B-Electrical Energy Audit.ppt

Embed Size (px)

Citation preview

  • 8/22/2019 B-Electrical Energy Audit.ppt

    1/25

    GERIAP-NPC 13 1

    13. Audit of Electrical Systems

  • 8/22/2019 B-Electrical Energy Audit.ppt

    2/25

    GERIAP-NPC 13 2

    FANS & BLOWERS PUMPS R & AC COMPRESSORS LIGHTING, HEATING

    M M M M C

    M

    M

    DG SET

    EB POWER

    Metering

    TransformerEffi.95-98%

    Feeders,

    Capacitors

    Distribution

    Panels

    Motors

    Effi.85-96%

    MECHANICAL

    ELECTRICAL

    TRIVEATOR METER

    11 KV/440V

    ELECTRICAL DISTRIBUTION SYSTEM -- SINGLE LINE DIAGRAM

    C

    C

    Dist

    . loss

    4 - 8%

  • 8/22/2019 B-Electrical Energy Audit.ppt

    3/25

    GERIAP-NPC 13 3

    Typical Range of Losses in Common

    Electrically Operated EquipmentEquipment % Energy Loss at Full Load

    Outdoor circuit breaker (15 to 230 KV) 0.002 - 0.015

    Medium voltage switchgears (5 to 15 KV) 0.005 - 0.02

    Transformers 0.40 - 1.90

    Load break switches 0.003 - 0.025

    Medium voltage starters 0.02 - 0.15

    Bus ways less than 430 V 0.05 - 0.50

    Low voltage switchgear 0.13 - 0.34

    Motor control centers 0.01 - 0.40

    Cables 1.00 - 4.00

    Motors (1-10 HP) 14.0 - 35.0

    10 200 HP motors 6.0 - 20.0

    200 1500 HP motors 4.0 - 7.0

    Capacitors (Watts / KVAR) 0.50 - 6.0

  • 8/22/2019 B-Electrical Energy Audit.ppt

    4/25

    GERIAP-NPC 13 4

    How to reduce Electricity Bill in

    an Industry ?

    0

    200

    400

    600

    800

    1000

    12001400

    1600

    1800

    2000

    2200

    May'01

    Jun'0

    1Jul'01

    Aug'01

    Sep'0

    1Oc

    t'01

    Nov'0

    1

    Dec'01

    Jan'0

    2

    Feb'0

    2

    Mar'0

    2

    Apr'0

    2

    Month

    kVA

    Minimum billable demand1683 kVA

    Contracted demand 2250 kVA

    Maximum Demand

    By reducing

    MD (KVA)

    Energy ( KWH)

  • 8/22/2019 B-Electrical Energy Audit.ppt

    5/25

    GERIAP-NPC 13 5

    How to reduce MD charge?

    Electrical Load Management

    Power Factor Improvement

    Tariff Management

  • 8/22/2019 B-Electrical Energy Audit.ppt

    6/25

    GERIAP-NPC 13 6

    Install MD controllers (Automatic load shedding)

    ELECTRICAL LOAD

    MANAGEMENT OPTIONS

    Shift the load to non peak hours

  • 8/22/2019 B-Electrical Energy Audit.ppt

    7/25

    GERIAP-NPC 13 7

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    May'01

    Jun'01

    Jul'01

    Aug'01

    Sep'01

    Oct'01

    Nov'01

    Dec'01

    Jan'02

    Feb'02

    Mar'02

    Apr'02

    Month

    kVA

    Minimum billable demand 1683 kVA

    Contracted demand 2250 kVA

    Maximum Demand

  • 8/22/2019 B-Electrical Energy Audit.ppt

    8/25

    GERIAP-NPC 13 8

    0

    200

    400

    600

    800

    1000

    1200

    7:00

    8:30

    10:0

    0

    11:3

    0

    13:0

    0

    14:3

    0

    16:0

    0

    17:3

    0

    19:0

    0

    20:3

    0

    22:0

    0

    23:3

    0

    1:00

    2:30

    4:00

    5:30

    Time (Hrs)

