25
Asam deoksiribonukleat Struktur molekul DNA. Atom karbon berwarna hitam, oksigen merah, nitrogen biru, fosfor hijau, dan hidrogen putih. Asam deoksiribonukleat, lebih dikenal dengan DNA (bahasa Inggris : deoxyribonucleic acid), adalah sejenis asam nukleat yang tergolong biomolekul utama penyusun berat kering setiap organisme . Di dalam sel , DNA umumnya terletak di dalam inti sel . Secara garis besar, peran DNA di dalam sebuah sel adalah sebagai materi genetik ; artinya, DNA menyimpan cetak biru bagi segala aktivitas sel. Ini berlaku umum bagi setiap organisme. Di antara perkecualian yang menonjol adalah beberapa jenis virus (dan virus tidak termasuk organisme) seperti HIV (Human Immunodeficiency Virus). Daftar isi 1 Struktur 2 Fungsi biologis 2.1 Replikasi 2.2 Biosintesis protein 3 Penggunaan DNA dalam teknologi

Asam deoksiribonukleat

Embed Size (px)

DESCRIPTION

Asam deoksiribonukleat

Citation preview

Asam deoksiribonukleat

Asam deoksiribonukleat

Struktur molekul DNA. Atom karbon berwarna hitam, oksigen merah, nitrogen biru, fosfor hijau, dan hidrogen putih.

Asam deoksiribonukleat, lebih dikenal dengan DNA (bahasa Inggris: deoxyribonucleic acid), adalah sejenis asam nukleat yang tergolong biomolekul utama penyusun berat kering setiap organisme. Di dalam sel, DNA umumnya terletak di dalam inti sel.

Secara garis besar, peran DNA di dalam sebuah sel adalah sebagai materi genetik; artinya, DNA menyimpan cetak biru bagi segala aktivitas sel. Ini berlaku umum bagi setiap organisme. Di antara perkecualian yang menonjol adalah beberapa jenis virus (dan virus tidak termasuk organisme) seperti HIV (Human Immunodeficiency Virus).

Daftar isi

1 Struktur

2 Fungsi biologis

2.1 Replikasi

2.2 Biosintesis protein

3 Penggunaan DNA dalam teknologi

3.1 DNA dalam forensik

3.2 DNA dalam komputasi

4 Sejarah

5 Referensi

StrukturDNA merupakan polimer yang terdiri dari tiga komponen utama, yaitu gugus fosfat, gula deoksiribosa, dan basa nitrogen. Sebuah unit monomer DNA yang terdiri dari ketiga komponen tersebut dinamakan nukleotida, sehingga DNA tergolong sebagai polinukleotida.

Rantai DNA memiliki lebar 2224 , sementara panjang satu unit nukleotida 3,3 [1]. Walaupun unit monomer ini sangatlah kecil, DNA dapat memiliki jutaan nukleotida yang terangkai seperti rantai. Misalnya, kromosom terbesar pada manusia terdiri atas 220 juta nukleotida[2].

Struktur untai komplementer DNA menunjukkan pasangan basa (adenin dengan timin dan guanin dengan sitosin) yang membentuk DNA beruntai ganda.

Rangka utama untai DNA terdiri dari gugus fosfat dan gula yang berselang-seling. Gula pada DNA adalah gula pentosa (berkarbon lima), yaitu 2-deoksiribosa. Dua gugus gula terhubung dengan fosfat melalui ikatan fosfodiester antara atom karbon ketiga pada cincin satu gula dan atom karbon kelima pada gula lainnya. Salah satu perbedaan utama DNA dan RNA adalah gula penyusunnya; gula RNA adalah ribosa.

DNA terdiri atas dua untai yang berpilin membentuk struktur heliks ganda. Pada struktur heliks ganda, orientasi rantai nukleotida pada satu untai berlawanan dengan orientasi nukleotida untai lainnya. Hal ini disebut sebagai antiparalel. Masing-masing untai terdiri dari rangka utama, sebagai struktur utama, dan basa nitrogen, yang berinteraksi dengan untai DNA satunya pada heliks. Kedua untai pada heliks ganda DNA disatukan oleh ikatan hidrogen antara basa-basa yang terdapat pada kedua untai tersebut. Empat basa yang ditemukan pada DNA adalah adenin (dilambangkan A), sitosin (C, dari cytosine), guanin (G), dan timin (T). Adenin berikatan hidrogen dengan timin, sedangkan guanin berikatan dengan sitosin.

Fungsi biologisReplikasi

Pada replikasi DNA, rantai DNA baru dibentuk berdasarkan urutan nukleotida pada DNA yang digandakan.

