93
Appunti del Corso di Geometria Superiore Elementi di Teoria delle Curve Algebriche Massimo Giulietti

Appunti del Corso di - Dipartimento di Matematica e ... · Prefazione Queste note raccolgono il materiale oggetto di alcune lezioni del Corso di Geometria Superiore (del Corso di

  • Upload
    tranthu

  • View
    224

  • Download
    1

Embed Size (px)

Citation preview

Appunti del Corso di

Geometria Superiore

Elementi di Teoria delle Curve Algebriche

Massimo Giulietti

Indice

Prefazione 4

Capitolo 1. Generalita sulle varieta algebriche 5

1. Varieta affini 5

2. Proprieta locali 8

3. Il caso delle curve 12

4. Varieta proiettive 14

5. Mappe razionali 16

6. Alcuni richiami sulle estensioni di campi 20

Capitolo 2. Richiami sulle curve algebriche piane 23

1. Definizioni 23

2. Punti semplici e singolari 24

3. Risultante di due polinomi 26

4. Intersezione di due curve in senso esteso 27

5. Molteplicita di intersezione e valutazioni 28

Capitolo 3. Valutazioni, Divisori, Zeri e Poli 30

1. DVR di campi di funzioni algebriche 30

2. La corrispondenza punti-valutazioni 31

3. Valutazioni e mappe razionali 32

4. Immagini di mappe razionali 36

5. Trasformazioni quadratiche di curve piane 37

6. Espansione in serie di Laurent 39

7. Zeri e poli 44

8. Divisori 47

Capitolo 4. Genere, Divisori canonici, Teorema di Riemann-Roch, Semigruppo di Weierstrass 51

1. Genere e Teorema di Riemann 51

2. Il genere di una curva piana non singolare 52

3. Caratterizzazione delle curve di genere 0 e 1 57

4. Derivazioni, differenziali, divisori canonici 59

5. Teorema di Riemann-Roch 70

Capitolo 5. Ricoprimenti 71

1. L’uguaglianza fondamentale 71

2. Il teorema di Hurwitz 72

3. Automorfismi di una curva e ricoprimenti di Galois - Curve Quoziente 75

Capitolo 6. Curve in dimensione superiore 82

1. Serie lineari 82

2. Divisori, equivalenze birazionali e immersioni 84

3. Invarianti Hermitiani 85

4. Sequenza degli ordini 86

3

INDICE 4

5. Divisore di ramificazione 89

6. L’iperpiano osculatore 91

Bibliografia 92

Prefazione

Queste note raccolgono il materiale oggetto di alcune lezioni del Corso di Geometria Superiore (del Corso di Laurea

Magistrale in Matematica, Universita degli Studi di Perugia, Anno Accademico 2010/2011).

L’argomento portante del corso sono le curve algebriche, intese come varieta algebriche proiettive di dimensione 1. I

prerequisiti del corso sono stati affrontati, oltre che nei corsi di Algebra e Geometria del primo biennio, nei corsi di

Geometria 4 (curve algebriche piane), Algebra 3 (insiemi algebrici e varieta, anello delle funzioni regolari, Teorema degli

Zeri di Hilbert) e Geometria 6 (spazio tangente ad una varieta algebrica, dimensione di una varieta algebrica). Tali

prerequisiti sono qui riportati in modo molto sintetico nei Capitoli 1 e 2.

L’approccio allo studio delle curve seguito in questo Corso e essenzialmente birazionale, ovvero tenderemo a considerare

due curve birazionalmente equivalenti come lo stesso oggetto. Le principali conseguenze di questa scelta sono due. Da

un lato, siccome ogni curva e birazionalmente equivalente a una curva piana, buona parte del corso vertera sullo studio

delle curve piane. Dall’altro, dato che due curve sono birazionalmente equivalenti se e solo se i loro campi di funzioni

sono isomorfi, molti dei concetti e dei risultati che vedremo saranno di natura essenzialmente algebrica.

I libri di testo che contengono il materiale di questi appunti sono molti. Lo studente e invitato in particolare a consultare

il libro di Reid [7] per quanto attiene agli aspetti generali sulle varieta, i testi di Fulton [4] (disponibile online) e Orzech-

Orzech [6] per gli aspetti geometrici della teoria delle curve, i testi di Chevalley [2] e Stichtenoth [9] per un approccio

puramente algebrico. Per quanto riguarda gli argomenti finali piu specifici, quali il gruppo di automorfismi di una curva

algebrica, un ottimo riferimento e la recente monografia di Hirschfeld-Korchmaros-Torres [5]. I punti salienti del percorso

di queste dispense sono i seguenti:

• Proprieta locali delle curve algebriche affini. Un punto e semplice se e solo se il suo anello locale e un DVR.

Proprieta generali dei DVR e delle valutazioni associate.

• Mappe razionali dominanti e pull-back. Caratterizzazione dell’immagine di un punto mediante anelli locali.

• Curve birazionalmente equivalenti. Teorema dell’elemento primitivo e conseguenze.

• Richiami sulla molteplicita di intersezione di due curve piane. Valutazione in un punto semplice di una curva

piana espressa tramite la molteplicita di intersezione. Teorema degli zeri per curve piane non singolari.

• Caratterizzazione dei DVR di un campo di funzioni algebriche.

• Il concetto di centro di un DVR.

• Mappe razionali di curve viste come mappe fra i DVR delle curve.

• Come “concretizzare” i DVR centrati in un punto: le trasformazioni quadratiche.

• Espansione in serie di Laurent. DVR come classi di monomorfismi nel campo delle serie di Laurent.

• Teorema di indipendenza e prima parte del Teorema degli zeri.

• Divisori. Proprieta generali. Conclusione del Teorema degli zeri.

• Genere e Teorema di Riemann. Genere di una curva piana non singolare.

• Derivazioni e differenziali. Divisori canonici. Genere come grado di un divisore canonico.

• Teorema di Riemann-Roch (senza dimostrazione). Applicazioni al semigruppo di Weierstrass.

