly mu c thay th : Khi mt phn t c chn vo mu th n c b tr li tng th. Mt phn t c la chn ln trc th n c th c la chn ln na v v vy phn t c th xut hin trong mu hn mt ln
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 53
LY MU NGU NHIN N GINLY MU NGU NHIN N GIN
Ly mu t tng th v hnMt mu ngu nhin n gin t mt tng th
v hn l mt mt c chn phi tha mn
157
v hn l mt mt c chn phi tha mn
cc iu kin sau:
Mi phn t c chn phi n t cng mt tng
th
Mi phn t c chn mt cch c lp
C LNG IMC LNG IM
Trong c lng im chng ta s dng d liu t mu tnh mt gi tr ca tr thng k mu v da vo cung cp mt c lng v mt tham s ca tng th
158
ca tng th c lng im l mt tr thng k mu, nh l ,
s hay cung cp c lng im v tham s ca tng th, , v p.
xp
GII THIU PHN PHI MUGII THIU PHN PHI MU
Phn phi xc sut ca bt k tr thng k mu c th c gi l phn phi mu ca tr thng k.
Phn phi xc sut ca c gi l phn phi mu ca .Kin thc v phn phi mu ny v
xx
159
mu ca .Kin thc v phn phi mu ny v cc tnh cht ca n s cho php chng ta pht biu v xc sut cho trung bnh ca mu gn bng vi trung bnh ca tng th .
Trong thc t, chng ta ch chn mt mu ngu nhin n gin t tng th
x
x
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 54
PHN PHI MU CAPHN PHI MU CA
Phn phi mu ca
Phn phi mu ca l phn phi xc sut ca
xx
x
160
tt c cc gi tr c th ca trung bnh mu
Gi tr k vng ca
E( ) =
x
x
x
PHN PHI MU CAPHN PHI MU CA x
Tng th vi trung
Mt mu ngu nhin n gin vi n phn t c
h t t th
161
gbnh = ? chn t tng th
Tng kt ca d liu mu cung cp mt gi tr trung bnh mu X
Gi tr c dng suy din v gi tr
X
PHN PHI MU CAPHN PHI MU CA
lch chun ca Tng th v hn hay khng bit N
xx
nX
162
Tng th hu hn hay bit N
Vi l nhn t iu chnh tng th hu hn
1NnN
nx
1NnN
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 55
lch chun ca B qua nhn t iu chnh tng th hu hn khi
n/N 0.05Sai s chun l lch chun ca mt c lng
PHN PHI MU CAPHN PHI MU CA xx
163
Sai s chun l lch chun ca mt c lng im
xbar c xem nh sai s chun ca trung bnh
Phn phi ca Cu hi: Phn phi xc sut ca l g?
PHN PHI MU CAPHN PHI MU CA xx
x
164
nh l gii hn trung tm Phn phi ca tng th c bit l phn phi
chunX N (, 2) N (, 2/n) x
nh l gii hn trung tm Trong vic chn cc mu ngu nhin n gin c
mu n t mt tng th, phn phi mu ca trung bnh mu c th gn ng tun theo phn phi
PHN PHI MU CAPHN PHI MU CA x
x
165
bnh mu c th gn ng tun theo phn phi chun khi c mu ln.
X ~ Bt k phn phi no Khng bit phn phi
xc sut tng th C mu ln
(N>30)
x
N (, 2/n)X
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 56
N (, 2/n) Z N (0,12)vi
PHN PHI MU CAPHN PHI MU CA xX
x
166
n/x
PHN PHI MU CAPHN PHI MU CA
Phn phi mu ca
Phn phi mu ca l phn phi xc sut
pp
p
167
ca tt c cc gi tr c th ca t l mu
Gi tr k vng ca
E( ) = p
p
p
p
PHN PHI MU CAPHN PHI MU CA p
Tng th vi t l p
= ?
