23
Bagian 2 Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian 2 Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika dan operasi yang digunakan. Pada bagian Limit akan mempelajari konsep dasar mengenai limit, cara menghitung nilai limit, dan penggunaan limit untuk fungsi trigonometri. Sedangkan pada bagian kontinuitas akan dipelajari tentang kontinuitas berbagai macam fungsi dalam penggambarannya pada sebuah grafik. Fungsi dan limit merupakan konsep dasar dalam kalkulus. Pada bagian selanjutnya, yaitu Differensial dan Integral, Anda akan mengerti bagaimana limit memegang peranan penting dalam menjelaskan suatu konsep matematika. Untuk itu perlu penguasaan yang baik untuk bagian 2 ini. Kompetensi yang diharapkan setelah menyelesaikan bagian 2 Fungsi dan Limit adalah Anda diharapkan mampu : 1. Melakukan operasi fungsi, meliputi penjumlahan, perkalian, pengurangan, dan pembagian 2. Menghitung komposisi fungsi 3. Melukiskan grafik fungsi pada bidang koordinat kartesius 4. Menerapkan 4 teknik perhitungan limit untuk berbagai macam fungsi 5. Menghitung kontinuitas fungsi 2.1 Pendahuluan Matriks adalah susunan bilangan “(riil atau komplek)” dalam persegi panjang yang dibatasi oleh tanda kurung siku atau tanda kurung biasa. Contoh : [ ] a a a ; d c b a ; 4 0 ; 0 3 5 8 4 2 3 2 1 ordo matriks adalah banyak susunan bilangan horizontal dan vertikal. suatu matriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom (garis vertikal) Contoh : l k j i h g f e d c b a matriks berordo 3 (baris) x 4 (kolom) atau matriks 3 x 4 Matematika Teknik 3\Matriks dan Determinan 13

Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

  • Upload
    lenhan

  • View
    316

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Bagian 2Matriks dan Determinan

Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian 2 Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika dan operasi yang digunakan. Pada bagian Limit akan mempelajari konsep dasar mengenai limit, cara menghitung nilai limit, dan penggunaan limit untuk fungsi trigonometri. Sedangkan pada bagian kontinuitas akan dipelajari tentang kontinuitas berbagai macam fungsi dalam penggambarannya pada sebuah grafik. Fungsi dan limit merupakan konsep dasar dalam kalkulus. Pada bagian selanjutnya, yaitu Differensial dan Integral, Anda akan mengerti bagaimana limit memegang peranan penting dalam menjelaskan suatu konsep matematika. Untuk itu perlu penguasaan yang baik untuk bagian 2 ini. Kompetensi yang diharapkan setelah menyelesaikan bagian 2 Fungsi dan Limit adalah Anda diharapkan mampu : 1. Melakukan operasi fungsi, meliputi penjumlahan, perkalian,

pengurangan, dan pembagian 2. Menghitung komposisi fungsi 3. Melukiskan grafik fungsi pada bidang koordinat kartesius 4. Menerapkan 4 teknik perhitungan limit untuk berbagai macam fungsi 5. Menghitung kontinuitas fungsi

2.1 Pendahuluan

Matriks adalah susunan bilangan “(riil atau komplek)” dalam persegi panjang

yang dibatasi oleh tanda kurung siku atau tanda kurung biasa.

Contoh :

[ ] aaa ; dcba

; 40

; 035842

321⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−

ordo matriks adalah banyak susunan bilangan horizontal dan vertikal. suatu

matriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris

(garis horizontal) dan 4 kolom (garis vertikal)

Contoh :

⎥⎥⎥

⎢⎢⎢

lkjihgfedcba

⇒ matriks berordo 3 (baris) x 4 (kolom) atau matriks 3 x 4

Matematika Teknik 3\Matriks dan Determinan 13

Page 2: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Notasi matriks Masing-masing elemen suatu matriks memiliki tempat yang dapat ditentukan

dengan menggunakan sistem 2 indeks. Indeks pertama menyatakan baris dan

Indeks kedua menyatakan kolom. Jika ada matrik A = [ maka elemen a33

menunjukkan elemen yang terletak pada baris yang ketiga dan kolom ketiga.

Bilangan m dan n dikatakan sebagai unsur (entri) dari matriks A atau elemen

matriks A. Garis horisontal disebut sebagai baris atau vektor baris

]

Dengan demikian suatu matriks A berikut

A = dapat dinyatakan dengan [ aij ] atau [ amn ] atau [ a ]

atau A saja

⎥⎥⎥

⎢⎢⎢

44333231

24232221

14131211

aaaaaaaaaaaa

Serupa dengan itu, matriks B = dapat dinyatakan dengan [ xi ] atau [ x ]

atau X saja.