• Ramificazione. L’uguaglianza fondamentale per mappe razionali.

• Il Teorema di Hurwitz.

• Mappe razionali di Galois. Formula del differente di Hilbert (senza dimostrazione).

• Gruppi finiti di automorfismi di una curva.

5

CAPITOLO 1

Generalita sulle varieta algebriche

1. Varieta affini

Sia K un campo algebricamente chiuso e sia An(K) = (a1, . . . , an) | ai ∈ K lo spazio affine n-dimensionale su K.

Sia I un ideale di K [X1, . . . , Xn]. Si definisce insieme algebrico affine associato ad I il sottoinsieme V (I) di An(K)

V (I) = (a1, . . . , an) ∈ An(K) | f(a1, . . . , an) = 0 ∀ f ∈ I .

Ricordiamo che un anello commutativo R si dice Noetheriano se ogni ideale di R e generato da un numero finito di

elementi di R. Si puo dimostrare che R e Noetheriano se e solo se per ogni catena ascendente di ideali I1 ⊂ I2 ⊂ I3 ⊂ . . .in R, esiste n ≥ 1 tale che In+1 = In+2 = In+3 = . . . . Un campo K e sempre Noetheriano dato che K non contiene ideali

non banali.

Teorema 1.1 (Teorema della Base di Hilbert). Sia R un anello Noetheriano. Allora l’anello dei polinomi R[X] e

Noetheriano.

Corollario 1.2. Sia K un campo. Allora K[X1, . . . , Xn] e Noetheriano.

Dimostrazione. Si usi il Teorema della Base di Hilbert, e si proceda per induzione su n.

Ogni ideale di K[X1, . . . , Xn] ammette quindi un insieme finito di generatori. Scriveremo I = 〈f1, . . . , fm〉 quando I e

generato dai polinomi f1, . . . , fm ∈ K[X1, . . . , Xn].

Nota 1. Se I = 〈f1, . . . , fm〉, allora V (I) e l’insieme delle soluzioni delle equazioni polinomiali

f1(X1, . . . , Xn) = f2(X1, . . . , Xn) = . . . fm(X1, . . . , Xn) = 0 .

Dimostrazione. Sia Z = (a1, . . . , an) ∈ An(K)|fi(a1, . . . , an) = 0 ∀ i = 1, . . . ,m. Chiaramente si ha Z ⊂ V (I).

D’altro canto, siccome ogni f ∈ I e uguale a g1f1 + . . . + gnfn per qualche gi ∈ K[X1, . . . , Xn], f(a1, . . . , an) = 0 segue

da fi(a1, . . . , an) = 0 per ogni i = 1, . . . ,m.

Pertanto ogni insieme algebrico affine puo esser visto come il luogo degli zeri di un insieme finito di polinomi.

Proposizione 1.3. Siano V1, V2 insiemi algebrici affini. Allora sia V1 ∪ V2 che V1 ∩ V2 sono insiemi algebrici affini.

Dimostrazione. Sia V1 = V (〈f1, . . . , fm〉), V2 = V (〈g1, . . . , gh〉). E immediato che V1 ∩ V2 =

V (〈f1, . . . , fm, g1, . . . , gh〉). Affermiamo inoltre che

V1 ∪ V2 = W = V (〈f1g1, f1g2, . . . , f1gh, f2g1, . . . , fmgh〉) .

Infatti figj(a1, . . . , an) = 0 per ogni i = 1, . . . ,m, j = 1, . . . , h implica che o fi(a1, . . . , an) = 0 per ogni i = 1, . . . ,m,

oppure gj(a1, . . . , an) = 0 per ogni j = 1, . . . ,m. Questo dimostra che W ⊂ V1 ∪ V2, da cui W = V1 ∪ V2 dato che l’altra

inclusione e ovvia.

Puo capitare che per due ideali distinti I, J ⊂ K[X1, . . . , Xn] gli insiemi algebrici affini V (I) e V (J) coincidano. Per

esempio V (〈f〉) = V (〈f2〉) per ognif ∈ K[X1, . . . , Xn].

Definizione 1.4. Sia V ⊂ An(K) un insieme algebrico affine. Allora l’ideale di V si definisce come

I(V ) = f ∈ K[X1, . . . , Xn] | f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ V .

6

1. VARIETA AFFINI 7

Un’ovvia relazione fra I e I(V (I)) e che I ⊂ I(V (I)). Piu precisamente, vale il seguente famoso teorema di Hilbert.

Teorema 1.5 (Hilbert Nullstellensatz).

I(V (I)) =√I = f ∈ K[X1, . . . , Xn] | fm ∈ I per qualche m ∈ Z,m ≥ 1 .

Si noti che tale risultato non vale se K non e algebricamente chiuso. Per esempio, se K = R e I = 〈x2 +1〉 ⊂ R[x], l’ideale

I(V (I)) coincide con l’intero R[x] ma f(x) = 1 /∈√I.

Vale anche la seguente proposizione (ricordiamo che K[X1, . . . , Xn] e un UFD).

Proposizione 1.6. Sia I = 〈f〉. Se f = fr11 · · · frhh e fattorizzazione di f , allora

√I = 〈f1 · · · fh〉

Proposizione 1.7. V = V (I(V ))

Dimostrazione. Dalla Definizione 1.4, V ⊂ V (I(V )). Sia V = V (I), e si assuma che esista (a1, . . . , an) ∈ V (I(V ))\V . Allora f(a1, . . . , an) 6= 0 per qualche f ∈ I. Ma questo e impossibile dato che I ⊂ I(V (I)) = I(V ) e (a1, . . . , an) ∈V (I(V )).

Definizione 1.8. Un insieme algebrico V ⊆ An(K) si dice riducibile se V = V1 ∪V2 con V1, V2 ⊆ An(K) insiemi algebrici

affini diversi da V . Si dice irriducibile altrimenti.

Proposizione 1.9. V ⊆ An(K) e irriducibile se e solo se I(V ) e un ideale primo.