Mt mu ngu nhin n gin vi n phn t c
chn t tng th
168
Tng kt ca d liu mu cung cp mt gi tr trung bnh mu p
Gi tr c dng suy din v gi tr
p
p
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 57
lch chun ca Tng th v hn:
PHN PHI MU CAPHN PHI MU CA pp
n)p1(p
p
169
Tng th hu hn:
B qua nhn t iu chnh tng th hu hn
khi n/N < 0.05
1NnN
n)p1(p
p
1NnN
Dng phn phi mu ca
Phn phi mu ca c th gn ng tun
PHN PHI MU CAPHN PHI MU CA p
p
p
170
theo phn phi xc sut chun khi c mu ln np 5 n(1 p) 5
TNH CHT CA C LNG IMTNH CHT CA C LNG IM
Gi = tham s tng th c quan tm
= tr thng k mu hay c lng im ca Kh thi l h
171
Khng thin lchTr thng k mu l mt c lng khng thin lch ca tham s tng th nu
E( ) = thin lch (Bias)
Bias ( ) = E( ) -
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 58
TNH CHT CA C LNG IMTNH CHT CA C LNG IM
hu hiuCho hai c lng im khng thin lch ca tham s tng th, c lng im vi lch chun nh hn c xem l hiu qu hn nu:
12
172
qVar ( ) < Var ( )
nht qunMt tnh cht ca c lng im c trnh by khi cc c mu ln hn s cung cp cc c lng im gn vi tham s ca tng th
2
21
CC PHNG PHP LY MU KHCCC PHNG PHP LY MU KHC
Ly mu h thngMt phng php ly mu xc sut theo chng ta s chn mt cch ngu nhin mt trong k phn t u tin v sau chn mi phn t th k k tip
173
v sau chn mi phn t th k k tip
Ly mu thun tinMt phng php ly mu phi xc sut theo cc phn t c chn vo mu da trn c s thun tin
CC PHNG PHP LY MU KHCCC PHNG PHP LY MU KHC
Ly mu phn onMt phng php ly mu phi xc sut theo cc phn t c chn vo mu da trn s phn on ca ngi thc hin nghin cu
174
ngi thc hin nghin cu
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 59
CHNG 8CHNG 8
C G O GC G O G
175
C LNG KHONGC LNG KHONG
NI DUNG CHNHNI DUNG CHNH
c lng khong ca trung bnh tng th: bit c lng khong ca trung bnh tng th: khng
176
bit Xc nh c mu c lng khong ca t l tng th
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
c lng khong l mt c lng ca mt
tham s ca tng th theo cung cp mt
177
khong c tin l s cha gi tr ca tham s
Trng hp c mu ln: n 30
Trng hp c mu nh: n < 30
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 60
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
Dng tng qut ca c lng khong l:
c lng im Bin ca sai s
178
Bin ca sai s l gi tr cng v tr vo c lng im to ra mt khong tin cy
to ra mt khong tin cy ca , th c v s phi c s dng tnh bin ca sai s
f(x)
S /21-
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
179
P( Z > Z/2) = /2P( Z < -Z/2) = /2P( -Z/2 < Z < Z/2) = 1-
Z/2: l gi tr ca bin phn phi chun chun ha tng ng vi mt din tch /2 di ui pha trn ca phn phi
-z/2 z/2x
S /2
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
1Z
n/xZP
22
180
1n
Zxn
ZxP
n/
22
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 61
Tnh c lng khong: bit
Vi
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
Zx2
181
Vi: (1-) l tin cy x l c lng im ca
l bin ca sai s
C mu ln (n 30) dng cng thc ny
n2
nZ
2
CC GI TR CA Z/2 I VI CC MC TIN CY C S DNG PH BIN NHT
M ti
/2
Z
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
182
Mc tin cy /2 Z/2 90% 95% 99%
.10
.05
.01
.050 .0.25 .005
1.645 1.960 2.576
Tnh c lng khong: bit Bin ca sai s l gi tr cng v tr vo c lng im to ra mt khong tin cy
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: BIT TRUNG BNH TNG TH: BIT
183
Khong tin cy: Mt khong tin cy 100(1 - )% i vi trung bnh ca phn phi chun l
n
Zx,n
Zx22
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 62
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: KHNG BIT TRUNG BNH TNG TH: KHNG BIT
Nu khng bit , lch chun ca mu s c dng c lng lch chun ca tng th v khong tin cy thch hp s da trn mt phn phi xc sut c gi l phn
184