⎥⎥⎥

⎢⎢⎢

3

2

1

xxx

Kesamaan Matriks Dua matriks A = [ ajk ] dan B = [ bjk ] dikatakan sama jika dan hanya jika A x B

mempunyai jumlah baris dan kolom yang sama serta mempunyai unsur-unsur

yang bersesuaian dengan letak yang sama pula. Kedua matriks harus

mempunyai orde yang sama

Contoh : = kedua matriks tersebut dikatakan

sama

⎥⎦

⎤⎢⎣

232221

131211

aaaaaa

⎥⎦

⎤⎢⎣

⎡7325611

Maka : a11 = 11, a21 = 2 dan seterusnya

Demikian demikian, jika [ aij ] = [ xij ], maka aij = xij untuk semua harga i dan j.

Jenis Matriks Matriks Bujursangkar

Matriks bujursangkar adalah matriks yang mempunyai jumlah baris dan kolom

sama atau dengan kata lain matriks tersebut adalah matriks yang berorde m x

m.

Matematika Teknik 3\Matriks dan Determinan 14

Page 3: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Contoh :

⎥⎥⎥

⎢⎢⎢

475782521

matriks bujur sangkar [ aij ] disebut simetrik jika aij = aji, yaitu

matriks tersebut simetris terhadap diagonal utamanya. diagonal utama adalah

diagonal yang membuat unsur a11 , a22 , a33 dan seterusnya atau aii

.Perhatikan bahwa disini berlaku A = AT. Matriks bujur sangkar [ aij ] disebut

“anti simetris”, jika aij = - aij seperti yang diperlihatkan dalam contoh berikut.

Contoh : ⎥⎥⎥

⎢⎢⎢

−−−

095902520

Matriks Diagonal

Matrik diagonal adalah matriks bujur sangkar yang semua unsurnya sama

dengan nol kecuali unsur yang terletak pada diagonal utamanya.

Contoh : ⎥⎥⎥

⎢⎢⎢

400030001

Matriks satuan

Matriks adalah matrik bujur sangkar yang semua unsur pada diagonal

utamanya sama dengan 1 (satu) sedangkan unsur lainnya sama dengan nol.

Contoh : atau matriks satuan dinyatakan dengan I

(idenstitas)

⎥⎥⎥

⎢⎢⎢

100010001

⎥⎦

⎤⎢⎣

⎡1001

Sifat penting untuk matriks I adalah : A = dan I =

maka

⎥⎥⎥

⎢⎢⎢

697831425

⎥⎥⎥

⎢⎢⎢

100010001

Matematika Teknik 3\Matriks dan Determinan 15

Page 4: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

A . I = ⎥⎥⎥

⎢⎢⎢

697831425

Serupa dengan itu, jika bentuknya perkalian I.A diperoleh A.I = I.A jadi sifat

matriks satuan I sangat mirip dengan bilangan satu dalam ilmu hitungan

aljabar biasa.

Matriks Nol

adalah martriks yang semua unsurnya sama dengan nol

contoh : sering dinyatakan dengan 0 atau cukup 0 (nol) saja ⎥⎥⎥

⎢⎢⎢

000000000

jika A.B = 0, kita tidak dapat menarik kesimpulan bahwa A = 0 atau B = 0,

karena jika A = , B = ⎥⎦

⎤⎢⎣

⎡−−

936312

⎥⎥⎥

⎢⎢⎢

⎡−4264

91

jika A.B = ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡−+−+−++−+−+−++

0000

)36()18(54)18(126)12()6(18)6(42

maka jelas bahwa A . B = 0, tetapi A ≠ 0 dan B ≠ 0

Matriks Segi Tiga

Matriks segitiga adalah matriks bujur sangkar yang semua unsur atau elemen

yang letaknya dibawah atau diatas diagonal utama sama denga nol. Jika

elemen nol terletak dibawah diagonal utama → matriks segitiga atas. Jika

elemen nol terletak diatas diagonal utama → matriks segitiga bawah

contoh : ⎥⎥⎥

⎢⎢⎢

315021004

⎥⎥⎥

⎢⎢⎢

700420612

matriks S. dibawah Matriks S. diatas

Matriks Simetri

adalah matriks bjur sangkar yang memenuhi sifat AT = A. jika AT = -A maka A

disebut materiks tak simetri

Matematika Teknik 3\Matriks dan Determinan 16

Page 5: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Contoh :