Replikasi merupakan proses pelipatgandaan DNA. Proses replikasi ini diperlukan ketika sel akan membelah diri. Pada setiap sel, kecuali sel gamet, pembelahan diri harus disertai dengan replikasi DNA supaya semua sel turunan memiliki informasi genetik yang sama. Pada dasarnya, proses replikasi memanfaatkan fakta bahwa DNA terdiri dari dua rantai dan rantai yang satu merupakan "konjugat" dari rantai pasangannya. Dengan kata lain, dengan mengetahui susunan satu rantai, maka susunan rantai pasangan dapat dengan mudah dibentuk. Ada beberapa teori yang mencoba menjelaskan bagaimana proses replikasi DNA ini terjadi. Salah satu teori yang paling populer menyatakan bahwa pada masing-masing DNA baru yang diperoleh pada akhir proses replikasi; satu rantai tunggal merupakan rantai DNA dari rantai DNA sebelumnya, sedangkan rantai pasangannya merupakan rantai yang baru disintesis. Rantai tunggal yang diperoleh dari DNA sebelumnya tersebut bertindak sebagai "cetakan" untuk membuat rantai pasangannya.

Proses replikasi memerlukan protein atau enzim pembantu; salah satu yang terpenting dikenal dengan nama DNA polimerase, yang merupakan enzim pembantu pembentukan rantai DNA baru yang merupakan suatu polimer. Proses replikasi diawali dengan pembukaan untaian ganda DNA pada titik-titik tertentu di sepanjang rantai DNA. Proses pembukaan rantai DNA ini dibantu oleh beberapa jenis protein yang dapat mengenali titik-titik tersebut, dan juga protein yang mampu membuka pilinan rantai DNA. Setelah cukup ruang terbentuk akibat pembukaan untaian ganda ini, DNA polimerase masuk dan mengikat diri pada kedua rantai DNA yang sudah terbuka secara lokal tersebut. Proses pembukaan rantai ganda tersebut berlangsung disertai dengan pergeseran DNA polimerase mengikuti arah membukanya rantai ganda. Monomer DNA ditambahkan di kedua sisi rantai yang membuka setiap kali DNA polimerase bergeser. Hal ini berlanjut sampai seluruh rantai telah benar-benar terpisah.

Proses replikasi DNA ini merupakan proses yang rumit namun teliti. Proses sintesis rantai DNA baru memiliki suatu mekanisme yang mencegah terjadinya kesalahan pemasukan monomer yang dapat berakibat fatal. Karena mekanisme inilah kemungkinan terjadinya kesalahan sintesis amatlah kecil.

Penggunaan DNA dalam teknologiDNA dalam forensikFingerprinting genetikaIlmuwan forensik dapat menggunakan DNA yang terletak dalam darah, semen, kulit, liur atau rambut yang tersisa di tempat kejadian kejahatan untuk mengidentifikasi kemungkinan tersangka, sebuah proses yang disebut fingerprinting genetika atau pemrofilan DNA (DNA profiling). Dalam pemrofilan DNA panjang relatif dari bagian DNA yang berulang seperti short tandem repeats dan minisatelit, dibandingkan. Pemrofilan DNA dikembangkan pada 1984 oleh genetikawan Inggris Alec Jeffreys dari Universitas Leicester, dan pertama kali digunakan untuk mendakwa Colin Pitchfork pada 1988 dalam kasus pembunuhan Enderby di Leicestershire, Inggris. Banyak yurisdiksi membutuhkan terdakwa dari kejahatan tertentu untuk menyediakan sebuah contoh DNA untuk dimasukkan ke dalam database komputer. Hal ini telah membantu investigator menyelesaikan kasus lama di mana pelanggar tidak diketahui dan hanya contoh DNA yang diperoleh dari tempat kejadian (terutama dalam kasus perkosaan antar orang tak dikenal). Metode ini adalah salah satu teknik paling terpercaya untuk mengidentifikasi seorang pelaku kejahatan, tetapi tidak selalu sempurna, misalnya bila tidak ada DNA yang dapat diperoleh, atau bila tempat kejadian terkontaminasi oleh DNA dari banyak orang.

DNA dalam komputasiDNA memainkan peran penting dalam ilmu komputer, baik sebagai masalah riset dan sebagai sebuah cara komputasi.

Riset dalam algoritma pencarian string, yang menemukan kejadian dari urutan huruf di dalam urutan huruf yang lebih besar, dimotivasi sebagian oleh riset DNA, dimana algoritma ini digunakan untuk mencari urutan tertentu dari nukleotida dalam sebuah urutan yang besar. Dalam aplikasi lainnya seperti editor text, bahkan algoritma sederhana untuk maslah ini biasanya mencukupi, tetapi urutan DNA menyebabkan algoritma-algoritma ini untuk menunjukkan sifat kasus-mendekati-terburuk dikarenakan jumlah kecil dari karakter yang berbeda.

Teori database juga telah dipengaruhi oleh riset DNA, yang memiliki masalah khusus untuk menaruh dan memanipulasi urutan DNA. Database yang dikhususkan untuk riset DNA disebut database genomik, dam harus menangani sejumlah tantangan teknis yang unik yang dihubungkan dengan operasi pembandingan kira-kira, pembandingan urutan, mencari pola yang berulang, dan pencarian homologi.