Dimostrazione. Sia V = V (I) irriducibile. Siano f, g ∈ K[X1, . . . , Xn] tali che fg ∈ I(V ). Si noti che V =

(V ∩ V (〈f〉)) ∪ (V ∩ V (〈g〉)), con V ∩ V (〈f〉), V ∩ V (〈g〉) insiemi algebrici affini dalla Proposizione 1.3. Allora o V =

V ∩ V (〈f〉) oppure V = V ∩ V (〈g〉), da cui f o g appartiene I(V ).

Viceversa, supponiamo che I(V ) sia primo e che V = V (I1)∪V (I2). Dobbiamo provare che V = V (I1) oppure V = V (I2).

Sia I1 = 〈f1, . . . , fr〉 e I2 = 〈g1, . . . , gs〉. Possiamo assumere che esistano i0, j0 tali che fi0 , gj0 /∈ I(V ), altrimenti V = V (I1)

o V = V (I2), dato che tutti gli fi o tutti gli gj appartengono a I(V ). Ma fi0gj0 si annullano in tutti i punti di V , da cui

fi0gj0 ∈ I(V ), una contraddizione.

Definizione 1.10. Un insieme algebrico affine irriducibile si dice varieta affine.

Proposizione 1.11. Ogni insieme algebrico V ⊆ An(K) si puo scrivere come unione finita

V = V1 ∪ . . . ∪ Vm,

dove ogni Vi e una varieta affine.

Per la dimostrazione si veda ad esempio [3, Theorem 2, p. 201].

1.1. Anello delle coordinate affini e campo delle funzioni razionali.

Definizione 1.12. Sia V una varieta affine. Allora si dice anello delle coordinate affini di V l’anello quoziente K [V ] =

K [X1, . . . , Xn] /I(V ).

Un generico elemento α di questo anello e una classe di equivalenza α = f + I(V ), con f ∈ K [X1, . . . , Xn]. Si ha che

(1) f + I(V ) = g + I(V ) ⇔ f − g ∈ I(V ).

Pertanto e ben definita l’applicazione

α : V → K, α(a1, . . . , an) = f(a1, . . . , an).

Dalla Proposizione 1.9 si ha che K [V ] e un dominio di integrita.

1. VARIETA AFFINI 8

Definizione 1.13. Sia V una varieta affine. Si definisce campo delle funzioni razionali K (V ) di V il campo dei quozienti

di K [V ], ovvero

K(V ) =

f + I(V )

g + I(V )| f, g ∈ K [X1, . . . , Xn] , g /∈ I(V )

,

dovef1 + I(V )

g1 + I(V )=f2 + I(V )

g2 + I(V )se e solo se f1g2 − f2g1 ∈ I(V ).

Osserviamo che se V ⊆ An(K) e una varieta affine allora

K(V ) = K(x1, . . . , xn),

dove xi := xi + I(V ). Infatti, sia α ∈ K(V ), α =f(X1, . . . , Xn) + I(V )

g(X1, . . . , Xn) + I(V ). Allora dalla definizione di somma e prodotto in

K [V ], α =f(x1, . . . , xn)

g(x1, . . . , xn). Questo prova K(V ) ⊆ K(x1, . . . , xn). L’altra inclusione e banale.

Definizione 1.14. Una funzione razionale α ∈ K (V ) si dice definita (o regolare) in P = (a1, . . . , an) ∈ V se esistono

f, g ∈ K [X1, . . . , Xn] tali che α =f + I(V )

g + I(V )e g(a1, . . . , an) 6= 0. In questo caso e ben definito il valore di α in P :

α(P ) =f(a1, . . . , an)

g(a1, . . . , an).

Esempio 1.15. Sia F (X,Y ) = X+X2 +Y 2 +Y 3, e sia X = V(〈F 〉). Sia α ∈ K(X ), α =X +X2 + 〈F 〉

Y + 〈F 〉, e sia P = (0, 0).

Apparentemente, α non e regolare in P , ma siccome X + X2 + 〈F 〉 = −Y 2 − Y 3 + 〈F 〉, α =−Y 2 − Y 3 + 〈F 〉

Y + 〈F 〉=

−Y − Y 2 + 〈F 〉1 + 〈F 〉

. Quindi α e definita in P e α(P ) = 0.

1.2. Dimensione di una varieta affine. Esistono diverse definizioni equivalenti di dimensione di una varieta affine,

alcune delle quali probabilmente gia incontrate in corsi precedenti. Daremo qui la definizione piu utile per gli scopi del

corso.

Richiamiamo un importante concetto di Algebra.

Sia L : K un’estensione di campi finitamente generata, e siano a1, . . . , as ∈ L. Gli elementi a1, . . . , as sono detti

algebricamente indipendenti su K se non esiste un polinomio non nullo P ∈ K[X1, . . . , Xs] tale che P (a1, . . . , as) = 0. Si

noti che un singolo elemento a ∈ L e algebricamente indipendente se e solo se non e algebrico su K (nel caso in cui K e

algebricamente chiuso, se e solo se a /∈ K). Se L : K e algebrica, allora nessun sottoinsieme finito di L e algebricamente

indipendente. Altrimenti diremo che una base di trascendenza di L : K e un insieme finito di elementi di L algebricamente

indipendenti massimale rispetto all’inclusione. Valgono le seguenti proprieta:

1) Ogni due basi di trascendenza hanno lo stesso numero di elementi, chiamato grado di trascendenza di L : K.

2) Se L = K(a1, . . . , as), allora esiste una base di trascendenza di L : K contenuta in a1, . . . , as.

Definizione 1.16. Sia V una varieta affine. La dimensione di V e il grado di trascendenza di K(V ) su K.

Richiamiamo la definizione piu intuitiva, senza dimostrare l’equivalenza delle due definizioni.

Proposizione 1.17. Sia V una varieta affine di dimensione r. Allora r + 1 e la massima lunghezza di una catena di

varieta affini

V0 ( V1 ( . . . ( Vr

con V0 = ∅ e Vr = V .

Definizione 1.18. Una curva affine e una varieta affine di dimensione 1.