A = B = ⎥⎥⎥

⎢⎢⎢

−−−

173705352

⎥⎥⎥

⎢⎢⎢

051532121

Matriks tak simetri Matriks simetri

Latihan Soal 2.1

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! 1. Tentukan domain dan range dari fungsi xy =

2. Tentukan selang domain dari fungsi )43(

12 −−

=xx

y

3. Tentukan selang domain dan range yang mungkin dari fungsi

)472(1

2 −−=

xxy

4. Tentukan domain dan range dari fungsi 2 2 −= xy

2.2 Operasi Matriks

Penjumlahan dan Pengurangan Martriks Agar dua matriks dapat dijumlahkan atau dikurangkan, maka kedua matriks

tersebut harus memiliki orde yang sama. Jumlah atau selisih dari kedua

matriks tersebut dapt diperoleh dengan menambahkan atau mengurangkan

elemen yang bersesuaian.

Contoh :

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡++++++

=⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡1111812105

475635938214

453981

765324

⎥⎦

⎤⎢⎣

⎡−−

=⎥⎦

⎤⎢⎣

⎡−−−−−−−

=⎥⎦

⎤⎢⎣

⎡−

−⎥⎦

⎤⎢⎣

⎡13671123

)5(8104291127536

5102173

8491256

Sifat penjumlahan matriks

a) A + B = B + A

b) (u + v) + w = u + (v + w)

c) A + 0 = A

Matematika Teknik 3\Matriks dan Determinan 17

Page 6: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

d) A + (-A) = 0

Perkalian Matriks A. Perkalian Skalar

Perkalian sebuah matriks A dengan sebuah bilangan (skalar, k) akan

menghasilkan sebuah matriks baru, B yang unsur-unsurnya diperoleh dengan

mengalikan A dengan k → k.A = B

Contoh :

4 x ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡2842420812

716523

Secara umum = k [ aij ] = [ k.aij ]

Perkalian skalar dapat pula dinyatakan dengan mengeluarkan suatu faktor

yang sama dari setiap unsur.

B. Perkalian Dua Matriks

Dua buah matriks dapat dikalikan satu terhadap lainnya jika banyaknya kolon

dalam matriks yang pertama sama dengan banyaknya baris dalam matriks

yang kedua.

Contoh:

A = [ aij ] = dan B = [ bi ] = ⎥⎦

⎤⎢⎣

232221

131211

aaaaaa

⎥⎥⎥

⎢⎢⎢

3

2

1

bbb

Maka a.b =

⎥⎦

⎤⎢⎣

232221

131211

aaaaaa

. = ⎥⎥⎥

⎢⎢⎢

3

2

1

bbb

⎥⎦

⎤⎢⎣

⎡++++

323222121

313212111

......babababababa

Jika matriks A = dan matriks B = ⎥⎦

⎤⎢⎣

⎡132674

⎥⎥⎥

⎢⎢⎢

958

(2 x 3) (3 x 1)

Maka perkalian matriks A dan matriks B adalah

A . B = ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡++++

40121

91516543532

Matematika Teknik 3\Matriks dan Determinan 18

Page 7: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Perhatikan bahwa perkalian matriks ordo (2 x 3) dengan matriks orde (3 x 1)

akan menghasilkan matriks berorde (2 x 1)

Orde (2 x 3) . orde (3 x 1) → orde (2 x 1)

Sama

Secara umum, perkalian matriks orde ( L x m) dengan matriks (m x n) akan

menghasilkan matriks berorde ( L x n ). Perhatikan bahwa dalam perkalian

dua buah matriks A . B ≠ B . A, yaitu perkalian matriks non komutatif. Urutan

faktor dalam perkalian matriks sangatlah penting

Jika A = dan B = ⎥⎥⎥

⎢⎢⎢

134725

⎥⎦

⎤⎢⎣

⎡− 632

429

Maka A.B = , ⎥⎥⎥

⎢⎢⎢

++−+++−+++−+

61236)2(2924281214)8(631220610)4(45

B.A = ⎥⎦

⎤⎢⎣

⎡++−++−

++++612)4(1821)10(

4818121445

Sifat perkalian matriks

a) (kA).B = k (A.B) = A (kB)

b) A (BC) = (AB) C

c) (A + B) C = AC + BC

d) C ( A + B) = CA + CB

Tranpose Matriks Tranpose matriks adalah jika baris dan kolom suatu matriks dipertukarkan,

yaitu baris pertama menjadi kolom pertama, baris kedua menjadi kolom

kedua, baris ketiga menjadi kolom ketiga dan seterusnya. Matriks yang baru

terbentuk disebut “tranpose” dari matriks semula. Jika matriks semula adalah

matriks A, maka tranposenya dinyatakan dengan A” atau AT

Contoh :