SejarahDNA pertama kali berhasil dimurnikan pada tahun 1868 oleh ilmuwan Swiss Friedrich Miescher di Tubingen, Jerman, yang menamainya nuclein berdasarkan lokasinya di dalam inti sel. Namun demikian, penelitian terhadap peranan DNA di dalam sel baru dimulai pada awal abad 20, bersamaan dengan ditemukannya postulat genetika Mendel. DNA dan protein dianggap dua molekul yang paling memungkinkan sebagai pembawa sifat genetis berdasarkan teori tersebut.

Dua eksperimen pada dekade 40-an membuktikan fungsi DNA sebagai materi genetik. Dalam penelitian oleh Avery dan rekan-rekannya, ekstrak dari sel bakteri yang satu gagal men-transform sel bakteri lainnya kecuali jika DNA dalam ekstrak dibiarkan utuh. Eksperimen Hershey dan Chase membuktikan hal yang sama dengan menggunakan pencari jejak radioaktif (radioactive tracers).

Misteri yang belum terpecahkan ketika itu adalah: bagaimanakah struktur DNA sehingga ia mampu bertugas sebagai materi genetik? Persoalan ini dijawab oleh Francis Crick dan koleganya James Watson berdasarkan hasil difraksi sinar-x DNA oleh Maurice Wilkins dan Rosalind Franklin. Crick, Watson, dan Wilkins mendapatkan hadiah Nobel Kedokteran pada 1962 atas penemuan ini. Franklin, karena sudah wafat pada waktu itu, tidak dapat dianugerahi hadiah ini.

DNA sampah adalah sekuens DNA berulang yang ditemukan tersebar di dalam genom manusia yang (sebelumnya) belum diketahui fungsinya. Sekuens DNA ini, dikenal sebagai sekuens berulang Alu, dapat ditemukan hampir di setiap tempat pada sekuens panjang dari genom manusia yang tidak diketahui mengontrol fungsi genetik secara langsung. Karena tanpa fungsi genetik yang jelas itulah ia disebut DNA sampah.

Sekuens DNA (kadang-kadang disebut sekuens genetika) adalah sebuah sebuah seri huruf-huruf mewakilkan struktur primer dari molekul DNA atau "strand" nyata atau hipotetis.

Huruf yang digunakan adalah A, C, G, dan T, mewakili empat nukleotida yang merupakan subunit dari untai DNA (adenin, sitosin, guanin, timin), dan biasanya ditulis berjejer tanpa spasi, seperti dalam sekuens berikut AAAGTCTGAC. Sekuens ini kadang disebut informasi genetik. Sebuah deretan dari nukleotida yang lebih dari empat jumlahnya dapat disebut sebuah sekuens.

Berhubungan dengan fungsi biologinya, sebuah sekuens dapat berupa sense atau anti-sense (lihat DNA), dan kode atau nonkode, sekuens DNA dapat juga membawa DNA sampah.

Sekuensing asam nukleat

Sekuensing asam nukleat atau pengurutan asam nukleat adalah proses penentuan urutan nukleotida pada suatu fragmen DNA atau RNA.

Daftar isi

1 Kegunaan sekuensing asam nukleat

2 Sekuensing DNA

2.1 Metode Sanger

2.1.1 Metode Sanger asli

2.1.2 Sekuensing dye terminator

2.1.3 Automatisasi dan penyiapan sampel

2.2 Metode Maxam-Gilbert

2.3 Sekuensing DNA skala besar

3 Sekuensing RNA

4 Lihat pula

5 Pranala luar

Kegunaan sekuensing asam nukleatSekuens DNA menyandikan informasi yang diperlukan bagi makhluk hidup untuk melangsungkan hidup dan berkembang biak. Dengan demikian, penentuan sekuens DNA berguna di dalam ilmu pengetahuan 'murni' mengenai mengapa dan bagaimana makhluk hidup dapat hidup, selain berguna dalam penerapan praktis. Karena DNA merupakan ciri kunci makhluk hidup, pengetahuan akan sekuens DNA dapat berguna dalam penelitian biologi manapun. Sebagai contoh, dalam ilmu pengobatan sekuensing DNA dapat digunakan untuk mengidentifikasi, mendiagnosis, dan mengembangkan pengobatan penyakit genetik. Demikian pula halnya, penelitian pada agen penyebab penyakit (patogen) dapat membuka jalan bagi pengobatan penyakit menular. Bioteknologi, yang dapat pula memanfaatkan sekuensing DNA, merupakan bidang yang berkembang pesat dan berpotensi menghasilkan banyak barang dan jasa berguna.

Karena RNA dibentuk dengan transkripsi dari DNA, informasi yang dikandung RNA juga terdapat di dalam DNA cetakannya sehingga sekuensing DNA cetakan tersebut sudah cukup untuk membaca informasi pada RNA. Namun demikian, sekuensing RNA dibutuhkan khususnya pada eukaryota, karena molekul RNA eukaryot tidak selalu sebanding dengan DNA cetakannya karena pemotongan intron setelah proses transkripsi.

Sekuensing DNADewasa ini, hampir semua usaha sekuensing DNA dilakukan dengan menggunakan metode terminasi rantai yang dikembangkan oleh Frederick Sanger dan rekan-rekannya [1]. Teknik tersebut melibatkan terminasi atau penghentian reaksi sintesis DNA in vitro yang spesifik untuk sekuens tertentu menggunakan substrat nukleotida yang telah dimodifikasi.