Esercizio 1. Si dimostri che se V ⊂ An(K) allora dim(V ) ≤ n. (Suggerimento: si usi K(V ) = K(x1, . . . , xn)).

Proposizione 1.19. Sia V ⊂ A2(K), V = V (〈f〉) con f irriducibile. Alllora V e una varieta e dim(V ) = 1.

2. PROPRIETA LOCALI 9

Dimostrazione. L’ideale I = 〈f〉 e primo dato che f e irriducibile. Pertanto dal Nullstellensatz segue I(V ) = I, e

V e una varieta. Cerchiamo una base di trascendenza B di K(V ) = K(x1, x2) su K. Siccome K e algebricamente chiuso,

possiamo assumere x1 ∈ B. In realta x1 = B dato che f(x1, x2) = 0 da una relazione di dipendenza algebrica fra x1 e

x2.

Nota 2. E immediato che una varieta affine V ha dimensione zero se e soltanto se e costituita da un unico punto. In

virtu della Proposizione 1.17 si ha allora che le uniche varieta affini proprie contenute in una curva affine sono i singoli

punti. Di conseguenza, ogni insieme algebrico affine propriamente contenuto in una curva affine o e vuoto, o e costituito

da un numero finito di punti.

2. Proprieta locali

2.1. Spazio tangente in un punto. Per studiare le proprieta locali dei punti di una varieta affine V definiamo

innanzitutto lo spazio tangente a V in un punto P , concetto che lo studente potrebbe aver gia incontrato in altri corsi.

Iniziamo trattando le varieta definite da un ideale principale (le cosiddette ipersuperfici). Sia f ∈ K[X1, . . . , Xn], f

irriducibile e non costante, e sia V = V (〈f〉). Sia P = (a1, . . . , an) ∈ V , e sia ` una retta per P . Sia ` costituita

dall’insieme di punti P + tQ | t ∈ K, con Q = (b1, . . . , bn) tale che P +Q sia punto di ` (diverso da P ). Si ponga

g(t) = f(P + tQ) ∈ K[t].

Si osservi che 0 e radice di g(t).

Proposizione 1.20. Il polinomio g(t) ammette 0 come radice multipla se e solo se ` e contenuta nel sottospazio affine

di equazionen∑i=1

∂f

∂Xi(P ) · (Xi − ai) = 0.

Dimostrazione. Si ha che 0 e radice multipla di g(t) se e solo se la derivata (formale) di g(t) si annulla in 0. Per

la regola della catena (valida anche per le derivate formali di polinomi) si ha

dg

dt=

n∑i=1

∂f

∂Xi(P + tQ) · bi = 0.

Quindi dgdt (0) = 0 se e solo se

∑ni=1

∂f∂Xi

(P ) · bi = 0, ovvero se e solo se ogni punto R = P + tQ di ` appartiene a∑ni=1

∂f∂Xi

(P ) · (Xi − ai) = 0.

Il sottospazio affine di equazione∑ni=1

∂f∂Xi

(P ) · (Xi − ai) = 0 si dice lo spazio tangente a V in P e si denota con TP (V ).

Consideriamo ora una varieta affine generica V . Sia P = (a1, . . . , an) ∈ V . Si definisce lo spazio tangente a V in P come

il sottospazio lineare

TP (V ) =⋂

f∈I(V )

(n∑i=1

∂f

∂Xi(P ) · (Xi − ai) = 0

).

Osserviamo che se f1, . . . , fm sono generatori di I(V ), allora per ogni f ∈ I(V ) si ha che∑ni=1

∂f∂Xi

(P ) · (Xi − ai) e

combinazione lineare dei polinomi lineari∑ni=1

∂fj∂Xi

(P ) · (Xi − ai). Infatti, dalla regola di derivazione del prodotto, se

f = g1f1 + . . .+ gmfm allora

∂f

∂Xi(P ) =

m∑j=1

(∂gj∂Xi

(P ) · f(P ) + gj(P ) · ∂fj∂Xi

(P )

)=

m∑j=1

gj(P ) · ∂fj∂Xi

(P ).

Pertanto la definizione di TP (V ) si puo semplificare come segue:

TP (V ) =

m⋂j=1

(n∑i=1

∂fj∂Xi

· (Xi − ai) = 0

).

2. PROPRIETA LOCALI 10

Si noti allora che TP (V ), con P = (a1, . . . , an), coincide con(a1, . . . , an) + (c1, . . . , cn) | JP · (c1, . . . , cn)T = (0, . . . , 0)T

,

sottospazio affine di An(K), dove JP e la matrice Jacobiana di f1, . . . , fm, di tipo m× n, valutata in P .

Proposizione 1.21. Per ogni intero non negativo r si definisca

S(r) = P ∈ V | dim(TP (V )) ≥ r.

Allora S(r) e un sottoinsieme algebrico di V .

Dimostrazione. Un punto P appartiene a S(r) se e soltanto se la matrice Jacobiana JP ha rango minore o uguale

di n− r. Questo accade precisamente quando tutti i minori di JP di ordine maggiore o uguale di n− r+ 1 sono nulli. Se

si immagina P variabile, questi minori sono polinomi nelle coordinate di P . Questo dimostra l’asserto.

Corollario 1.22. Esiste un intero r per cui la dimensione dello spazio tangente e uguale a r sui punti di V , tranne al

piu quelli di un sottoinsieme algebrico proprio.

Dimostrazione. Per definizione si ha

V = S(0) ⊇ S(1) ⊇ S(2) ⊇ . . . ⊇ S(n) ⊇ S(n+ 1) = ∅

Sia r il minimo intero per cui S(r + 1) ( V . Per ogni punto P di V \ S(r + 1) allora si ha dim(TP (V )) = r.

Proposizione 1.23. L’intero r del corollario precedente coincide con la dimensione di V .