    De

    mand,Kva

    Maximum Demand curve

  • 8/22/2019 B-Electrical Energy Audit.ppt

    9/25

    GERIAP-NPC 13 9

  • 8/22/2019 B-Electrical Energy Audit.ppt

    10/25

    GERIAP-NPC 13 10

  • 8/22/2019 B-Electrical Energy Audit.ppt

    11/25

    GERIAP-NPC 13 11

    Reducing MD by Power Factor

    Improvement

    KW = KVA x P.F

    100 = 142 x 0.7KW or active power is what is required by the plant. Suppose

    if we increase the P.F. to 0.95, then

    KVA= 100 / 0.95

    KVA= 105So increasing power factor reduces the Maximum Demand

  • 8/22/2019 B-Electrical Energy Audit.ppt

    12/25

    GERIAP-NPC 13 12

    How to improve power factor ?

  • 8/22/2019 B-Electrical Energy Audit.ppt

    13/25

    GERIAP-NPC 13 13

    What does the capacitor do to

    improve P.F. ?

  • 8/22/2019 B-Electrical Energy Audit.ppt

    14/25

    GERIAP-NPC 13 14

    Other benefits of power factor

    correction

    Improve voltage to

    equipment

    Increase Current-

    carrying capacity

    % Voltage rise = Capacitor kVAR x (Transforemr % Impedence)

    Transformer kVA

    Reduce power losses (Power Loss =I2R)

  • 8/22/2019 B-Electrical Energy Audit.ppt

    15/25

    GERIAP-NPC 13 15

    Where to reduce Kwh in

    electrical systems ?

    Transformers

    Distribution systems

    Motors

  • 8/22/2019 B-Electrical Energy Audit.ppt

    16/25

    GERIAP-NPC 13 16

    Energy savings in Transformers

    Optimise loading of transformers

    Switch off the primary side of transformer if

    it is not serving any loads Maintain balanced voltage with polyphase

    transformers by maintaining equal tap

    settings. Balance single-phase loads amongphases to keep voltages within 1% of theaverage.

  • 8/22/2019 B-Electrical Energy Audit.ppt

    17/25

    GERIAP-NPC 13 17

    Energy loss in Transformers

    Transformer kVA No load loss

    (Watts)

    Full load copper loss

    (Watts)

    100 kVA 260 1760

    160 kVA 330 2200

    200 kVA 540 3300250 kVA 600 3600

    315 kVA 700 4200

    500 kVA 840 5700

    630 kVA 1000 6400750 kVA 1100 7500

    1000 kVA 1300 9800

  • 8/22/2019 B-Electrical Energy Audit.ppt

    18/25

    GERIAP-NPC 13 18

    Typical Losses in Induction Motor

    Loss component % of total loss

    Iron Losses 25

    Stator I2r loss 45

    Rotor I2r loss 25

    Stray load loss 2

    Friction & windage loss 3

  • 8/22/2019 B-Electrical Energy Audit.ppt

    19/25

    GERIAP-NPC 13 19

    Load vs P.F. and Eff.

  • 8/22/2019 B-Electrical Energy Audit.ppt

    20/25

    GERIAP-NPC 13 20

    Energy savings in motors

    Motor Load Survey

    of all identified key equipments

    measurement of electrical parameters, V, A, PF, kW

    compare with the design load and calculate %

    loading

    Opportunities would include reshuffling of motors,

    replacing with energy efficient motors, Rewindingvs new motor

  • 8/22/2019 B-Electrical Energy Audit.ppt

    21/25

    GERIAP-NPC 13 21

    Typical worksheet for Motor load analysis

    Sl. Motor Location HP RPM Amp Volt Amps KW PF KVAr KVA HZ Load

    No. %

    1 Dust collector fan 30 1470 38 397 29.3 15.9 0.82 11.1 20.1 48.0 712 100 ton EPN Press 10 1440 14.7 413 7.34 2.11 0.4 4.77 5.21 48.1 28