[sunting] Metode Sanger

Gel sekuensing metode Sanger yang telah dilabel radioaktif.

Pada metode terminasi rantai (metode Sanger), perpanjangan atau ekstensi rantai DNA dimulai pada situs spesifik pada DNA cetakan dengan menggunakan oligonukleotida pendek yang disebut primer yang komplementer terhadap DNA pada daerah situs tersebut. Primer tersebut diperpanjang menggunakan DNA polimerase, enzim yang mereplikasi DNA. Bersama dengan primer dan DNA polimerase, diikutsertakan pula empat jenis basa deoksinukleotida (satuan pembentuk DNA), juga nukleotida pemutus atau penghenti rantai (terminator rantai) dalam konsentrasi rendah (biasanya di-deoksinukleotida). Penggabungan nukleotida pemutus rantai tersebut secara terbatas kepada rantai DNA oleh polimerase DNA menghasilkan fragmen-fragmen DNA yang berhenti bertumbuh hanya pada posisi pada DNA tempat nukleotida tertentu tersebut tergabungkan. Fragmen-fragmen DNA tersebut lalu dipisahkan menurut ukurannya dengan elektroforesis gel poliakrilamida, atau sekarang semakin lazim dengan elektroforesis menggunakan tabung gelas berjari-jari kecil (pipa kapiler) yang diisi dengan polimer kental.

Seiring dengan perkembangannya, kini terdapat beberapa macam metode sekuensing terminasi rantai yang berbeda satu sama lain terutama dalam hal pendeteksian fragmen DNA hasil reaksi sekuensing.

Metode Sanger asliPada metode yang asli, urutan nukleotida DNA tertentu dapat disimpulkan dengan membuat secara paralel empat reaksi perpanjangan rantai menggunakan salah satu dari empat jenis basa pemutus rantai pada masing-masing reaksi. Fragmen-fragmen DNA yang kemudian terbentuk dideteksi dengan menandai (labelling) primer yang digunakan dengan fosfor radioaktif sebelum reaksi sekuensing dilangsungkan. Keempat hasil reaksi tersebut kemudian dielektroforesis pada empat lajur yang saling bersebelahan pada gel poliakrilamida.Hasil pengembangan metode ini menggunakan empat macam primer yang ditandai dengan pewarna berpendar (fluorescent dye). Hal ini memiliki kelebihan karena tidak menggunakan bahan radioaktif; selain menambah keamanan dan kecepatan, keempat hasil reaksi dapat dicampur dan dielektroforesis pada satu lajur pada gel. Metode ini dikenal sebagai metode dye primer sequencing.

Sekuensing dye terminator

Contoh hasil bacaan suatu sekuensing metode dye terminator.

Cara lain pelabelan primer adalah dengan melabel pemutus rantainya, lazim disebut metode sekuensing dye terminator. Keunggulan cara ini adalah bahwa seluruh proses sekuensing dapat dilakukan dalam satu reaksi, dibandingkan dengan empat reaksi terpisah yang diperlukan pada penggunaan primer berlabel. Pada cara tersebut, masing-masing dideoksinukleotida pemutus rantai ditandai dengan pewarna fluoresens, yang berpendar pada panjang gelombang yang berbeda-beda. Cara ini lebih mudah dan lebih cepat dibandingkan penggunaan primer berwarna, namun dapat menimbulkan ketidaksamaan tinggi kurva atau puncak (peak) yang disebabkan oleh ketidaksamaan penggabungan pemutus rantai berwarna berukuran besar pada pertumbuhan DNA (ketidaksamaan tersebut bergantung pada DNA cetakan). Masalah tersebut telah dapat dikurangi secara nyata dengan penggunaan macam-macam enzim dan pewarna baru yang meminimalkan perbedaan dalam penggabungan.Metode ini kini digunakan pada sebagian besar usaha reaksi sekuensing karena lebih sederhana dan lebih murah. Primer-primer yang digunakan tidak perlu dilabel secara terpisah (yang bisa jadi cukup mahal untuk primer yang dibuat untuk sekali pakai), walaupun hal tersebut tidak terlalu bermasalah dalam penggunaan universal primer.

Automatisasi dan penyiapan sampelMesin sekuensing DNA automatis modern mampu mengurutkan 384 sampel berlabel fluoresens sekaligus dalam sekali batch (elektroforesis) yang dapat dilakukan sampai 24 kali sehari. Hal tersebut hanya mencakup proses pemisahan dan proses pembacaan kurva; reaksi sekuensing, pembersihan, dan pelarutan ulang dalam larutan penyangga yang sesuai harus dilakukan secara terpisah.