Non riportiamo in questa sede la dimostrazione della Proposizione 1.23 (probabilmente fatta in altri corsi). Ci limitiamo

ad osservare che l’asserto vale nel caso di varieta di tipo V (〈f〉), con f ∈ K[X1, . . . , Xn], f irriducibile. In tal caso

lo spazio tangente ha dimensione n − 1 tranne per quei punti P che annullano sia f che tutte le sue derivate prime.

Naturalmente questi punti costituiscono un sottoinsieme algebrico proprio di V . Infatti, per banale confronto di gradi si

ha che ∂f/∂Xi ∈ 〈f〉 se e solo se ∂f/∂Xi ≡ 0; ma ∂f/∂Xi ≡ 0 per ogni i implicherebbe f riducibile (lo studente rifletta

su questa affermazione, specialmente nel caso in cui la caratteristica di K sia positiva). Quindi r = n− 1. D’altro canto

sappiamo che K(V ) = K(x1, . . . , xn). Supponiamo senza restrizione che f contenga l’indeterminata X1. Allora e facile

vedere che x2, . . . , xn sono algebricamente indipendenti in K(V ). Inoltre l’estensione K(V ) : K(x2, . . . , xn) e algebrica

semplice, e quindi il grado di trascendenza di K(V ) su K e n− 1.

Definizione 1.24. Un punto P di V si dice singolare se

dim(TP (V )) > dim(V ),

semplice se

dim(TP (V )) = dim(V ).

Esercizio 1. Sia f = X2 − Y 2Z2 +Z3 ∈ C[X,Y, Z]. Si provi che I = 〈f〉 e primo e si calcoli la dimensione di TP (V (I))

nei punti P di V (I).

Esercizio 2. Sia f come nell’esercizio precedente e sia g = X + Y + Z ∈ C[X,Y, Z]. Si provi che I = 〈f, g〉 e primo e si

calcoli la dimensione di TP (V (I)) nei punti P di V (I). (Suggerimento: si sfrutti il fatto che g(−Y −Z, Y, Z) e irriducibile.)

Esercizio 3. Siano f = Y 2 −X3 − 1, g = Z2 −X5 −X2 polinomi di C[X,Y, Z]. Si provi che V (〈f, g〉) e riducibile, si

scriva V come unione di un numero finito di varieta, e si calcoli la dimensione tali varieta.

2. PROPRIETA LOCALI 11

2.2. Anello locale in un punto. Il prossimo obiettivo e quello di dare una visione intrinseca dello spazio tangente.

Definizione 1.25. Sia V ⊆ An(K) una varieta affine e sia P un punto di V . L’anello locale di V in P e

K[V ]P := α ∈ K (V ) : α e regolare in P .

Richiamiamo alcuni concetti di Algebra.

Le seguenti condizioni sono equivalenti per un anello commutativo unitario R:

1) L’insieme degli elementi non invertibili di R forma un ideale.

2) Esiste un (unico) ideale proprio (massimale) di R che contiene tutti gli ideali propri di R.

L’affermazione segue dal fatto che ogni ideale contenente un elemento invertibile deve coincidere con l’intero anello. Un

anello che soddisfa le condizioni appena descritte si dice anello locale.

Proposizione 1.26. L’anello K[V ]P e un dominio locale Noetheriano.

Dimostrazione. Sia P = (a1, . . . , an). Ovviamente K[V ]P e un dominio di integrita essendo contenuto nel campo

K(V ). Per provare che e Noetheriano fissiamo un ideale I di K[V ]P e poniamo J = I ∩K [V ]. J e banalmente un ideale

di K [V ], il quale essendo quoziente di un anello Noetheriano e a sua volta Noetheriano. Si ha quindi J = 〈g1, . . . , gs〉,

con gi ∈ K [X1, . . . , Xn] e gi = gi + I(V ) per ogni i = 1, . . . , s. Fissiamo α ∈ I, α =f + I(V )

g + I(V )con g(a1, . . . , an) 6= 0;

possiamo anche scrivere α =β

γ, con β, γ ∈ K [V ] e γ(a1, . . . , an) 6= 0, da cui si ha γα ∈ J . Dato che J = 〈g1, . . . , gs〉, si

ha γα = δ1g1 + . . . + δsgs, per qualche δ1, . . . , δs ∈ K [V ]. Segue allora α =δ1γg1 + . . .+

δsγgs con

δiγ∈ K[V ]P per ogni

i = 1, . . . , s. Avendo quindi scritto α come combinazione lineare di g1, . . . , gs a coefficienti in K[V ]P , possiamo concludere,

per l’arbitrarieta di α, che I e finitamente generato su K[V ]P .

Proviamo ora che K[V ]P e un anello locale. Sia

MP = α ∈ K[V ]P |α(P ) = 0 .

Banalmente MP e un ideale proprio. Proviamo che contiene ogni altro ideale proprio di K[V ]P . Supponiamo per assurdo

che esista un ideale proprio J non contenuto in MP , e sia β ∈ J \MP . Allora β risulta invertibile in K[V ]P , essendo

β(P ) 6= 0; pertanto 〈β〉 coincide cib l’anello K[V ]P . Ma questo contraddice 〈β〉 ⊂ J ( K[V ]P .

L’insieme delle funzioni di K[V ]P che si annullano in P sara denotato con MP (V ) (o brevemente con MP nel caso in cui

V sia chiara dal contesto). Dalla dimostrazione precedente MP (V ) e un ideale massimale di K[V ]P .

Definizione 1.27. Lo spazio K-lineare MP /M2P , dove M2

P e l’ideale generato da fg | f, g ∈MP , e chiamato spazio

cotangente a V in P.

Teorema 1.28. Sia V una varieta affine e P un punto di V. Allora

dim(TP (V )) = dim(MP /M2P ).

Dimostrazione.

• Premesse. Sia I(V ) = 〈g1, . . . , gm〉.Assumeremo per semplicita che il punto P sia il punto di coordinate (0, 0, . . . , 0). In questo modo TP (V ) e

un sottospazio vettoriale di Kn.