Matematika Teknik 3\Matriks dan Determinan 19

Page 8: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Jika A = , maka AT = ordo A (3 x 2) → AT (2 x 3) ⎥⎥⎥

⎢⎢⎢

529764

⎥⎦

⎤⎢⎣

⎡596274

Latihan Soal 2.2

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! 1. Lakukan operasi terhadap fungsi 2)( += xxf dan 2)( += xxg

2. Berdasarkan soal 1, lakukan operasi terhadap fungsi 2)( += xxg dan 2)( += xxf

3. Berdasarkan fungsi yang diberikan dalam soal no. 1, lakukan operasi komposisi fungsi.

4. Berdasarkan soal no. 1, carilah nilai f(x) yang mungkin untuk nilai x = 2, x = 4, dan x = 6

5. Berdasarkan soal no. 3, carilan nilai hasil komposisi fungsi jika diberikan nilai x = 2, x = 4, dan x = 6

2.3 Grafik Fungsi

Grafik sebuah fungsi f(x) pada bidang x – y didefinisikan sebagai lukisan persamaan y = f(x) pada bidang tersebut. Contoh 2.4 Gambarkan grafik fungsi y = x + 2 dan grafik fungsi y = | x |

Translasi

Contoh 2.5 Diberikan fungsi y = f(x) = x2.

Matematika Teknik 3\Matriks dan Determinan 20

Page 9: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Fungsi awal f(x) = x2 jika ditambahkan konstanta 2 pada f(x) menjadi fungsi baru f(x)= x2 + 2.

f(x)

= (x

+2)2

f(x)

= x

2

Fungsi awal f(x) = x2 , ditambahkan konstanta 2 pada x menjadi fungsi baru f(x) = (x + 2)2

Refleksi

Contoh 2.6 Diberikan fungsi y = f(x) = √x

Matematika Teknik 3\Matriks dan Determinan 21

Page 10: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Jika diberikan fungsi awal f(x) = √x, maka perkalian f(x) dengan –1 membuat fungsi baru f(x)= -√x. Translasi dan refleksi dinamakan transformasi kaku karena operasi tersebut tidak merubah bentuk grafik hanya merubah letak grafik. Ada operasi yang disebut operasi skala yang merubah bentuk dari grafik, terutama untuk persamaan-persamaan fungsi trigonometri.

Uji Garis Vertikal Sebuah kurva dalam bidang x – y adalah grafik fungsi y = f(x) untuk beberapa fungsi f(x) jika dan hanya jika tidak ada garis vertikal yang memotong kurva tersebut lebih dari 1 kali. Uji garis vertikal terutama untuk menentukan apakah fungsi masih tetap sama jika dilakukan penulisan dalam bentuk yang lain. Contoh 2.7

Matematika Teknik 3\Matriks dan Determinan 22

Page 11: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Uji Garis Horizontal Sebuah kurva dalam bidang x - y adalah grafik fungsi x = g(y) untuk beberapa fungsi g(y) jika dan hanya jika tidak ada garis horizontal yang memotong kurva tersebut lebih dari 1 kali. Seperti halnya uji garis vertikal, uji garis horizontal digunakan untuk melihat apakah fungsi masih tetap sama jika ditulis dalam bentuk yang lain. Contoh berikut akan menjelaskan kepada Anda, bagaimana uji garis horizontal digunakan untuk melihat fungsi tetap sama atau tidak jika ditulis dalam bentuk yang lain. Contoh 2.8

sb. y

sb. x

y = x2 tidak ekivalen x = + y

Latihan Soal 2.3

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! 1. Lukiskan grafik fungsi y = x3 dan gambarkan fungsi tersebut jika

ditranslasikan sejauh x = 2 2. Sama dengan soal satu, tapi ditranslasikan sejauh x = 4

2.4 Limit (Pendahuluan)

Dua masalah dasar yang dipelajari dalam Calculus adalah garis singgung dan luas. Dalam geometri bidang, sebuah garis disebut garis singgung pada lingkaran jika garis tersebut bertemu lingkaran hanya pada satu titik (gambar a). Bagaimanapun pengertian ini tidak memuaskan untuk kurva-kurva yang lain. Pada gambar b garis bertemu kurva tepat satu titik tapi bukan garis singgung. Pada gambar c garis bertemu lebih dari satu titik.