trn mt phn phi xc sut c gi l phn phi t
Tr thng k t:
n/sxt
Tr thng k t s tun theo mt Phn phi Students t, vi t do df
df = n - 1
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: KHNG BIT TRUNG BNH TNG TH: KHNG BIT
185
Phn phi t thng c c dng vi phn phi c mu nh ca
If n N then t # Z
x
Phn phi chun chun ha Z
ng cong t vi bc t do l 20
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: KHNG BIT TRUNG BNH TNG TH: KHNG BIT
186
t
t do l 20ng cong t vi bc t do l 10
Phn phi t
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 63
c lng khong ca mt trung bnh tng th: khng bit
C LNG KHONG CA C LNG KHONG CA TRUNG BNH TNG TH: KHNG BIT TRUNG BNH TNG TH: KHNG BIT
stx
187
C mu nh (n < 30) v tng th tun theo mt phn phi chun hoc gn chun cng dng cng thc ny
ntx
2
TNG KT CC TH TC C LNG KHONG I VI TNG KT CC TH TC C LNG KHONG I VI TRUNG BNH TNG THTRUNG BNH TNG TH
C th gi s lch chun ca tng th
bit?C Khng
Dng lch chun ca mu s c
188
lng
nstx 2/
Dng
Trng hp khng bit
x zn
/2
Dng
Trng hp bit
XC NH C MUXC NH C MU
Gi E = bin ca sai s k vng
nZE
2
189
C mu i vi c lng khong ca mt trung bnh ca tng th
C mu i vi khng bit
2
22
EZ
n 2
2
22
EsZ
n 2
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 64
C LNG KHONG CA C LNG KHONG CA T L TNG THT L TNG TH
n/)p1(p
p)p(E
p
190
c lng khong ca t l tng th
hayp2
Zp
n/)p1(pZp2
Xc nh c muGi E = bin ca sai s k vng
C LNG KHONG CA C LNG KHONG CA T L TNG THT L TNG TH
n/)p1(pZE
191
2
2
E)p1(pZ
n
n/)p1(pZE
2
2
CHNG 9CHNG 9
KIM NH GI THUYT
192
KIM NH GI THUYT
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 65
NI DUNG CHNHNI DUNG CHNH
Pht trin gi thuyt khng v gi thuyt khc Cc sai lm loi I v loi II
193
Kim nh mt-pha v trung bnh ca tng th: bit Kim nh hai-pha v trung bnh ca tng th: bit Kim nh v trung bnh ca tng th: khng bit Kim nh v t l ca tng th
PHT TRIN GI THUYT PHT TRIN GI THUYT KHNG v GI THUYT KHCKHNG v GI THUYT KHC
Gi thuyt
Gi thuyt l mt gi s hay pht biu v cc tham s ca tng th; N c th ng hoc sai
194
Gi thuyt Khng (H0)
H0 l mt pht biu (ng thc hoc bt ng thc) lin quan n tham s ca tng th
H0 l mt gi nh ng trong th tc kim nh gi thuyt
Mt tuyn b ca nh sn xut thng b nghi ng v c pht biu trong H0
PHT TRIN GI THUYT KHNG PHT TRIN GI THUYT KHNG v GI THUYT KHCv GI THUYT KHC
Gi thuyt khc (Ha)Ha l pht biu ngc vi H0Ha c kt lun l ng nu H0 b bc b
195
a g 0
Nh nghin cu mong mun ng h Ha v nghi ng H0
Tng kt cc dng ca gi thuyt Khng v gi thuyt khc H0 : = 0 or H0 : 0 or H0 : 0 Ha : 0 Ha : 0 Ha : 0
Nhim v ca tt c kim nh gi thuyt hoc l bc b H0 hay khng bc bH0 ( Accept H0 )
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 66
CC SAI LM LOI I V LOI IICC SAI LM LOI I V LOI II
Sai lm loi I l sai lm ca vic bc b H0 khi n ngSai lm loi II l sai lm ca vic khng bc b H0 khi n sai
196
CC KT LUN NG V SAI TRONG KIM NH GI
THUYT
iu kin ca tng th
H0 ng H0 sai
CC SAI LM LOI I V LOI IICC SAI LM LOI I V LOI II
l xc sut ca sai lm loi I = P( Bc b H0 / H0 ng ) = P(Sai lm loi I ) c gi l mc ngha ca kim nh, 0.01 < < 0.1
197
Thng chn = 0.05
l xc sut ca sai lm loi II = P( Khng bc b H0 / H0 sai ) = Sai lm loi II )(1-) = P(Bc b H0 / H0 sai) = Nng lc ca kim nh cng nh th cng ln
MIN BC BMIN BC B
Mt min bc b R nh r cc gi tr ca tr thng ks ch dn cho chng ta bc b H0
198
Kim dnh 2-pha
H0 : = 0Ha : 0
Khng bc b
H0Bc b H0 Bc b H0
-Z/2
Z
Z/2
/2 /2
f(x)
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 67
MIN BC BMIN BC B
Kim nh 1-phaH0 : 0 H0 : 0Ha : 0 Ha : 0
199
Bc b H0 Khng bc b H0
-Z
Z
Bc b H0
Z
Z
Khng bc b H0
KIM NH 1KIM NH 1--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Gi thuytTrng hp 1 Trng hp2H : H :
200
H0 : 0 H0 : 0Ha : 0 Ha : 0
Tr thng k
