100
M icroelectronic Device Fabrication I (Basic Chem istry and Physicsof Sem iconductorDevice Fabrication) Physics445/545 D avid R. Evans

Atomic Orbitals s-orbitals p-orbitals d-orbitals

Embed Size (px)

Citation preview

Page 1: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Microelectronic Device Fabrication I (Basic Chemistry and Physics of

Semiconductor Device Fabrication)

Physics 445/545

David R. Evans

Page 2: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Atomic Orbitals

s-orbitals p-orbitals

d-orbitals

Page 3: Atomic Orbitals s-orbitals p-orbitals d-orbitals

BE

*

s,p,d,etc. s,p,d,etc.

BE

*

s,p,d,etc. s,p,d,etc.

Chemical Bonding

Overlap of half-filled orbitals - bond formation

Overlap of filled orbitals - no bonding

HAHB

HA - HB = H2

Formation of Molecular Hydrogen from Atoms

Page 4: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Periodic Chart

Page 5: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Conduction Band

Valence Band

Egs3

p3

sp3

Si(separated atoms)

EV

EC

Si(atoms interact to formtetrahedral bonding geometry) Si crystal

Crystal Bonding

sp3 bonding orbitals

sp3 antibonding orbitals

Silicon Crystal Bonding

Page 6: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Semiconductor Band Structures

Silicon

Germanium

Gallium Arsenide

Page 7: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Eg

NE

EN

VV

CC

EF

Conduction Band

Valence Band

Intrinsic Semiconductor

Aggregate Band Structure

Fermi-Dirac Distribution

Page 8: Atomic Orbitals s-orbitals p-orbitals d-orbitals

n-type Semiconductor

Aggregate Band Structure

Fermi-Dirac Distribution

Eg

NE

EN

VV

CC

E i

EF

Conduction Band

Valence Band

Shallow Donor States

Donor Ionization

Page 9: Atomic Orbitals s-orbitals p-orbitals d-orbitals

p-type Semiconductor

Aggregate Band Structure

Fermi-Dirac Distribution

Eg

NE

EN

VV

CC

Ei

EF

Conduction Band

Valence Band

Shallow Acceptor States

Acceptor Ionization

Page 10: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Temperature Dependence

Fermi level shift in extrinsic silicon

Mobile electron concentration (ND = 1.15(1016) cm3)

Page 11: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Carrier Mobility

Carrier drift velocity vs applied field in intrinsic silicon

No Field Field PresentPictorial representation of carrier trajectory

Page 12: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Effect of Dopant Impurities

Effect of total dopant concentration on carrier mobility

Resistivity of bulk silicon as a function of net dopant concentration

Page 13: Atomic Orbitals s-orbitals p-orbitals d-orbitals

The Seven Crystal Systems

Page 14: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Bravais Lattices

Page 15: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Diamond Cubic Lattice

a = lattice parameter; length of cubic unit cell edgeSilicon atoms have tetrahedral coordination in a FCC (face centered cubic) Bravais lattice

Page 16: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Miller Indices

O

z

y

x

O

z

y

x

O

z

y

x

100

110

111

Page 17: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Diamond Cubic Model

100

110

111

Page 18: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Cleavage Planes

Crystals naturally have cleavage planes along which they are easily broken. These correspond to crystal planes of low bond density.

100 110 111

Bonds per unit cell 4 3 3

Plane area per cell a2 22a 232a

Bond Density 24

a 221.2

223

aa 22

8.332aa

In the diamond cubic structure, cleavage occurs along 110 planes.

Page 19: Atomic Orbitals s-orbitals p-orbitals d-orbitals

[100] Orientation

Page 20: Atomic Orbitals s-orbitals p-orbitals d-orbitals

[110] Orientation

Page 21: Atomic Orbitals s-orbitals p-orbitals d-orbitals

[111] Orientation

Page 22: Atomic Orbitals s-orbitals p-orbitals d-orbitals

[100] Cleavage

Page 23: Atomic Orbitals s-orbitals p-orbitals d-orbitals

[111] Cleavage

Page 24: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Czochralski Process

Page 25: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Czochralski Process Equipment

Image courtesy Microchemicals

Page 26: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Czochralski Factory and Boules

Page 27: Atomic Orbitals s-orbitals p-orbitals d-orbitals

CZ Growth under Rapid Stirring

x=0

dxCs

Cl

Distribution Coefficients

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1

Length Fraction

Dop

ant

Con

cent

rati

on R

atio

0.5

0.9

0.3

0.2

0.10.05 0.01

CZ Dopant Profiles under Conditions of Rapid Stirring

Page 28: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Enrichment at the Melt Interface