Matematika Teknik 3\Matriks dan Determinan 23

Page 12: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Garis singgung sebagai limit

a) b) c)

Untuk mendefinisikan konsep sebuah garis singgung yang dipakai dalam penerapannya di kurva atau lingkaran kita harus memandang pengertian garis singgung dengan cara lain. Anggap sebuah titik P pada kurva di bidang x – y. Jika Q adalah sembarang titik pada kurva yang berbeda dengan P, garis yang menghubungkan P dan Q disebut garis potong (secant line) untuk kurva tersebut. Hal ini menandakan bahwa jika kita memindahkan titik Q sepanjang kurva menuju P, garis potong kita anggap menjadi garis singgung pada titik P.

Luas sebagai Limit.

Luas dari beberapa bidang dapat dihitung dengan membagi lagi bidang tersebut dalam bilangan tertentu beberapa segiempat atau segitiga lalu menjumlahkannya. Kita dapat menghitung luas di bawah kurva dengan cara membagi dengan beberapa/banyak segiempat. Selain itu jika kita mengulang proses penggunaan segiempat lebih banyak lagi akan cenderung untuk mengisi

Matematika Teknik 3\Matriks dan Determinan 24

Page 13: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

kekosongan di bawah kurva dan perkiraan kita akan mendekati luas eksak di bawah kurva sebagai suatu nilai limit.

Notasi limit

Situasi matematika Notasi Cara membaca Nilai f(x) mendekati l1 dimana x didekati dari sisi kanan

Limit f(x) = l1 x→ xo

+ Limit f(x) sama dengan l1 dimana x menuju x dari sisi kanan

Nilai f(x) mendekati l2 dimana x didekati dari sisi kiri

Limit f(x) = l2 x→ xo

– Limit f(x) sama dengan l2 dimana x menuju x dari sisi kiri

Nilai f(x) mendekati l dimana x didekati dari sisi kiri dan sisi kanan Limit f(x) = Limit f(x) = l x→ x+ x→ x–

Limit f(x) = l x→ xo

Limit f(x) sama dengan l2 dimana x menuju x

Beberapa contoh berikut ini akan menambah pengertian akan limit.

Contoh 2.9

f(x) =242

−−

xx

Nilai x Nilai f(x) Nilai x Nilai f(x) 0,0 2,0 2,0 ? 0,5 2,5 2,0001 4,0001 1,0 3,0 2,001 4,001 1,5 3,5 2,01 4,01 1,6 3,6 2,1 4,1 1,7 3,7 2,5 4,5 1,8 3,8 3,0 5,0 1,9 3,9 3,5 5,5

1,99 3,99 1,999 3,999

1,9999 3,9999

Matematika Teknik 3\Matriks dan Determinan 25

Page 14: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

sb. x2 3

4

sb. y

Contoh 2.10

f(x) = Sin ⎟⎠⎞

⎜⎝⎛

Nilai x (radian) Nilai f(x) 1 Sin π = 0 0,1 Sin 10 π = 0 0,01 Sin 100 π = 0 0,001 Sin 1000 π = 0 0,0001 Sin 10000π = 0 ............. ......................... -1 Sin – π = 0 -0,1 Sin – 10π = 0 -0,01 Sin – 100π = 0 -0,001 Sin – 1000π = 0 -0,0001 Sin – 10000π = 0

Latihan Soal 2.4

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! 1. Untuk grafik fungsi y = f(x) seperti pada gambar, tentukan:

a. b. )(lim3

xfx −→

)(lim3

xfx +→

c. d. )(lim3

xfx→

)3(f

e. f. )(lim xfx ≈−→

)(lim xfx ≈+→

2. Untuk grafik fungsi berikut, tentukan:

Matematika Teknik 3\Matriks dan Determinan 26

Page 15: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

a. )(lim2

xx

φ−−→

b. )(lim4

xx

φ+→

c. )(lim4

xx

φ→

d. )4(φ

e. )(lim xx

φ≈−→

f. )(lim xx

φ≈+→

2.5 Teknik Perhitungan Limit

Pada bagian sebelumnya kita telah mempelajari bagaimana interpretasi limit terhadap sebuah grafik. Pada bagian ini kita akan menentukan nilai limit sebuah fungsi berdasarkan rumus langsung. Dasar- dasar limit lim k = k lim x = a x→ a x→ a