n/
XZ 0
KIM NH 1KIM NH 1--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Phng php p-valuep-value
201
p-value l xc sut, c tnh t tr thng k, o lng mc ng h (hay khng ng h) cung cp bi mu i vi gi thuyt H0
Tiu ch p-value i vi kim nh gi thuyt
Bc b H0 nu p-value <
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 68
KIM NH 1KIM NH 1--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Phng php gi tr ti hn(Qui tc bc b)Bc b H0 nu Z < -Z Bc b H0 nu Z >Z
202
Bc b H0 nu Z < Z Bc b H0 nu Z >Z
Bc b H0 Khng bc b H0
-Z
Z
Bc b H0
Z
Z
Khng bc b H0
KIM NH 2KIM NH 2--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Gi thuyt:H0 : = 0Ha : 0
203
a 0
Tr thng k:
n/X
Z 0
KIM NH 2KIM NH 2--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
p-value i vi kim nh 2-phaTrong kim nh 2-pha, p-value c tnh bng cch nhn i din tch phn ui ca phn phi
204
i din tch phn ui ca phn phi
V din tch c nhn i nn p-value c th so snh trc tip vi v qui tc bc b vn ging nh trc
Bc b H0 nu p-value <
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 69
KIM NH 2KIM NH 2--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Phng php gi tr ti hn(Qui tc bc b)
205
Bc b Ho nu Z < -Z/2 Bc b Ho nu Z > Z/2
/2 /2
f(x)
- Z/2 Z/2
Khng bc b H0Bc b H0Bc b H0
Z
KIM NH 2KIM NH 2--PHA V TRUNG BNH PHA V TRUNG BNH CA TNG TH: BIT CA TNG TH: BIT
Mi lin h gia c lng khong v kim nh gi thuytMt phng php khong tin cy kim nh gi thuyt di dng:
H0 : = 0
206
0 0Ha : 0
Chn mt mu ngu nhin n gin t tng th v dng gi tr ca trung bnh ca mu pht trin khong tin cy i vi .
Nu khong tin cy cha gi tr c gi thuyt 0, th khng bc b H0. Nu khng cha th bc b H0
nZX /2
CC BC KIM NH GI THUYT CC BC KIM NH GI THUYT
Bc 1: Pht trin H0 v HaBc 2: nh mc ngha Bc 3: Thu thp d liu mu v tnh tr thng k kim nh
207
Phng php p-valueBc 4: Dng gi tr ca tr thng k kim nh tnh p-valueBc 5: Bc b H0 nu p-value < Phng php gi tr ti hnBc 4: Dng xc nh gi tr ti hn v qui tc bc bBc 5: Dng gi tr ca tr thng k kim nh v qui tc bc b
xc nh xem c bc b H0 hay khng
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 70
KIM NH V TRUNG BNH CA KIM NH V TRUNG BNH CA TNG TH: KHNG BIT TNG TH: KHNG BIT
s c dng c lng Phn phi t c th c dng suy din v Tr thng k kim nh l
208
Tr thng k kim nh l
df = n-1 C mu nh (n < 30) v tng th tun theo mt phn phi
chun hoc gn chun cng dng cng thc ny
ns/ - Xt 0
KIM NH V TRUNG BNH CA KIM NH V TRUNG BNH CA TNG TH: KHNG BIT TNG TH: KHNG BIT
Kim nh 1-phaH0 : 0 H0 : 0H : < H : >
209
Ha : < 0 Ha : > 0Bc b H0 nu t < -t, n-1 Bc b H0 nu t > t, n-1
Kim nh 2-phaH0 : = 0Ha : 0Bc b H0 nu t < -t/2, n-1 hay nu t > t/2, n-1
KIM NH V TRUNG BNH CA KIM NH V TRUNG BNH CA TNG TH: KHNG BIT TNG TH: KHNG BIT
p-value v phn phi t X Dng bng t l
210
Bc b H0 nu p-value <
ns/Xt 0
g gp-value
df = n-1
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 71
KIM NH V T L CA TNG THKIM NH V T L CA TNG TH
Gi p : t l ca tng thp0 : gi tr c th ca gi thuyt i vi t l ca tng th
211
Gi thuytHo : p p0 H : p p0 H0 : p = pHa : p < p0 H : p > p0 Ha : p p0
Tr thng k kim nh
p
0
ppZ
n)p(1p 00p
KIM NH KIM NH V T L CA V T L CA TNG THTNG TH
Qui tc bc b
212
HI QUI TUYN TNH N
CHNG 10
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 72
HI QUI TUYN TNH NHI QUI TUYN TNH N
M hi qui tuyn tnh n
Phng php bnh phng ti thiu
H s c nh
214
H s xc nh
Cc gi nh ca m hnh
Kim nh mc ngha
S dng m hnh hi qui c lng c
lng v d on
M HNH HI QUI TUYN TNHM HNH HI QUI TUYN TNH
M hnh hi qui tuyn tnh n l:
Phng trnh m t y lin h vi x nh th no v mt
s hng sai s c gi l m hnh hi qui.
215
yy = = 00 + + 11xx ++
Vi:
0 v 1 c gi l cc tham s ca m hnh,
l bin ngu nhin c gi l s hng sai s.