Page 29: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Si Ingot

Heater

Zone Refining

Ingot slowly passes through the needle’s eye heater so that the molten zone is “swept” through the ingot from one end to the other

Page 30: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Single Pass FZ Process

x=0 dx

L

x

C s C o

0.01

0.1

1

0 2 4 6 8 10

Zone Lengths

Dop

ant

Con

cent

rati

on R

atio

0.5

0.9

0.30.2

0.1

0.03

0.01

Page 31: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Multiple Pass FZ Process

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18 20

Zone Lengths

Dop

ant

Con

cent

rati

on R

atio

0.50.9 0.3 0.2

0.1

0.03

0.01

Almost arbitrarily pure silicon can be obtained by multiple pass zone refining.

Page 32: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Vacancy (Schottky Defect)

“Dangling Bonds”

Page 33: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Self-Interstital

Page 34: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Dislocations

Edge Dislocation

Screw Dislocation

Page 35: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Burgers Vector

Screw Dislocation

Edge Dislocation

Dislocations in Silicon

[100]

[111]

Page 36: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Stacking Faults

Intrinsic Stacking Fault

Extrinsic Stacking Fault

Page 37: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Vacancy-Interstitial Equilibrium

Formation of a Frenkel defect - vacancy-interstitial pair

IVL

“Chemical” Equilibrium

]][[ IVKeq

Page 38: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Thermodynamic Potentials

E = Internal EnergyH = Enthalpy (heat content)

A = Helmholtz Free EnergyG = Gibbs Free Energy

For condensed phases: E and H are equivalent = internal energy (total system energy) A and G are equivalent = free energy (energy available for work)

T = Absolute TemperatureS = Entropy (disorder)

A E TS

WlnkS

Boltzmann’s relation

Page 39: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Internal Gettering

OO

O

OO

O

OO

O

O

O

O

O2O2

O2

O2

O2denuded zone

Gettering removes harmful impurities from thefront side of the wafer rendering them electricallyinnocuous.

oxygen nuclei

oxide precipitates(with dislocations and stacking faults)

High temperature anneal - denuded zone formation

Low temperature anneal - nucleation

Intermediate temperature anneal - precipitate growth

Page 40: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Oxygen Solubility in Silicon

1.0E+17

1.0E+18

1.0E+19

900 1000 1100 1200 1300

Temperature, deg C

Inte

rsti

tial

Oxy

gen

Con

cent

rati

on,

per

cm3

Page 41: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Oxygen Outdiffusion

Page 42: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Precipitate Free Energy

a) - Free energy of formation of a spherical precipitate as a function of radiusb) - Saturated solid solution of B (e.g., interstitial oxygen) in A (e.g., silicon crystal)c) - Nucleus formation

Page 43: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Substrate Characterization by XRD

Constructive Interference Destructive Interference

Bragg pattern - [hk0], [h0l], or [0kl]

Page 44: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Wafer Finishing

Schematic of chemical mechanical polishing

Spindle

Pad

Table

Wafer Insert

Carrier

Capture Ring

Ingot slicing into raw wafers

Page 45: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Vapor-Liquid-Solid (VLS) Growth

substrate substrate

SiH4 SiH4

H2 H2 H2 H2

substrate

catalyst

Si nanowires grown by VLS (at IBM)

Page 46: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Gold-Silicon Eutectic

A B

liquid

solid

A – eutectic melt mixed with solid gold

B – eutectic melt mixed with solid silicon

Page 47: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Silicon Dioxide Network

Silanol

Non-bridgingoxygen

SiO4 tetrahedron

Page 48: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Thermal Oxidation

Thermal SiO 2 Film

F1

Si Substrate Gas

F2

F3

C

x

CGCS

Co

Ci

One dimensional model of oxide growth

Deal-Grove growth kinetics

Page 49: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Oxidation Kinetics

Reactant

Product

Transition

Ea

E

Energy‡

Process Coordinate

Process B/A for [100] B/A for [111] B

Dry Oxidation 1.03(103) kTe

00.2 1.73(103)

kTe00.2

0.214 kTe

23.1

Steam Oxidation 2.70(104) kTe

05.2 4.53(104)

kTe05.2

0.107 kTe

79.0

Note: Activation energies are in eV’s, B/A is in m/sec, B is in m2/sec

Rate constants for wet and dry oxidation on [100] and [111] surfaces

Page 50: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Linear Rate Constant