Untuk memperoleh hasil reaksi berlabel yang dapat dideteksi dari DNA cetakan, metode "sekuensing daur" (cycle sequencing) paling lazim dilakukan. Dalam metode ini dilakukan berturut-turut penempelan primer (primer annealing), ekstensi oleh polimerase DNA, dan denaturasi (peleburan atau melting) untai-untai DNA cetakan secara berulang-ulang (2540 putaran). Kelebihan utama sekuensing daur adalah lebih efisiennya penggunaan pereaksi sekuensing yang mahal (BigDye) dan mampunya mengurutkan templat dengan struktur sekunder tertentu seperti hairpin loop atau daerah kaya-GC. Setiap tahap pada sekuensing daur ditempuh dengan mengubah temperatur reaksi menggunakan mesin pendaur panas (thermal cycler) PCR. Cara tersebut didasarkan pada fakta bahwa dua untai DNA yang komplementer akan saling menempel (berhibridisasi) pada temperatur rendah dan berpisah (terdenaturasi) pada temperatur tinggi. Hal penting lain yang memungkinkan cara tersebut adalah penggunaan enzim DNA polimerase dari organisme termofilik (organisme yang hidup di lingkungan bertemperatur tinggi), yang tidak mudah terurai pada temperatur tinggi yang digunakan pada cara tersebut (>95C).

Metode Maxam-GilbertPada waktu yang kira-kira hampir bersamaan dengan dikenalkannya metode sekuensing Sanger, Maxam dan Gilbert mengembangkan metode sekuensing DNA yang didasarkan pada modifikasi kimiawi DNA yang dilanjutkan dengan pemotongan DNA [2]. Metode ini mulanya cukup populer karena dapat langsung menggunakan DNA hasil pemurnian, sedangkan metode Sanger pada waktu itu memerlukan kloning untuk membentuk DNA untai tunggal. Seiring dengan dikembangkannya metode terminasi rantai, metode sekuensing Maxam-Gilbert menjadi tidak populer karena kerumitan teknisnya, digunakannya bahan kimia berbahaya, dan kesulitan dalam scale-up.

Sekuensing DNA skala besarMetode sekuensing DNA yang kini ada hanya dapat merunut sepotong pendek DNA sekaligus. Contohnya, mesin sekuensing modern yang menggunakan metode Sanger hanya dapat mencakup paling banyak sekitar 1000 pasang basa setiap sekuensing [3]. Keterbatasan ini disebabkan oleh probabilitas terminasi rantai yang menurun secara geometris seiring dengan bertambahnya panjang rantai, selain keterbatasan fisik ukuran dan resolusi gel.

Sekuens DNA dengan ukuran jauh lebih besar kerap kali dibutuhkan. Sebagai contoh, genom bakteri sederhana dapat mengandung jutaan pasang basa, sedangkan genom manusia terdiri atas lebih dari 3 milyar pasang basa. Berbagai strategi telah dikembangkan untuk sekuensing DNA skala besar, termasuk strategi primer walking dan shotgun sequencing. Kedua strategi tersebut melibatkan pembacaan banyak bagian DNA dengan metode Sanger dan selanjutnya menyusun hasil pembacaan tersebut menjadi sekuens yang runut. Masing-masing strategi memiliki kelemahan sendiri dalam hal kecepatan dan ketepatan; sebagai contoh, metode shotgun sequencing merupakan metode yang paling praktis untuk sekuensing genom ukuran besar, namun proses penyusunannya rumit dan rentan kesalahan.

Data sekuens bermutu tinggi lebih mudah didapatkan bila DNA bersangkutan dimurnikan dari pencemar yang mungkin terdapat pada sampel dan diamplifikasi. Hal ini dapat dilakukan dengan metode reaksi berantai polimerase bila primer yang dibutuhkan untuk mencakup seluruh daerah yang diinginkan cukup praktis dibuat. Cara lainnya adalah dengan kloning DNA sampel menggunakan vektor bakteri, yaitu memanfaatkan bakteri untuk "menumbuhkan" salinan DNA yang diinginkan sebanyak beberapa ribu pasang basa sekaligus. Biasanya proyek-proyek sekuensing DNA skala besar memiliki persediaan pustaka hasil kloning semacam itu.

Sekuensing RNARNA lebih tidak stabil daripada DNA di dalam sel dan lebih rentan terhadap penguraian oleh enzim nuklease secara laboratorium. Seperti yang telah disebutkan di atas, kadang kala sekuensing RNA diperlukan walaupun informasi yang dikandung RNA sudah terdapat di dalam DNA, khususnya pada eukaryota. Dalam sekuensing RNA, metode yang umum digunakan adalah mula-mula membentuk fragmen DNA dari RNA tersebut dengan enzim transkriptase balik. Misalnya, DNA dapat disintesis dari cetakan mRNA dan disebut sebagai DNA komplementer (cDNA). Fragmen DNA tersebut kemudian dapat disekuensing dengan cara-cara seperti yang disebutkan di atas.

Reaksi berantai polimerase

Thermocycler. PCR umumnya dilakukan di laboratorium secara otomatis dengan alat yang dapat mengatur suhu reaksi ini.