lim k = k lim x = + ≈ x→ + ≈ x→ + ≈

lim k = k lim x = - ≈ x→ - ≈ x→ - ≈

limit k = k x a

limit k = k x +

limit k = k x -

Matematika Teknik 3\Matriks dan Determinan 27

Page 16: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Teorema : Diberikan limit yang berlaku untuk : lim ; lim ; lim ; lim x a x a- x +≈ x -≈ Jika l1= lim f(x) dan l2 = lim g(x) ada, maka : a. lim [f(x) + g(x)]=lim f(x) + lim g(x) = l1+l2

b. lim [f(x) - g(x)]=lim f(x) - lim g(x) = l1-l2

c. lim [f(x) . g(x)]=lim f(x) . lim g(x) = l1.l2

d. lim)()(

xgxf

=)(lim)(lim

xgxf

= 2

1

ll

, jika l2 ≠ 0

e. lim n√f(x) = n√lim f(x) = n√l1, asal l1>0, jika n genap.

Contoh 2.11 Tentukan lim (x2-4x+3) x→5

Penyelesaian: lim (x2 - 4x +3) = lim x2 - lim 4x + lim 3 x→5 x→5 x→5 x→5

= 52-4.5+3

= 8

Bentuk Limit Ada beberapa bentuk limit yang kita kenal, yaitu : 1. Limit Polynominal

Untuk sembarang fungsi polynominal berbentuk : P(x)=C0+ C1x+ C2x2+ ..... + Cnxn dan sembarang bilangan real a, maka: Lim P(x)=C0+ C1x+ C2x2+ ..... + Cnxn = P(a) x→a

2. Limit berbentuk l/x Lim 1/(x-a)= +~ lim 1/(x-a)= 0 x→a+ x→+~

Lim 1/(x-a)= -~ lim 1/(x-a)= 0 x→a+ x→-~

3. Limit Polynominal berbentuk x→+~ atau x→-~ lim xn = +~ n = 1,2,3,... x→+~

lim xn = +~ n = 2,4,6,... x→-~

Matematika Teknik 3\Matriks dan Determinan 28

Page 17: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

lim xn = -~ n = 1,3,5,... x→-~

lim 1/xn =(lim 1/x)n = 0 x→+~ x→+~

lim 1/xn =(lim 1/x)n = 0 x→-~ x→-~

lim (C0+ C1x+ C2x2+ ..... + Cnxn ) = lim Cnxn x→+~ x→+~

Lim (C0+ C1x+ C2x2+ ..... + Cnxn )= lim Cnxn x→-~ x→-~

4. Limit Fungsi Rasional berbentuk x→a

5. Limit Fungsi Rasional berbentuk x→+~ atau x→-~

Latihan Soal 2.5

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! 1. Hitung 52lim x

x ≈+→

2. Hitung 52lim xx ≈−→

3. Hitung 67lim xx

−≈+→

4. Hitung 67lim xx

−≈−

2.6 Limit (Pendekatan Yang Lebih Teliti)

Pada bagian awal telah dibicarakan limit secara tidak formal yang diartikan sebagai : lim f(x) = L x→a untuk menyatakan bahwa nilai f(x) mendekati L selama x mendekati a dari kedua sisi (tetapi berlainan dengan a). Bagaimana pun kata f(a) mendekati L dan x mendekati a hanyalah instuisi tanpa defenisi limit tersebut menjadi tepat. Tujuan kita adalah membuat definisi limit tersebut menjadi tepat. Karena konsep tentang limit adalah rumit, maka definisi tentang limit akan dikembangkan dalam tahap-tahap dengan pertama-tama memberikan dua defenisi pendahuluan tentang limit. (Masing-masing sangat berguna yang akan menjadi gagasan dasar limit).

Matematika Teknik 3\Matriks dan Determinan 29

Page 18: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Untuk mengarah pada definisi yang tepat tentang limit pandanglah fungsi f(x) yang grafiknya terlukis sebagai berikut :

Kita memang sengaja meletakkan tanda pada grafik pada x = a untuk menegaskan bahwa fungsi f(x) tidak perlu didefinisikan pada titik dalam diskusi selanjutnya. Untuk grafik fungsi pada gambar kita mengerti limit memberikan kesan bahwa f(x) mendekati I pada x mendekati a. Ini memberikan pengertian bahwa jika memilih bilangan positif sembarang, kita namakan ε dan membangun sebuah interval terbuka pada sumbu yang memperpanjang nilai ε di atas dan di bawah 1 (gambar b). Lalu nilai f(x) akan jatuh terbatas dalam interval (1 – ε, 1 + ε) dimana x mendekati a dari kedua sisi.