Orientation dependence for [100] and [111] surfaces affects only the “pre-exponential” factor and not the activation energy

Page 51: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Parabolic Rate Constant

No orientation dependence since the parabolic rate constant describes a diffusion limited process

Page 52: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Pressure Dependence

Oxidation rates scale linearly with oxidant pressure or partial pressure

Page 53: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Rapid Initial Oxidation in Pure O2

This data taken at 700C in dry oxygen to investigate initial rapid oxide growth

Page 54: Atomic Orbitals s-orbitals p-orbitals d-orbitals

1

2

2 1

EF1

EF2

EF

Evac

=

Metal-Metal Contact

Metal 1 Metal 2

Page 55: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Metal-Silicon Contact

EFSi

M

EF

Evac

EFM

Ec

Ev

Si

MSi

Metal Silicon

Page 56: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Effect of a Metal Contact on Silicon

Ec

Ev

FEF

Ei

Ec

Ev

F

EF

Ei

Depletion (p-type) Inversion (p-type)

Ec

Ev

F

EF

Ei

Ec

Ev

FEF

Ei

Accumulation (n-type) Flat Band (n-type)

Ec

Ev

FEi

EF

Depletion (n-type)

Page 57: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Metal-Oxide-Silicon Capacitor

EV

EC

EFSi

M

EF

Evac

EFM

Si

MSi

SiO2

Metal SiliconSilicon Dioxide

Page 58: Atomic Orbitals s-orbitals p-orbitals d-orbitals

MOS Capacitor on Doped Silicon

EV

EC

EFM

EiFEFSi

EV

EC

EFM

Ei

FEFSi

Depletion (p-type) Accumulation (n-type)

Vg

0 vSchematic of biased MOS capacitor

Page 59: Atomic Orbitals s-orbitals p-orbitals d-orbitals

EV

EC

FEiEi

EFSi

EFM

EV

EC

EFM

FEi

EFSi

Accumulation (p-type) Inversion (n-type)

EV

EC

EFM

EiFEFSi

EV

ECEFM

FEi

EFSi

Depletion (p-type) Depletion (n-type)

EV

EC

EFM

EiFEFSi

EV

EC

EFM

F Ei

EFSi

Inversion (p-type) Accumulation (n-type)

Biased MOS Capacitors

Page 60: Atomic Orbitals s-orbitals p-orbitals d-orbitals

CV Response

n-type substrate

p-type substrate

0

1

2

3

4

5

6

7

8

9

10

-100 -50 0 50 100

Bias Voltage

Ca

pa

cit

an

ce

quasistatic

high frequency

depletion approximation

0

1

2

3

4

5

6

7

8

9

10

-50 -40 -30 -20 -10 0 10 20 30 40 50

Bias Voltage

Ca

pa

cit

an

ce

quasistatic

high frequencydepletion

approximation

Page 61: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Surface Charge Density

1

10

100

1000

10000

100000

1000000

10000000

-30 -20 -10 0 10 20 30

Bias Voltage

Su

rfa

ce

Ch

arg

e D

en

sit

y

inversion

accumulation

depletion

1

10

100

1000

10000

100000

1000000

10000000

-30 -20 -10 0 10 20 30

Bias Voltage

Su

rfa

ce

Ch

arg

e D

en

sit

y

accumulation

depletion

inversion

n type substrate

p type substrate

blue: positive surface chargered: negative

surface charge

Page 62: Atomic Orbitals s-orbitals p-orbitals d-orbitals

CV vs Doping and Oxide Thickness

Substrate Doping

Oxide Thickness

p-type substrate0

1

2

3

4

5

6

7

8

9

10

-100 -50 0 50 100 150

Cap

acit

ance

(dim

ensi

onle

ss li

near

sca

le)

0.1

1

10

100

1000

-150 -100 -50 0 50 100

Cap

acit

ance

(dim

ensi

onle

ss lo

gari

thm

ic s

cale

)

Bias Voltage (dimensionless linear scale)