Reaksi berantai polimerase atau lebih umum dikenal sebagai PCR (kependekan dari istilah bahasa Inggris polymerase chain reaction) merupakan suatu teknik atau metode perbanyakan (replikasi) DNA secara enzimatik tanpa menggunakan organisme. Dengan teknik ini, orang dapat menghasilkan DNA dalam jumlah besar dalam waktu singkat sehingga memudahkan berbagai teknik lain yang menggunakan DNA. Teknik ini dirintis oleh Kary Mullis pada tahun 1983 dan ia memperoleh hadiah Nobel pada tahun 1994 berkat temuannya tersebut. Penerapan PCR banyak dilakukan di bidang biokimia dan biologi molekular karena relatif murah dan hanya memerlukan jumlah sampel yang sangat kecil.

Prinsip kerja PCRSecara prinsip, PCR merupakan proses yang diulang-ulang antara 2030 kali. Setiap siklus terdiri dari tiga tahap. Berikut adalah tiga tahap bekerjanya PCR dalam satu siklus:

1. Tahap peleburan (melting) atau denaturasi. Pada tahap ini (berlangsung pada suhu tinggi, 9496C) ikatan hidrogen DNA terputus (denaturasi) dan DNA menjadi berberkas tunggal. Biasanya pada tahap awal PCR tahap ini dilakukan agak lama (sampai 5 menit) untuk memastikan semua berkas DNA terpisah. Pemisahan ini menyebabkan DNA tidak stabil dan siap menjadi templat ("patokan") bagi primer. Durasi tahap ini 12 menit.

2. Tahap penempelan atau annealing. Primer menempel pada bagian DNA templat yang komplementer urutan basanya. Ini dilakukan pada suhu antara 4560C. Penempelan ini bersifat spesifik. Suhu yang tidak tepat menyebabkan tidak terjadinya penempelan atau primer menempel di sembarang tempat. Durasi tahap ini 12 menit.

3. Tahap pemanjangan atau elongasi. Suhu untuk proses ini tergantung dari jenis DNA-polimerase (P pada gambar) yang dipakai. Dengan Taq-polimerase, proses ini biasanya dilakukan pada suhu 76C. Durasi tahap ini biasanya 1 menit.

Lepas tahap 3, siklus diulang kembali mulai tahap 1. Tahap 4 pada gambar menunjukkan perkembangan yang terjadi pada siklus-siklus selanjutnya. Akibat denaturasi dan renaturasi, beberapa berkas baru (berwarna hijau) menjadi templat bagi primer lain. Akhirnya terdapat berkas DNA yang panjangnya dibatasi oleh primer yang dipakai. Jumlah DNA yang dihasilkan berlimpah karena penambahan terjadi secara eksponensial.

Asam ribonukleat

Asam ribonukleat (bahasa Inggris:ribonucleic acid, RNA) senyawa yang merupakan bahan genetik dan memainkan peran utama dalam ekspresi genetik. Dalam dogma pokok (central dogma) genetika molekular, RNA menjadi perantara antara informasi yang dibawa DNA dan ekspresi fenotipik yang diwujudkan dalam bentuk protein.

Daftar isi

1 Struktur RNA

2 Tipe-tipe RNA

3 Fungsi RNA

4 Interferensi RNA

5 Pranala luar

Struktur RNAStruktur dasar RNA mirip dengan DNA. RNA merupakan polimer yang tersusun dari sejumlah nukleotida. Setiap nukleotida memiliki satu gugus fosfat, satu gugus gula ribosa, dan satu gugus basa nitrogen (basa N). Polimer tersusun dari ikatan berselang-seling antara gugus fosfat dari satu nukleotida dengan gugus gula ribosa dari nukleotida yang lain.

Perbedaan RNA dengan DNA terletak pada satu gugus hidroksil tambahan pada cincin gula ribosa (sehingga dinamakan ribosa). Basa nitrogen pada RNA sama dengan DNA, kecuali basa timin pada DNA diganti dengan urasil pada RNA. Jadi tetap ada empat pilihan: adenin, guanin, sitosin, atau urasil untuk suatu nukleotida.

Selain itu, bentuk konformasi RNA tidak berupa pilin ganda sebagaimana DNA, tetapi bervariasi sesuai dengan tipe dan fungsinya.

Tipe-tipe RNARNA hadir di alam dalam berbagai macam/tipe. Sebagai bahan genetik, RNA berwujud sepasang pita (Inggris double-stranded RNA, dsRNA). Genetika molekular klasik mengajarkan adanya tiga tipe RNA yang terlibat dalam proses sintesis protein:

1. RNA-kurir (bahasa Inggris: messenger-RNA, mRNA),

2. RNA-ribosom (bahasa Inggris: ribosomal-RNA, rRNA),

3. RNA-transfer (bahasa Inggris: transfer-RNA, tRNA).

Pada akhir abad ke-20 dan awal abad ke-21 diketahui bahwa RNA hadir dalam berbagai macam bentuk dan terlibat dalam proses pascatranslasi. Dalam pengaturan ekspresi genetik orang sekarang mengenal RNA-mikro (miRNA) yang terlibat dalam "peredaman gen" atau gene silencing dan small-interfering RNA (siRNA) yang terlibat dalam proses pertahanan terhadap serangan virus.