Definisi Awal Pertama Misalkan f(x) terdefinisi untuk setiap x dalam interval terbuka yang terdapat bilangan a dengan pengecualian yang mungkin bahwa f(x) tidak boleh terdefinisi pada a, kita akan menyatakan :

Lim f(x) = 1 x→a

Jika diberikan sembarang bilangan ε > 0 kita dapat menemukan sebuah interval terbuka (x,x1) sedemikian sehingga terdapat titik a yang mana f(x) memenuhi :

1 – ε < f(x) < 1 + ε ............................... 1

untuk setiap x dalam interval (x,x1), kemungkinan pengecualian pada x = a. Hal tersebut berarti bahwa x berlaku untuk :

(x,a) U (a,x) .......................................... 2

Definisi Awal Kedua Misalkan f(x) terdefenisi untuk setiap x dalam intervak terbuka yang terdapat bilangan a dengan pengcualian yang mungkin bahwa f(x) tidak boleh terdefinisi sebagai a, kita akan menyatakan :

Matematika Teknik 3\Matriks dan Determinan 30

Page 19: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Lim f(x) = 1 x→a

Jika diberikan sembarang bilangan ε > 0 kita dapat menemukan sebuah bilangan δ > 0 sedemikian sehingga f(x) memenuhi :

1 – ε < f(x) < 1 + ε ................................................... 3

Persamaan 1), 2), 3) kita nyatakan : [ f(x) - 1 ] < ε

0 < [x-a] < δ Definisi Limit Misalkan f(x) terdefinisi untuk setiap x dalam interval terbuka yang terdapat bilangan a dengan pengecualian yang mungkin bahwa f(x) tidak boleh terdefinisi pada a, kita akan menyatakan :

Lim f(x) = 1 x→a

Jika diberikan sembarang bilangan ε > 0 kita dapat menemukan sebuah bilangan δ > 0 sedemikian sehingga f(x) memenuhi:

[ f(x) - 1 ] < ε jika x memenuhi 0 < [x-a] < δ

Contoh 2.12

Buktikan bahwa 21lim2/1

=→ xx

Penyelesaian:

Jika diberikan nilai ε > 0, maka ada nilai δ > 0 sehingga berlaku

ε<− 2)/1( x jika δ<−< 2/10 x

21

21 /2/2)2/1)(/2(2)/1( −=−=−=− xxxxxxx

Atau

ε<− 21/2 xx jika δ<−< 2/10 x

Latihan Soal 2.6

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir himpunan penyelesaian yang benar. Selamat berlatih...!!! 1. Buktikan bahwa 153lim

5=

→x

x

2. Buktikan bahwa 22lim 2

1=

→x

x

Matematika Teknik 3\Matriks dan Determinan 31

Page 20: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

3. Buktikan bahwa 3)72(lim2

−=−→

xx

2.7 Kontinuitas

Sebuah fungsi f(x) dikatakan kontinu pada titik C, jika kondisi berikut semuanya terpenuhi. 1. f(x) terdefenisi pada C

2. Lim f(x) ada x→C

3. Lim f(x) = f(C) x→C

Jika satu atau lebih kondisi dalam definisi tidak dipenuhi maka f(x) dikatakan diskontinu di C dan C dinamakan titik diskontinu fungsi f(x). Jika f(x) kontinu disemua titik pada interval terbuka (a,b) maka f(x) dikatakan kontinu pada (a,b). Sebuah fungsi yang kontinu pada (- ≈, + ≈) dikatakan kontinu di setiap tempat.

Contoh 2.13

Selidikilah apakah fungsi f(x) = 2

)4( 2

−−

xx

kontinu pada titik x = 2

Penyelesaian:

)22()42()2(

2

−−

=f = tidak terdefinisi

4)2(

)2)(2(lim)(lim22

=−

+−=

→→ xxxxf

xx

)(lim)2(

2xff

x→≠ , jadi fungsi f(x) diskontinu pada titik 2.

Kontinuitas Fungsi Polynominal Teorema : jika f dan g kontinu di C, maka : a. f + g adalah kontinu di C b. f – g adalah kontinu di C c. f . g adalah kontinu di C d. f / g adalah kontinu di C jika g(x) ≠ 0

Kontinuitas Fungsi Rasional Teorema 1: Sebuah fungsi rasional adalah kontinu disembarang nilai kecuali pada titik dimana penyebutnya bernilai 0.