PHNG TRNH
HI QUI TUYN TNH N
Phng trnh hi qui tuyn tnh nPhng trnh hi qui tuyn tnh n l: l:
EE((yy) = ) = 00 + + 11xx
216
EE((yy) ) l gi tr k vng ca l gi tr k vng ca yy i vi gi tr i vi gi tr xx cho trc.cho trc. 11 l dc ca ng hi quil dc ca ng hi qui 00 l tung gc ca ng hi quil tung gc ca ng hi qui
th ca phng trnh hi qui l ng thng. th ca phng trnh hi qui l ng thng.
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 73
PHNG TRNH PHNG TRNH HI QUI TUYN TNH NHI QUI TUYN TNH N
Quan h tuyn tnh ng binQuan h tuyn tnh ng bin
EE((yy))EE((yy))
217xxxx
dc dc 11
dngdng
ng hi quing hi qui
Tung gcTung gc
00
PHNG TRNH PHNG TRNH
HI QUI TUYN TNH NHI QUI TUYN TNH N Quan h tuyn tnh nghch binQuan h tuyn tnh nghch bin
EE((yy))EE((yy))
hi i hi i
218
xxxx
dc dc 11
mm
ng hi quing hi quiTung gcTung gc
00
PHNG TRNH
HI QUI TUYN TNH N Khng quan hKhng quan h
EE((yy))EE((yy))
219
xxxx
dc dc 11
Bng 0Bng 0
ng hi quing hi quiTung gcTung gc
00
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 74
PHNG TRNH HI QUI
TUYN TNH N C LNG
Phng trnh hi qui tuyn tnh n c lng Phng trnh hi qui tuyn tnh n c lng
^ b b
220
y^ = b0 + b1x
y^ y^ l gi tr c lng ca y i vi gi tr x cho trc.l gi tr c lng ca y i vi gi tr x cho trc. bb11 l dc ca ngl dc ca ng bb00 l tung gc ca ng.l tung gc ca ng. th c gi l ng hi qui c lng. th c gi l ng hi qui c lng.
QU TRNH C LNGQU TRNH C LNG
M hnh hi quiM hnh hi quiyy = = 00 + + 11xx ++
Phng trnh hi quiPhng trnh hi quiEE((yy) = ) = 00 + + 11xx
Tham s cha bitTham s cha bit
D liu muD liu mux yx y
xx11 yy11. .. .. .. .
221
00, , 11. .. .xxnn yynn
bb00 vv bb11
c lng cac lng ca
00 vv 11
Phng trnh Phng trnh
hi qui c lnghi qui c lng
Tr thng k muTr thng k mu
bb00, , bb11
0 1y b b x
PHNG PHP PHNG PHP BNH PHNG TI THIUBNH PHNG TI THIU
Tiu ch bnh phng ti thiu
min (y yi i )2
222
Vi:Vi:
yyii = gi tr = gi tr quan stquan st ca bin ph thuc ca bin ph thuc
i vi quan st th ii vi quan st th iyyii ^ = = gi tr gi tr c lngc lng ca bin ph thuc ca bin ph thuc
i vi quan st th I i vi quan st th I
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 75
dc ca phng trnh hi qui c lng
PHNG PHP PHNG PHP BNH PHNG TI THIUBNH PHNG TI THIU
223
1 2
( )( )( )
i i
i
x x y yb
x x
Tung gc ca phng trnh hi qui c lngTung gc ca phng trnh hi qui c lng
PHNG PHP PHNG PHP
BNH PHNG TI THIUBNH PHNG TI THIU
0 1b y b x
224
Vi:Vi:xxii = gi tr ca bin c lp i vi quan st th i= gi tr ca bin c lp i vi quan st th i
nn = tng s quan st = tng s quan st
__yy = gi tr trung bnh ca bin ph thc = gi tr trung bnh ca bin ph thc
__xx = gi tr trung bnh ca bin c lp = gi tr trung bnh ca bin c lp
yyii = gi tr ca bin ph thuc i vi quan st th i= gi tr ca bin ph thuc i vi quan st th i
HI QUI TUYN TNH NHI QUI TUYN TNH N
V d: Doanh s xe hiV d: Doanh s xe hi
225
Qung co Qung co
TVTV
Doanh s Doanh s
xe hixe hi11
33
22
11
1414
2424
1818
1717
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 76
PHNG TRNH PHNG TRNH HI QUI C LNGHI QUI C LNG
1 2
( ) ( ) 2 0 5( ) 4
i i
i
x x y yb
x x
dc ca phng trnh hi qui c lng
226
10 5y x
0 1 2 0 5 ( 2 ) 1 0b y b x Tung gc ca phng trnh hi qui c lng
Phng trnh hi qui c lng
TH PHN TN IM V TH PHN TN IM V NG XU HNGNG XU HNG
20
25
30
hi
227
y = 5x + 10
0
5
10
15
20
0 1 2 3 4Qung co TV
Doa
nh s
xe
H S XC NHH S XC NH
Mi lin h gia SST, SSR, SSE
228