Page 63: Atomic Orbitals s-orbitals p-orbitals d-orbitals

CV Measurements

V

C

Cmin

Cox

Quasi-static CV

V

C

Cmin

Cox

High Frequency CV

V

C

Cox

Cmin slow sweepfastvery fast

extremely fast

Deep Depletion Effect

V

C

Cmin

Cox

FBC

VFB

VFB

Ideal

Actual

Flat Band Shift

V

C

Cmin

Cox

FBC

VFB

Ideal

Actual

Fast Interface States

Page 64: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Interface States

EV

EC

FEF

Ei

Interface states – caused by broken symmetry at interface

Interface states – p-type depletion

Interface states – n-type depletion

EV

ECEFM

FEi

EFSi

+++++

EV

EC

EFM

EiFEFSi

Page 65: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Interface State Density

Interface state density is always higher on [111] than [100]

Page 66: Atomic Orbitals s-orbitals p-orbitals d-orbitals

IV Response

log J

E10 MV/cm

T hick

T hin

Very T hin

Logarithm of current density (J) vs applied electric field (E)

Fowler-Nordheim tunneling

avalanche breakdown

Page 67: Atomic Orbitals s-orbitals p-orbitals d-orbitals

total charge, Qtime, t, or

100%

0%

FailedPer cent

good reliabilitypoor reliability

“ infant” mortality

Oxide Reliability

QBD - “charge to breakdown” - constant current stressTDBD - “time dependent breakdown” - constant voltage stress

Each point represents a failed MOS structure - stress is continued until all devices fail

Page 68: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Linear Transport Processes

Ohm’s Law of electrical conduction: j = E = E/

J = electric current density, j

(units: A/cm2)

X = electric field, E = V

(units: volt/cm)V = electrical potential

L = conductivity, = 1/

(units: mho/cm) = resistivity ( cm)

Fourier’s Law of heat transport: q = T

J = heat flux, q(units: W/cm2)

X = thermal force, T

(units: K/cm)T = temperature

L = thermal conductivity,

(units: W/K cm)

Fick’s Law of diffusion: F = DC

J = material flux, F(units: /sec cm2)

X = diffusion force, C

(units: /cm4)C = concentration

L = diffusivity, D(units: cm2/sec)

Newton’s Law of viscous fluid flow: Fu = u

J = velocity flux, Fu

(units: /sec2 cm)X = viscous force,

u(units: /sec)

u = fluid velocity

L = viscosity, (units: /sec cm)

J = LX

J = Flux, X = Force, L = Transport Coefficient

Page 69: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Diffusion

Diffusion in a rectangular bar of constant cross section

C

tD

C

x

2

2

Fick’s Second Law

Dtxx

eDt

NtxC 4

20

2,

Instantaneous Source - Gaussian profile

Constant Source - error function profile

Dt

xxNtxC

2erfc

2, 00

A

x

x

F(x) xF(x )+

Page 70: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Instantaneous Source Profile

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

0.1

1.0

0 0.5 1 1.5 2

Linear scale

Log scale

Page 71: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Constant Source Profile

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

0.1

1.0

0 0.5 1 1.5 2

Linear scale

Log scale

Page 72: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Surface Probing

I

r

Substrate

Single probe injecting current into a bulk substrate

s ss

1 2 3 4

I I

Substrate

Four point probe

I

r

Substrate

T hin Film

xf

Single probe injecting current into a conductive thin film

Page 73: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Ei

EFn

EFp

Evac

Ec

Ev

EF

pn Junction

n type Silicon p type Silicon

Page 74: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Junction Depth

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

0.01

0.10

1.00

0 0.5 1 1.5 2

xJ

xJ

red: background doping

black: diffused doping

Page 75: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Unbiased pn Junctions

EF

E

V

Electric Field

Band Diagram

Charge Density

Potential

Page 76: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Biased pn Junctions

IV Characteristics

V

I

I0

V

2

1

C

Vpn

CV Characteristics

Page 77: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Photovoltaic Effect

V

I

ISC

VOC

Page 78: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Solar Cell

typical cross section

equivalent circuit

Page 79: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Solar Cell IV Curve

ISC

VOC

I

P

Vmax

Imax

Page 80: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Effect of Parasitics, Temperature, etc.

effect of RS effect of RSH

effect of I0 effect of n

effect of T

Page 81: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Solar Cell Technology

Commercial solar cell

Page 82: Atomic Orbitals s-orbitals p-orbitals d-orbitals

LED IV Characteristics

Page 83: Atomic Orbitals s-orbitals p-orbitals d-orbitals

LED Technology

RGB spectrum

Commercial LED’s

white spectrum

(with phosphor)

Page 84: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Diffusion Mechanisms

Vacancy Diffusion - Substitutional impurities, e.g., shallow level dopants (B, P, As, Sb, etc.), Diffusivity is relatively small for vacancy diffusion.