Matematika Teknik 3\Matriks dan Determinan 32

Page 21: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Teorema 2 : Misalkan limit berlaku untuk limit – limit berikut : lim ; lim ; lim ; lim ; lim x→C x→C+ x→C- x→+≈ x→- ≈ Jika limit g(x) =1 dan jika fungsif kontinu di 1, maka lim f(g(x)) = f(1), Teorema 3 : Jika fungsi g kontinu di titik C dan f kontinu di titik g(C) maka fungsi komposisi fog kontinu di C.

Kontinuitas Fungsi Dari Kiri Ke Kanan Definisi 1 : Sebuah fungsi dikatakan kontinu dari kiri ke kanan pada titik C dan dikatakan kontinu dari kanan pada titik C jika kondisi berikut dipenuhi : 1. Nilai f(x) pada C ada 2. lim f(x) ada lim f(x) ada

x→C- x→C+

3. lim f(x) = f(C) lim f(x) = f(C)

x→C- x→C+

Definisi 2 : Sebuah fungsi f dikatakan kontinu pada interval tertutup [a,b] jika kondisi berikut terpenuhi : 1. f kontinu pada (a,b) 2. f kontinu dari kanan di a 3. f kontinu dari kiri di b

Contoh 2.14

Selidiki apakah fungsi f(x) = )9( 2x− kontinu pada selang [-3,3] Penyelesaian: 1. lim f(x) = lim √(9 – x2) x→C x→C = √lim (9 – x2) x→C = √(9 – x2) = f(C) 2. lim f(x) = lim √(9 – x2) x→C x→3- = √lim (9 – x2) x→3- = √(9 – (-3)2) = 0 = f(3) 3. lim f(x) = lim √(9 – x2) x→C x→3+ = √lim (9 – x2)

Matematika Teknik 3\Matriks dan Determinan 33

Page 22: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

x→3+ = √(9 – 32) = 0 = f(-3)

Dari penyelesaian di atas (langkah 1 sampai 3) dapat disimpulkan bahwa fungsi f(x) kontinu pada selang [-3, 3].

Latihan Soal 2.7 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Untuk soal 1 dan 2, carilah titik dimana fungsi f(x) diskontinu, jika ada

1. 1

)( 2 +=

xxxf

2. ⎪⎩

⎪⎨⎧

>+

≤+= 4.....,.........167

4.....,.........32)( x

x

xxxf

3. Carilah nilai a dan b sehingga fungsi kontinu ⎪⎩

⎪⎨

≥<≤+<+

=2..............321.....1............1

)(xxxbaxxx

xf

2.8 Limit dan Kontinuitas Fungsi Trigonometri

Limit dan kontinuitas dapat digunakan untuk fungsi trigonometri. Pengerjaan

sama seperti perhitungan limit. Pengetahuan tambahan yang perlu diingat

kembali adalah persamaan identitas fungsi trigonometri.

Contoh 2.15 Hitunglah limit sin (C + h) untuk nilai h mendekati 0. Penyelesaian lim Sin (C + h) = lim (Sin C. Cos h + Cos C. Sin h) h→0 h→0

= lim (Sin C. Cos h ) + lim Cos C. Sin h) h→0 h→0

= Sin C. (lim Cos h ) + Cos C.(lim Sin h) h→0 h→0

= Sin C (1) + Cos C (0)

= Sin C

Matematika Teknik 3\Matriks dan Determinan 34

Page 23: Bagian 2 Matriks dan Determinan · PDF filematriks dikatakan ber-ordo 3 x 4 jika matriks tersebut mempunyai 3 baris (garis horizontal) dan 4 kolom ... Matematika Teknik 3\Matriks dan

Contoh 2.16

Matematika Teknik 3\Matriks dan Determinan 35

Hitung x

xx

tan0→

lim

Penyelesaian:

11.1cos

1.sinlimtanlim00

==⎟⎠⎞

⎜⎝⎛=

→→ xxx

xx

xx

Contoh 2.17

Hitung xx

x 5sin3sin

0→lim

Penyelesaian:

53

1.51.3

55sin.5

33sin.3

lim5sin

3sin

lim5sin3sinlim

000====

→→→

xx

xx

xx

xx

xx

xxx

Latihan Soal 2.8

Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir himpunan penyelesaian yang benar. Selamat berlatih...!!! Untuk soal 1 dan 2, carilah titik diskontinu fungsi jika ada 1. xy cos= 2. xy sec=