Vi:Vi:SST = Tng bnh phng ton phnSST = Tng bnh phng ton phnSSR = SSR = Tng bnh phng hi quiTng bnh phng hi quiSSE = SSE = Tng bnh phng sai sTng bnh phng sai s
SST = SSR + SSESST = SSR + SSE
2( )iy y 2( )iy y 2( )i iy y
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 77
H s xc nhH s xc nh l:l:
H S XC NH
229
Vi:Vi:
SSR = Tng bnh phng hi quiSSR = Tng bnh phng hi qui
SST = Tng bnh phng ton phnSST = Tng bnh phng ton phn
rr22 = SSR/SST= SSR/SST
H S XC NHH S XC NH
rr22 = SSR/SST = 100/114 = .8772= SSR/SST = 100/114 = .8772Mi h hi i h 88%Mi h hi i h 88%
230
Mi quan h hi qui rt mnh; 88% Mi quan h hi qui rt mnh; 88% s bin thin ca doanh s xe hi c th c s bin thin ca doanh s xe hi c th c gii thch bi mi quan h tuyn tnh gia gii thch bi mi quan h tuyn tnh gia s qung co trn TV v doanh s xe hi.s qung co trn TV v doanh s xe hi.
H S TNG QUAN MUH S TNG QUAN MU
ionDeterminat oft Coefficien ) of(sign 1brxy
231
21 ) of(sign rbrxy
ViVi
bb11 = dc ca phng trnh hi qui c lng= dc ca phng trnh hi qui c lngxbby 10
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 78
21 ) of(sign rbrxy
10 5y x
H S TNG QUAN MUH S TNG QUAN MU
232
Du ca Du ca bb11 trong phng trnhtrong phng trnh
l +.l +.
10 5y x
= + .8772xyr
rrxyxy = +.9366= +.9366
CC GI NH V S HNG SAI S CC GI NH V S HNG SAI S
1.1. Sai s l bin ngu nhin vi trung bnh bng 0
2.2. Phng sai ca , k hiu 2, s ging nhau
233
i vi tt c cc gi tr ca bin c lp.
3.3. Cc gi tr ca l c lp.
4. Sai s l bin ngu nhin tun theo
phn phi chun
KIM NH NGHAKIM NH NGHA
kim nh ngha ca mi quan h hi qui, chng
Ta phi tin hnh kim nh gi thuyt xc nh xem
gi tr ca 1 c bng 0 hay khng.
234
gi tr ca 1 c bng 0 hay khng.Hai kim nh c dng ph bin l:
t Test v F Test
C kim nh t v F u yu cu mt c lng ca
2, phng sai ca trong m hnh hi qui
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 79
c lng ca
KIM NH NGHAKIM NH NGHA
Trung bnh ca sai s bnh phng (MSE) s cung cp Trung bnh ca sai s bnh phng (MSE) s cung cp
235
2102 )()(SSE iiii xbbyyyViVi
ss 22 = MSE = SSE/(= MSE = SSE/(n n 2)2)
c lng cac lng ca 22, v , v ss22 cng c s dng.cng c s dng.
KIM NH NGHAKIM NH NGHA
c lng ca
c lng c lng chng ta ly cn bc hai cachng ta ly cn bc hai ca 22..
236
2SSEMSE
n
s
Kt qu Kt qu ss c gi l c gi l sai s chun ca c lngsai s chun ca c lng
Gi thuyt
KIM NH NGHA: KIM NH KIM NH NGHA: KIM NH tt
0 1: 0H : 0H
237
Tr thng k
1: 0aH
1
1
b
bts
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 80
Qui tc bc bQui tc bc b
KIM NH NGHA: KIM NH KIM NH NGHA: KIM NH tt
238
ViVi
tt c da trn phn phi tc da trn phn phi t
vi bc t do l n vi bc t do l n --2 2
Bc bBc b HH00 nu nu pp--valuevalue tt
1. Xc nh gi thuyt.1. Xc nh gi thuyt.
KIM NH NGHA: KIM NH KIM NH NGHA: KIM NH tt
0 1: 0H
1: 0aH
239
2. Xc nh mc ngha2. Xc nh mc ngha..
3. La chn tr thng k kim nh.3. La chn tr thng k kim nh.
= .05= .05
4. Qui tc bc b.4. Qui tc bc b. Bc b Bc b HH00 nu nu pp--valuevalue 3.182 (> 3.182 (vi t do l 3vi t do l 3))
1
1
b
bts
KIM NH NGHA: KIM NH t
5. Tnh gi tr ca tr thng k kim nh.5. Tnh gi tr ca tr thng k kim nh.
1 5 4.631 08b
bts
240
6. Xc nh c bc b 6. Xc nh c bc b HH00 hay khnghay khng
tt = 4.541 cho mt din tch .01 phn ui= 4.541 cho mt din tch .01 phn ui
pha trn. V vy, pha trn. V vy, pp--value nh hn .02. (Cng vy,value nh hn .02. (Cng vy,
tt = 4.63 > 3.182.) chng ta c th bc b = 4.63 > 3.182.) chng ta c th bc b HH00..