E inoltre immediato verificare che un qualunque elemento di MP e di tipo g(x1, . . . , xn)/h(x1, . . . , xn) dove

g e un polinomio privo di termine noto, mentre h(0, . . . , 0) 6= 0; pertanto MP e generato (come ideale di K[V ]P )

dagli elementi x1 = X1 + I(V ), . . . , xn = Xn + I(V ).

Di conseguenza gli elementi di M2P sono di tipo g(x1, . . . , xn)/h(x1, . . . , xn) dove g e un polinomio privo di

termine noto e di parte lineare, e h(0, . . . , 0) 6= 0.

2. PROPRIETA LOCALI 12

Dimostreremo che

TP (V )∗ ∼= MP /M2P ,

dove l’isomorfismo e inteso come isomorfismo fra spazi vettoriali su K. L’asserto sara quindi una banale

conseguenza di questo fatto.

• Sia M l’ideale di K[X1, . . . , Xn] generato da X1, . . . , Xn. Allora TP (V )∗ e isomorfo a M/(M2 + I(V )).

Osserviamo che per ogni polinomio f ∈ K[X1, . . . , Xn], la sua “parte lineare” f (L) =∑ni=1

∂f∂Xi

(P ) ·Xi puo

essere vista come elemento dello spazio vettoriale duale (Kn)∗, diciamo f . Per ogni f ∈ M definiamo D(f)

come la restrizione a TP (V ) di f . E facile verificare che l’applicazione

D :M→ TP (V )∗

risulta K-lineare e suriettiva. Proviamo che Ker(D) =M2 + I(V ).

Un polinomio appartiene a M2 se e solo se e privo di termine noto e di parte lineare. Pertanto ogni

f ∈M2 + I(V ) e tale che f (L) e la parte lineare di un polinomio in I(V ). Per definizione di TP (V ) allora f (L) si

annulla su tutti i punti di TP (V ), e questo significa che D(f) = 0. Questo dimostra che M2 + I(V ) ⊆ Ker(D).

Sia ora f ∈ Ker(D). Allora∑ni=1

∂f∂Xi

(P ) · bi = 0 per ogni Q = (b1, . . . , bn) ∈ TP (V ). Questo e vero se e

solo se il polinomio lineare∑ni=1

∂f∂Xi

(P ) ·Xi e combinazione lineare a coefficienti in K degli m polinomi lineari∑ni=1

∂gj∂Xi

(P ) ·Xi. Si scriva

n∑i=1

∂f

∂Xi(P ) ·Xi =

m∑j=1

cj

n∑i=1

∂gj∂Xi

(P ) ·Xi, cj ∈ K.

Uguagliando i coefficienti delle indeterminate Xi, i = 1, . . . , n, si ha

∂f

∂Xi(P ) =

m∑j=1

cj∂gj∂Xi

(P ), per ogni i = 1, . . . , n.

Allora

∂(f −

∑mj=1 cjgj

)∂Xi

(P ) = 0

per ogni i = 1, . . . , n. Pertanto f −∑mj=1 cjgj ∈M2, e quindi f ∈M2 + I(V ).

• M/(M2 + I(V )) e isomorfo a MP /M2P .

Si consideri il morfismo naturale daM su MP , e lo si componga con la proiezione naturale MP →MP /M2P .

In altre parole, ad ogni polinomio f ∈ K[X1, . . . , Xn] privo di termine noto si associ la classe f(x1, . . . , xn)+M2P .

Tale applicazione e evidentemente K-lineare.

Osserviamo che il nucleo di tale applicazione lineare e dato precisamente dai polinomi dell’idealeM2 +I(V ).

Infatti e evidente che un polinomio inM2 +I(V ) appartiene al nucleo. Viceversa, se f(x1, . . . , xn) ∈M2P , allora,

per quanto osservato nelle premesse,

f + I(V ) =g + I(V )

h+ I(V )

per qualche g ∈M2 e h(P ) 6= 0. Pertanto fh ∈M2 + I(V ). Si scriva h = h0 + h1 + . . .+ hv, con hi omogeneo

di grado i. Da h(P ) 6= 0 segue h0 ∈ K∗. Inoltre,

fh = f(h0 + . . .+ hv) = fh0 + g, con g ∈M2.

Pertanto fh0 appartiene a M2 + I(V ). L’affermazione vale chiaramente anche per f , essendo h0 una costante

non nulla.

Resta da provare la suriettivita, ovvero che ogni elemento di MP si scrive come immagine di un polinomio,

a meno di un elemento in M2P . Un generico elemento di MP /M

2P e chiaramente di tipo

n∑i=1

cih(x1, . . . , xn)

xi +M2P

3. IL CASO DELLE CURVE 13

per qualche ci ∈ K, h(P ) 6= 0. Con calcoli diretti si vede che

n∑i=1

cih(x1, . . . , xn)

xi =

n∑i=1

cih(P )− h(x1, . . . , xn)

h(P )h(x1, . . . , xn)xi +

n∑i=1

cixih(P )

.

Evidentemente il primo addendo del secondo membro appartiene a M2P (i numeratori non hanno termine noto),

mentre il secondo addendo e chiaramente di tipo∑dixi con di ∈ K, cioe e immagine di un polinomio.

3. Il caso delle curve

3.1. Anello locale in un punto semplice. Se P e un punto semplice di una curva affine X , allora lo spazio

tangente ha dimensione 1, ovvero il rango della matrice Jacobiana JP e uguale a n − 1. Per semplicita continuiamo a

supporre P = (0, 0, . . . , 0) e a identificare TP (X ) con un sottospazio vettoriale di Kn. Consideriamo un sottospazio π

descritto da un’equazione di tipo Xi0 = 0 di Kn che non contiene TP (X ). Per semplicita di notazione supponiamo i0 = n.

Siccome la forma lineare associata a Xn non si annulla su TP (X ), e siccome TP (X )∗ ha dimensione 1, si ha che tale forma

lineare costituisce una base di TP (X )∗. Dalla dimostrazione del Teorema 1.28 segue allora che xn +M2P e una base dello

spazio MP /M2P .