Fungsi RNAPada sekelompok virus (misalnya bakteriofag), RNA merupakan bahan genetik. Ia berfungsi sebagai penyimpan informasi genetik, sebagaimana DNA pada organisme hidup lain. Ketika virus ini menyerang sel hidup, RNA yang dibawanya masuk ke sitoplasma sel korban, yang kemudian ditranslasi oleh sel inang untuk menghasilkan virus-virus baru.

Namun demikian, peran penting RNA terletak pada fungsinya sebagai perantara antara DNA dan protein dalam proses ekspresi genetik karena ini berlaku untuk semua organisme hidup. Dalam peran ini, RNA diproduksi sebagai salinan kode urutan basa nitrogen DNA dalam proses transkripsi. Kode urutan basa ini tersusun dalam bentuk 'triplet', tiga urutan basa N, yang dikenal dengan nama kodon. Setiap kodon berelasi dengan satu asam amino (atau kode untuk berhenti), monomer yang menyusun protein. Lihat ekspresi genetik untuk keterangan lebih lanjut.

Penelitian mutakhir atas fungsi RNA menunjukkan bukti yang mendukung atas teori 'dunia RNA', yang menyatakan bahwa pada awal proses evolusi, RNA merupakan bahan genetik universal sebelum organisme hidup memakai DNA.

Interferensi RNASuatu gejala yang baru ditemukan pada penghujung abad ke-20 adalah adanya mekanisme peredaman (silencing) dalam ekspresi genetik. Kode genetik yang dibawa RNA tidak diterjemahkan (translasi) menjadi protein oleh tRNA. Ini terjadi karena sebelum sempat ditranslasi, mRNA dicerna/dihancurkan oleh suatu mekanisme yang disebut sebagai "interferensi RNA". Mekanisme ini melibatkan paling sedikit tiga substansi (enzim dan protein lain). Gejala ini pertama kali ditemukan pada nematoda Caenorhabditis elegans tetapi selanjutnya ditemukan pada hampir semua kelompok organisme hidup.

Polymerase chain reaction (PCR)Reaksi berantai polimerasePolymerase chain reaction ("reaksi [be]rantai polimerase", PCR) merupakan teknik yang sangat berguna dalam membuat salinan DNA. PCR memungkinkan sejumlah kecil sekuens DNA tertentu disalin (jutaan kali) untuk diperbanyak (sehingga dapat dianalisis), atau dimodifikasi secara tertentu. Sebagai contoh, PCR dapat digunakan untuk menambahkan situs enzim restriksi, atau untuk memutasikan (mengubah) basa tertentu pada DNA. PCR juga dapat digunakan untuk mendeteksi keberadaan sekuens DNA tertentu dalam sampel.

PCR memanfaatkan enzim DNA polimerase yang secara alami memang berperan dalam perbanyakan DNA pada proses replikasi. Namun demikian, tidak seperti pada organisme hidup, proses PCR hanya dapat menyalin fragmen pendek DNA, biasanya sampai dengan 10 kb (kb=kilo base pairs=1.000 pasang basa). Fragmen tersebut dapat berupa suatu gen tunggal, atau hanya bagian dari suatu gen.

Proses PCR untuk memperbanyak DNA melibatkan serangkaian siklus temperatur yang berulang dan masing-masing siklus terdiri atas tiga tahapan. Tahapan yang pertama adalah denaturasi cetakan DNA (DNA template) pada temperatur 94-96C, yaitu pemisahan utas ganda DNA menjadi dua utas tunggal. Sesudah itu, dilakukan penurunan temperatur pada tahap kedua sampai 45-60C yang memungkinkan terjadinya penempelan (annealing) atau hibridisasi antara oligonukleotida primer dengan utas tunggal cetakan DNA. Primer merupakan oligonukelotida utas tunggal yang sekuens-nya dirancang komplementer dengan ujung fragmen DNA yang ingin disalin; primer menentukan awal dan akhir daerah yang hendak disalin. Tahap yang terakhir adalah tahap ekstensi atau elongasi (elongation), yaitu pemanjangan primer menjadi suatu utas DNA baru oleh enzim DNA polimerase. Temperatur pada tahap ini bergantung pada jenis DNA polimerase yang digunakan. Pada akhirnya, satu siklus PCR akan menggandakan jumlah molekul cetakan DNA atau DNA target, sebab setiap utas baru yang disintesis akan berperan sebagai cetakan pada siklus selanjutnya.

Elektroforesis gelArtikel utama: ElektroforesisElektroforesis gel merupakan salah satu teknik utama dalam biologi molekular. Prinsip dasar teknik ini adalah bahwa DNA, RNA, atau protein dapat dipisahkan oleh medan listrik. Dalam hal ini, molekul-molekul tersebut dipisahkan berdasarkan laju perpindahannya oleh gaya gerak listrik di dalam matriks gel. Laju perpindahan tersebut bergantung pada ukuran molekul bersangkutan. Elektroforesis gel biasanya dilakukan untuk tujuan analisis, namun dapat pula digunakan sebagai teknik preparatif untuk memurnikan molekul sebelum digunakan dalam metode-metode lain seperti spektrometri massa, PCR, kloning, sekuensing DNA, atau immuno-blotting yang merupakan metode-metode karakterisasi lebih lanjut.