11.08bs
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 81
KHONG TIN CY CA KHONG TIN CY CA 11
Chng ta c th dng mt khong tin cy 95% ca Chng ta c th dng mt khong tin cy 95% ca 11
kim nh cc gi th t a mi dng trong kim nh cc gi th t a mi dng trong
241
HH00 b bc b nu gi tr c gi thuyt cab bc b nu gi tr c gi thuyt ca 11
khng nmkhng nm trong khong tin cy catrong khong tin cy ca 11..
kim nh cc gi thuyt va mi dng trong kim nh cc gi thuyt va mi dng trong
kim nh t.kim nh t.
Cng thc ca khong tin cy i vi 1 l:
KHONG TIN CY CA KHONG TIN CY CA 11
1/2 bt s
242
11 /2 bb t s
ViVi l gi tr l gi tr tt cho mt din tch lcho mt din tch l
/2 /2 trong phn ui pha trn ca phn phi trong phn ui pha trn ca phn phi tt
Vi t do l n Vi t do l n -- 22
2/t
bb11 l l
c c
lng lng
imim
l bin l bin
ca sai ca sai
ss
KHONG TIN CY CA KHONG TIN CY CA 11
Bc b Bc b HH00 nu 0 khng nm trong nu 0 khng nm trong
khong tin cy cakhong tin cy ca 11..
Qui tc bc b
243
0 0 khng nm trong khong tin cy khng nm trong khong tin cy . .
Bc b Bc b HH00
= 5 +/= 5 +/-- 3.182(1.08) = 5 +/3.182(1.08) = 5 +/-- 3.443.4412/1 bstb
or 1.56 to 8.44or 1.56 to 8.44
Khong tin cy 95% ca 1
Kt lun
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 82
Gi thuyt
KIM NH NGHA: KIM NH F
0 1: 0H
1: 0aH
244
Tr thng kFF = MSR/MSE= MSR/MSE
1a
Qui tc bc b
KIM NH NGHA: KIM NH F
B bB b HH
245
ViVi::
FF da trn phn phi F vi t do l 1da trn phn phi F vi t do l 1
t s v t s v t do l n t do l n -- 2 mu s2 mu s
Bc bBc b HH00 nunu
pp--valuevalue > FF
1. Xc nh gi thuyt.1. Xc nh gi thuyt.
KIM NH NGHA: KIM NH F
0 1: 0H 1: 0aH
246
2. Xc nh mc ngha.2. Xc nh mc ngha.
3. La chn tr thng k kim nh.3. La chn tr thng k kim nh.
= .05= .05
4. Qui tc bc b.4. Qui tc bc b. Bc b Bc b HH00 nu nu pp--valuevalue > 10.13 (vi 10.13 (vi d.fd.f t s t s
l l 1 v d.f mu s l 3)1 v d.f mu s l 3)