Interstitial Diffusion - Interstitial impurities,e.g., small atoms and metals (O, Fe, Cu, etc.), Diffusivity is much larger, hence interstitial diffusion is fast compared to vacancy diffusion.

Interstitialcy Mechanism - Enhances the diffusivity of substitutional impurities due to exchange with silicon self-interstitials. This leads to enhanced diffusion in the vicinity of the substrate surface during thermal oxidation (so-called “oxidation enhanced diffusion”).

Page 85: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Defect-Carrier Equilibria

Vacancies interact with mobile carriers and become charged. In this case, the concentrations are governed by classical mass action equilibria.

V V h KV

Vpx

V x

V V h KV

VpV

V V e KV

Vnx

V x

V V e KV

VnV

Page 86: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Arrhenius Constants for Dopant Atoms

Atomic Species

I

Diffusion Mechanism rV

roID

(cm2/sec)

rIQ

(eV)

Si xV V V V

0.015

16

10

1180

3.89

4.54

5.1

5.09

As xV V

0.066

12.0

3.44

4.05

B xV V

0.037

0.76

3.46

3.46

Ga xV V

0.374

28.5

3.39

3.92

P xV V V

3.85

4.44

44.2

3.66

4.00

4.37

Sb xV V

0.214

15.0

3.65

4.08

N xV 0.05 3.65

Page 87: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Arrhenius Constants for Other Species

Atomic Species Mechanism, Temperature, etc.

DoI (cm2/sec)

QI (eV)

Ge substitutional )10(25.6 5 5.28

Cu (300 -700C)

(800 -1100C) )10(7.4 3

0.04

0.43

1.0

Ag )10(2 3 1.6

Au substitutional

interstitial

(800 -1200C)

)10(8.2 3

)10(4.2 4

)10(1.1 3

2.04

0.39

1.12

Pt 150-170 2.22-2.15

Fe )10(2.6 3 0.87

Co )10(2.9 4 2.8

C 1.9 3.1

S 0.92 2.2

O2 0.19 2.54

H2 )10(4.9 3 0.48

He 0.11 1.26

Page 88: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Solid Solubilities

Page 89: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Ion Implantation

Dopant species are ionized and accelerated by a very high electric field. The ions then strike the substrate at energies from 10 to 500 keV and penetrate a short distance below the surface.

b

iv

|| v̂

iv

i

s

sv

tangent plane(edge on)

Elementary “hard sphere” collision

Page 90: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Co-linear or “Centered” Collision

iiv|| v̂

iv

ssv

tangent plane(edge on)b=0

==0

isi

isi

si

sii v

mm

mvv

mm

mmv

2

;

Clearly, if mi<ms, then iv is negative. This means that light implanted ions tend to be

scattered back toward the surface. Conversely, if mi>ms, then iv is positive and heavy

ions tend to be scattered forward into the bulk. Obviously, if mi equals ms, then 0|| v̂v i

vanishes. In any case, recoiling silicon atoms are scattered deeper into the substrate.

Page 91: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Stopping Mechanisms

Nuclear Stopping - Direct interaction between atomic nuclei; resembles an elementary two body collision and causes most implant damage.

Electronic Stopping - Interaction between atomic electron clouds; sort of a “viscous drag” as in a liquid medium. Causes little damage.

Page 92: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Implant Range

Range - Total distance traversed by an ion implanted into the substrate.

Projected Range - Average penetration depth of an implanted ion.

Page 93: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Implant Straggle

Projected Straggle - Variation in penetration depth. (Corresponds to standard deviation if the implanted profile is Gaussian.)

Page 94: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Channeling

Channeling is due to the crystal structure of the substrate.

Page 95: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Implantation Process

For a light dose, damage is isolated. As dose is increased, damage sites become more dense and eventually merge to form an amorphous layer. For high dose implants, the amorphous region can reach all the way to the substrate surface.

Page 96: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Point-Contact Transistor

Page 97: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Bipolar Junction Transistor

n

n p

C B E

Page 98: Atomic Orbitals s-orbitals p-orbitals d-orbitals

Junction FET

n

n p

S D G

Page 99: Atomic Orbitals s-orbitals p-orbitals d-orbitals

MOSFET

p

n n

S D G

enhancement mode

p

n n

S D G

depletion mode

Page 100: Atomic Orbitals s-orbitals p-orbitals d-orbitals

7 V

6 V

5 V

4 V

Enhancement Mode FET