Gel yang digunakan biasanya merupakan polimer bertautan silang (crosslinked) yang porositasnya dapat diatur sesuai dengan kebutuhan. Untuk memisahkan protein atau asam nukleat berukuran kecil (DNA, RNA, atau oligonukleotida), gel yang digunakan biasanya merupakan gel poliakrilamida, dibuat dengan konsentrasi berbeda-beda antara akrilamida dan zat yang memungkinkan pertautan silang (cross-linker), menghasilkan jaringan poliakrilamida dengan ukuran rongga berbeda-beda. Untuk memisahkan asam nukleat yang lebih besar (lebih besar dari beberapa ratus basa), gel yang digunakan adalah agarosa (dari ekstrak rumput laut) yang sudah dimurnikan.

Dalam proses elektroforesis, sampel molekul ditempatkan ke dalam sumur (well) pada gel yang ditempatkan di dalam larutan penyangga, dan listrik dialirkan kepadanya. Molekul-molekul sampel tersebut akan bergerak di dalam matriks gel ke arah salah satu kutub listrik sesuai dengan muatannya. Dalam hal asam nukleat, arah pergerakan adalah menuju elektroda positif, disebabkan oleh muatan negatif alami pada rangka gula-fosfat yang dimilikinya. Untuk menjaga agar laju perpindahan asam nukleat benar-benar hanya berdasarkan ukuran (yaitu panjangnya), zat seperti natrium hidroksida atau formamida digunakan untuk menjaga agar asam nukleat berbentuk lurus. Sementara itu, protein didenaturasi dengan deterjen (misalnya natrium dodesil sulfat, SDS) untuk membuat protein tersebut berbentuk lurus dan bermuatan negatif.

Setelah proses elektroforesis selesai, dilakukan proses pewarnaan (staining) agar molekul sampel yang telah terpisah dapat dilihat. Etidium bromida, perak, atau pewarna "biru Coomassie" (Coomassie blue) dapat digunakan untuk keperluan ini. Jika molekul sampel berpendar dalam sinar ultraviolet (misalnya setelah "diwarnai" dengan etidium bromida), gel difoto di bawah sinar ultraviolet. Jika molekul sampel mengandung atom radioaktif, autoradiogram gel tersebut dibuat.

Pita-pita (band) pada lajur-lajur (lane) yang berbeda pada gel akan tampak setelah proses pewarnaan; satu lajur merupakan arah pergerakan sampel dari "sumur" gel. Pita-pita yang berjarak sama dari sumur gel pada akhir elektroforesis mengandung molekul-molekul yang bergerak di dalam gel selama elektroforesis dengan kecepatan yang sama, yang biasanya berarti bahwa molekul-molekul tersebut berukuran sama. "Marka" atau penanda (marker) yang merupakan campuran molekul dengan ukuran berbeda-beda dapat digunakan untuk menentukan ukuran molekul dalam pita sampel dengan meng-elektroforesis marka tersebut pada lajur di gel yang paralel dengan sampel. Pita-pita pada lajur marka tersebut dapat dibandingkan dengan pita sampel untuk menentukan ukurannya. Jarak pita dari sumur gel berbanding terbalik terhadap logaritma ukuran molekul.

Kromosom

Gambar 1: Kromosom. (1) Kromatid. Salah satu dari dua bagian identik kromosom yang terbentuk setelah fase S pada pembelahan sel. (2) Sentromer. Tempat persambungan kedua kromatid, dan tempat melekatnya mikrotubulus. (3) Lengan pendek (4) Lengan panjang.

Kromosom merupakan struktur makromolekul besar yang memuat DNA yang membawa informasi genetik dalam sel. DNA terbalut dalam satu atau lebih kromosom.

Sebuah kromosom (dalam bahasa Yunani chroma = warna dan soma= badan) adalah seberkas DNA yang sangat panjang dan berkelanjutan, yang terdapat banyak gen unsur regulator dan sekuens nukleotida lainnya.

Dalam kromosom eukariota, DNA yang tidak terkondensasi berada dalam struktur order-quasi dalam nukleus, dimana ia membungkus histon (protein struktural, Gambar 1), dan di mana material komposit ini disebut chromatin. Selama mitosis (pembelahan sel), kromosom terkondensasi dan disebut kromosom metafase. Hal ini menyebabkan masing-masing kromosom dapat diamati melalui mikroskop optik.

Setiap kromosom memiliki dua lengan, yang pendek disebut lengan p (dari bahasa Perancis petit yang berarti kecil) dan lengan yang panjang lengan q (q mengikuti p dalam alfabet).

Prokariota tidak memiliki histon atau nukleus. Dalam keadaan santainya, DNA dapat diakses untuk transkripsi, regulasi, dan replikasi.

Kromosom pertama kali diamati oleh Karl Wilhelm von Ngeli pada 1842 dan ciri-cirinya dijelaskan dengan detil oleh Walther Flemming pada 1882. Pada 1910, Thomas Hunt Morgan membuktikan bahwa kromosom merupakan pembawa gen.