    3 Circulation Pump 30 1460 41 408 17.3 2.64 0.21 12.0 12.2 48.1 12

    4 A/C Plant No.4 50 1460 65 398 37 17.2 0.09 18.7 26.1 48.1 46

    5 A/C Plant No.1 50 1460 65 408 22.3 10 0.63 12.5 19.9 48.2 27

    Motor load survey

  • 8/22/2019 B-Electrical Energy Audit.ppt

    22/25

    GERIAP-NPC 13 22

    Energy efficient motors

  • 8/22/2019 B-Electrical Energy Audit.ppt

    23/25

    GERIAP-NPC 13 23

    Benefits of Energy Efficient

    Motors: Example

    Case-1 Existing

    standard motor

    Input kW

    47.2

    Eff. 55%Eff. 90%

    Delivered kW

    23.37Output - kW

    42.5

    PumpMotor

    Input kW

    44.7

    Eff. 55%Eff. 95%

    Delivered kW

    23.37Output - kW

    42.5PumpMotor

    Case-2 Replaced

    with Energy

    Eff icient moto r

  • 8/22/2019 B-Electrical Energy Audit.ppt

    24/25

    GERIAP-NPC 13 24

    Analysis of Electrical Power SystemsSystem Problem Common Causes Possible Effects Solutions

    Voltage imbalancesor differencesbetween relative

    oltage levels amongthe three phases in allor part of a facility.

    Improper transformer tapsettings, one single-phase

    transformer on a polyphasesystem, single-phase loadsnot balanced amongphases, poor connections,bad conductors,transformer grounds orfaults.

    Motor vibration,premature motor failure,energy waste. A 5%imbalance causes a 40%increase in motor losses.

    Balance loadsamong phases.

    Voltage deviationsrefer to voltagesbeing too low orhigh.

    Improper transformersettings, incorrect selectionof motors, e.g., a 230/208motor (which is actually230 rated) on a 208 circuit.

    Over-voltages in motorsreduce efficiency, powerfactor, and equipmentlife, and increasetemperature.

    Checkandcorrectransformersettings, motorratingsand motorinput voltages

    Poor connectionsmay be in distributionor at connected loads.

    Loose bus bar connections,loose cable connections,corroded connections, poorcrimps, loose or worncontactors, corrosion ordirt in disconnects.

    Wastes energy,produces heat, causesfailure at connectionsite, leads to voltagedrops and voltageimbalances.

    Use IR camerato locate hot-spots andcorrect.

  • 8/22/2019 B-Electrical Energy Audit.ppt

    25/25

    GERIAP-NPC 13 25

    Analysis of Electrical Power Systems (Contd.)System Problem Common Causes Possible Effects Solutions

    Undersized

    conductors.

    Facilities expandingbeyond original designs,poor power factors

    Voltage drop and energy

    waste.

    Reduce the loadby conservationload scheduling.

    Insulation leakage

    Degradation over time due

    to extreme temperatures,abrasion, moisture,

    chemicals, conductorinsulation inappropriate for

    conditions.

    May not cause breaker

    to trip, and may leak toground or to another

    phase. Variable energywaste.

    Replaceconductors,

    insulators

    Low Power Factor

    Inductive loads such as

    motors, transformers, andlighting ballasts; non-linear

    loads, such as mostelectronic loads.

    Reduces current-carrying capacity of

    wiring, voltageregulation effectiveness,and equipment life. May

    increase utility costs.

    Add capacitorsto counteract

    reactive loads.

    Harmonics (non-sinusoidal voltageand/or current wave

    forms)

    Office-electronics,PBXs,

    UPSs, variable frequencydrives, high intensitydischarge lighting, and

    electronic and core-coilballasts.

    Over-heating of neutral

    conductors, motors,transformers, switchgear. Voltage drop, low

    power factors, reducedcapacity.

    Take care with

    equipmentselection andisolate sensitive

    electronics fromnoisy circuits.