Nella prossima proposizione si dimostra che in realta xn e anche un generatore di MP , inteso come ideale di K[X ]P .

Proposizione 1.29. Sia P un punto semplice di una curva affine X . Allora l’ideale MP e principale.

Dimostrazione. Supponiamo ancora che P = (0, . . . , 0) e che π : Xn = 0 non contenga TP (X ). Ricordiamo che

K(X ) = K(x1, . . . , xn) ha grado di trascendenza 1 su K. Dato che Xn non contiene TP (X ) si ha ovviamente che xn e

diverso da 0. Pertanto xn 6= c per ogni c ∈ K, e quindi xn e trascendente su K. Per ogni i = 1, . . . , n− 1, esiste pertanto

un polinomio fi in due variabili a coefficienti in K e non banale tale che fi(xi, xn) = 0. Pertanto, fi(Xi, Xn) ∈ I(V ).

Questo implica che il termine noto di fi(Xi, Xn) e pari a zero. Inoltre, dato che π non contiene TP (X ), si ha che la parte

lineare di fi non puo essere multiplo di Xn. Pertanto, a meno di un fattore di proporzionalita in K non nullo, possiamo

supporre che

0 = fi(xi, xn) = xi + cxn + gi(xi, xn)

con gi(Xi, Xn) costituito da monomi di grado almeno 2.

Proveremo che xi e multiplo di xn in K[X ]P . Questo e evidentemente sufficiente a provare l’asserto. D’ora in avanti per

semplicita scriveremo f per fi, y per xi+cxn, e x per xn. Si scriva allora f(x, y) = yh(y)+xs(x, y) con s(0, 0) = 0, h(0) = 0.

Allora f(x, y) = 0 implica

y = −x(s(x, y)

1 + h(y)

).

Si noti ches(x, y)

1 + h(y)∈ K[X ]P siccome h(0) = 0, pertanto y ∈ 〈x〉 e quindi xi ∈ 〈xn〉. La dimostrazione e cosı conclusa.

Definizione 1.30. Sia P punto semplice di una curva affine X . Un parametro locale di X in P e un generatore di MP .

Il risultato seguente segue dalla Proposizione 1.29, ma non sara dimostrato nei dettagli.

Corollario 1.31. Sia X una curva affine, e P ∈ X un punto semplice. Sia l :∑aiXi = b un piano per P , non

contenente la retta tangente a X in P . Allora t =∑aixi − b e un parametro locale di X in P .

Definizione 1.32. Un dominio di integrita R si dice anello di valutazione discreta (DVR) se:

• A non e un campo,

• A e locale,

• A e Noetheriano,

• l’ideale massimale di A e principale.

3. IL CASO DELLE CURVE 14

3.2. La funzione valutazione associata ad un punto semplice. Parametri locali. La seguente proposizione

spiega come ad un punto semplice P di una curva affine sia possibile associare una funzione valutazione (detta anche

funzione ordine) su K(X ).

Proposizione 1.33. Sia X una curva algebrica affine e sia t un parametro locale di X in P . Allora per ogni α ∈ K[X ]P ,

α 6= 0, esiste un unico m ∈ Z, m ≥ 0, e un unico u ∈ K[X ]P invertibile, tali che α = utm.

Dimostrazione. Supponiamo che tali m e u non esistano. Cio implica che se α = uti, i ≥ 0, u ∈ K[X ]P , allora u

non e invertibile, i.e. u ∈ MP . In particolare, α ∈ MP dato che α = αt0. Definiamo induttivamente una sequenza di

elementi ui ∈ K[X ]P . Sia u1 ∈ K[X ]P con α = u1t, e per i > 1 sia ui ∈ K[X ]P tale che ui−1 = uit. Un tale ui esiste dato

che α = ui−1ti−1, e quindi ui−1 ∈ MP . Si noti che 〈ui−1〉 $ 〈ui〉, altrimenti ui = βui−1 = βuit per qualche β ∈ K[X ]P ,

e t sarebbe invertibile essendo βt = 1. Pertanto la catena ascendente di ideali

〈u1〉 $ 〈u2〉 $ . . . $ 〈ui〉 $ . . .

da luogo a una contraddizione essendo K[X ]P Noetheriano.

Per provare l’unicita si assuma utm = vts with m < s. Pertanto u = vts−m ∈ MP , che contraddice il fatto che u e

invertibile in K[X ]P .

Corollario 1.34. Sia X una curva algebrica affine, e sia t un parametro locale in un suo punto semplice P . Allora per

ogni α ∈ K(X ), α 6= 0, esiste un unico m ∈ Z, e un unico u ∈ K[X ]P invertibile, tali che α = utm.

Dimostrazione. Ogni α ∈ K[X ]P , α 6= 0, si puo scrivere come quozienteβ

γcon β, γ in K[X ]P . Dalla Proposizione

1.33, β = utm, γ = vts per due interi m, s e per due elementi invertibili u, v ∈ K[X ]P . Pertanto α = (uv−1)tm−s.

L’unicita puo essere dimostrata come nella dimostrazione della Proposizione 1.33.

Esercizio 4. Si provi che l’intero m del Corollario 3.2 non dipende dalla scelta del parametro locale t.

Definizione 1.35. Sia P punto semplice di una curva algebrica affine X , e sia α ∈ K(X ), α 6= 0. L’ ordine ordP (α)

di α in P e l’intero m tale che α = utm, con u invertibile in K[X ]P e t parametro locale in P . Per α = 0 si ponga

ordP (0) =∞.

Si noti che K[X ]P coincide con l’insieme α ∈ K(X ) | ordP (α) ≥ 0, mentre MP = α ∈ K(X ) | ordP (α) > 0.

Gli ordini di funzioni razionali hanno le seguenti proprieta elementare, la cui dimostrazione e lasciata come esercizio.

Proposizione 1.36. Sia X una curva algebrica affine, e sia P un punto semplice di X . Allora

(1) ordP (αβ) = ordP (α) + ordP (β) per ogni α, β ∈ K(X ) (e quindi ordP (αm) = m · ordP (α) per ogni intero m);

(2) ordP (α+ β) ≥ minordP (α), ordP (β) per ogni α, β ∈ K(X ); se ordP (α) 6= ordP (β) allora vale l’uguaglianza;

(3) ordP (a) = 0 per ogni a ∈ K.