FF = MSR/MSE= MSR/MSE
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 83
KIM NH NGHA: KIM NH F
5. Tnh gi tr ca tr thng k kim nh.5. Tnh gi tr ca tr thng k kim nh.
6 X h b b6 X h b b HH h khh kh
FF = MSR/MSE = 100/4.667 = 21.43= MSR/MSE = 100/4.667 = 21.43
247
6. Xc nh c bc b 6. Xc nh c bc b HH00 hay khnghay khng
FF = 17.44 cho mt din tch l .025 phn ui = 17.44 cho mt din tch l .025 phn ui
pha trn. V vy, pha trn. V vy, pp--value tng ng vi value tng ng vi FF = 21.43 = 21.43
s nh hn 2(.025) = .05. V vy, chng ta bc b s nh hn 2(.025) = .05. V vy, chng ta bc b
HH00..Chng c thng k kt lun c mi quan h Chng c thng k kt lun c mi quan h
c ngha gia s lng qung co TV v doanh s c ngha gia s lng qung co TV v doanh s xe hixe hi
MT VI LU V MT VI LU V GII THCH CC KIM NH NGHAGII THCH CC KIM NH NGHA
Bc b Bc b HH00: : 11 = 0 v kt lun rng mi quan h = 0 v kt lun rng mi quan h
giagia xx vv yy c ngha chng ta khng th ktc ngha chng ta khng th kt
248
Bi v chng ta c th bc b Bi v chng ta c th bc b HH00: : 11 = 0 v= 0 v
chng t c ngha v thng k chng t c ngha v thng k , chng ta khng th kt, chng ta khng th kt
lun c lun c mi quan h tuyn tnhmi quan h tuyn tnh gia gia xx v v yy
gia gia xx v v yy c ngha, chng ta khng th kt c ngha, chng ta khng th kt
lun c lun c mi quan h nhn qumi quan h nhn qu gia gia xx v v yy
S DNG PHNG TRNH HI QUI C LNGS DNG PHNG TRNH HI QUI C LNG
C LNG V D ON C LNG V D ON
/ y t sp yp 2
Khong tin cy ca E(yp)
249
Vi:Vi:h s tin cy l 1h s tin cy l 1 -- vvtt/2 /2 da trn phn phi tda trn phn phi tvi t do l n vi t do l n -- 22
/2 indpy t s
D on khong tin cy ca yp
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 84
Nu 3 qung co TV c tin hnh trc khi bn, chng ta k vng trung bnh doanh s xe hi l:
C LNG IMC LNG IM
250
yy = 10 + 5(3) = 25 xe h= 10 + 5(3) = 25 xe hii
Kt qu khong tin cy t Excel D E F G1 CONFIDENCE INTERVAL2 x p 33 xbar 2.04 x -xbar 1 0
KHONG TIN CY CA KHONG TIN CY CA EE((yypp))
251
4 x p -xbar 1.05 (x p -xbar)2 1.06 (x p -xbar)2 4.07 Variance of yhat 2.10008 Std. Dev of yhat 1.44919 t Value 3.1824
10 Margin of Error 4.611811 Point Estimate 25.012 Lower Limit 20.3913 Upper Limit 29.61
c lng khong tin cy 95% ca trung bnh doanh s c lng khong tin cy 95% ca trung bnh doanh s xe hi khi 3 qung co TV c thc hin l:xe hi khi 3 qung co TV c thc hin l:
KHONG TIN CY CA E(yp)
252
25 25 ++ 4.61 = 20.39 to 29.61 xe hi4.61 = 20.39 to 29.61 xe hi
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 85
Kt qu khong d on t Excel
H I1 PREDICTION INTERVAL
KHONG D ON CA yp
253
2 Variance of y ind 6.766673 Std. Dev. of y ind 2.601284 Margin of Error 8.278455 Lower Limit 16.726 Upper Limit 33.287
c lng khong d on 95% ca doanh s xe hi c lng khong d on 95% ca doanh s xe hi
trong 1 tun c th khi 3 qung co TV c thc hin l:trong 1 tun c th khi 3 qung co TV c thc hin l:
KHONG D ON CA yp
254
g q gg q g
25 25 ++ 8.28 = 16.72 to 33.28 xe h8.28 = 16.72 to 33.28 xe hii
PHN TCH PHN D
Nu cc gi nh v s hng sai s khng m bo
th cc kim nh gi thuyt v ngha ca mi quan h
hi qui v cc kt qu c lng khong khng cn
255
i iy y
Rt nhiu phn tch phn d da trn Rt nhiu phn tch phn d da trn
vic kho st th phn dvic kho st th phn d
Phn d ca quan st th Phn d ca quan st th ii
Cc phn d s cho thng tin tt nht vCc phn d s cho thng tin tt nht v ..hiu lc
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 86
TH PHN D THEO X
Nu gi nh phng sai ca ging nhau i vi tt
c cc gi tr ca x c tha, v m hnh hi qui gi
nh l mt biu din y ca mi quan h gi cc
256
nh l mt biu din y ca mi quan h gi cc
bin, th th phn d s cho mt n tng tng th v gii bng cc im nm ngang
y y
Dng ttDng tt
TH PHN D THEO X
257
xx
00
Ph
n d
Ph
n d
TH PHN D THEO X TH PHN D THEO X
y y
Phng sai thay iPhng sai thay i
258
xx
00
Ph
n d
Ph
n d
www.daykemquynhon.ucoz.com
Trng HBK Tp.HCM Thng K - Chng 1
TS. Cao Ho Thi 87
TH PHN D THEO X
y y
Dng m hnh khng thch hpDng m hnh khng thch hp
259
xx
00
Ph
n d
Ph
n d
Phn d
Observation Predicted Cars Sold Residuals1 15 -1
TH PHN D THEO X
260
1 15 12 25 -13 20 -24 15 25 25 2
TH PHN D THEO X TH PHN D THEO X
th phn d
2
3
261
-3
-2
-1
0
1
0 1 2 3 4Qung co TV
Phn
d
www.daykemquynhon.ucoz.com