Esercizio 5. Si generalizzino i risultati precedenti ad DVR un qualunque. Precisamente, dato un DVR R con campo di

quozienti L, si definisca una funzione ord su L con le stesse proprieta delle funzioni ordP della Proposizione 1.36.

Definizione 1.37. Un punto P di una curva algebrica non singolare X e detto zero di molteplicita m per α ∈ K(X ) se

ordP (α) = m > 0, polo di molteplicita −m se ordP (α) = m < 0.

Esempio 1.38. Sia X : Y = 0. I punti affini di X sono Pa = (a, 0), dove a varia in K. Sia α = X2 + 〈F 〉 ∈ K(X ).

Chiaramente α e definito in Pa per ogni a, e α(Pa) = a2. Pertanto tra i punti Pa, l’unico zero di α e P0. Per il corollario

1.31 la funzione t = X + 〈F 〉 e parametro locale in P0. Dato che α = t2, si ha ordP0(α) = ordP0(t2) = 2ordP0(t) = 2, cioe

P0 e uno zero di α di molteplicita due.

4. VARIETA PROIETTIVE 15

Esempio 1.39. Sia K = C e sia X : X2 + Y 2 − 1 = 0. Sia α =X(X − 1)2 + 〈F 〉(Y − 1)2 + 〈F 〉

. Calcoliamo gli ordini di α nei punti

P1 = (1, 0) e P2 = (0, 1). Si scriva α = Xu2, dove u =X − 1 + 〈F 〉Y − 1 + 〈F 〉

. Dato che X e definita in P1 e X(P1) = 1, si ha che

ordP1(X) = 0. Per calcolare ordP1(u) si noti che in K(X ) si ha:

(X − 1)(X + 1) + 〈F 〉(Y − 1)2 + 〈F 〉

=Y 2 + 〈F 〉

(Y − 1)2 + 〈F 〉,

ovvero u = h1h2 dove h1 =Y + 〈F 〉

Y − 1 + 〈F 〉, h2 =

Y + 〈F 〉X + 1 + 〈F 〉

. Per il Corollario 1.31 sia h1 che h2 sono parametri locali in

P1, e pertanto ordP1(α) = ordP1(X) + 2ordP1(h1h2) = 0 + 2 + 2 = 4, cioe P1 e uno zero di α di molteplicita 4.

Per il Corollario 1.31 x e un parametro locale in P2. Si noti che

(Y − 1)(Y + 1) + 〈F 〉(X − 1)2 + 〈F 〉

=X2 + 〈F 〉

(X − 1)2 + 〈F 〉,

cioe u−1 = g1g2 dove g1 = − X + 〈F 〉X − 1 + 〈F 〉

, g2 =X + 〈F 〉

Y + 1 + 〈F 〉. Possiamo usare di nuovo il Corollario 1.31 per affermare

che sia g1 che g2 sono parametri locali in P2. Riassumendo, ordP2(α) = ordP2

(X) + ordP2(g−2

1 g−22 ) = 1 − 2 − 2 = −3.

Pertanto P2 e un polo di α di molteplicita 3.

3.3. Punti associati a DVR. Siamo ora nella posizione di poter invertire la Proposizione 1.29.

Proposizione 1.40. Sia X una curva algebrica affine e sia P ∈ X . Se K[X ]P e un DVR, allora P e semplice.

Dimostrazione. Sia t un generatore dell’ideale massimale MP . Osserviamo che M2P e generato da t2.

Ad ogni α ∈MP associamo l’elemento (α/t)(P ) ∈ K (osserviamo che α/t e definita in P dato che α = utm con u definita

in P - e invertibile in K[X ]P - e m ≥ 1). In questo modo e chiaramente definito un omomorfismo, diciamo η, di spazi

vettoriali su K. Il nucleo di tale omomorfismo e costituito dagli α tali che α/t ∈MP , ovvero da quegli α per cui m ≥ 2.

Pertanto Ker(η) = M2P . Essendo evidentemente η suriettivo, risulta che MP /M

2P e isomorfo a K, e dunque lo spazio

tangente in P ha dimensione 1 e P e un punto semplice.

Pertanto per le curve affini vale la seguente caratterizzazione: un punto e semplice se e solo se MP e principale.

Esercizio 6. Sia X la curva piana di equazione Y = 0. Allora K[X ] = K[X,Y ]/〈Y 〉 e isomorfo a K[X], e pertanto

K(X ) e identificabile con il campo delle funzioni razionali K(X). Sia

A = g(X)/h(X) | deg(g) ≤ deg(h) ⊆ K(X).

Si dimostri che A e un DVR. Si osservi inoltre che A non coincide con K[X ]P per nessun punto P di X .

4. Varieta proiettive

Ricordiamo la definizione di spazio proiettivo n-dimensionale.

Definizione 1.41. Lo spazio proiettivo n-dimensionale su K si denota con Pn(K) ed e l’insieme di tutte le (n + 1)-

uple (x0, . . . , xn) ∈ An+1(K) con almeno una componente xi non nulla, modulo la seguente relazione di equivalenza:

(x0, . . . , xn) ∼ (y0, . . . , yn) se esiste una costante λ ∈ K∗ tale che xi = λyi per ogni i = 0, . . . , n.

Una classe di equivalenza (λa0, . . . , λan) |λ ∈ K∗ la indicheremo con (a0 : . . . : an), e a0, . . . , an saranno chiamate le

coordinate omogenee del punto corrispondente in Pn(K).

Definizione 1.42. Un polinomio F ∈ K [X0, . . . , Xn] si dice omogeneo di grado d se F (λX0, . . . , λXn) = λdF (X0, . . . , Xn)

per ogni λ ∈ K.

Definizione 1.43. Un ideale I di K [X0, . . . , Xn] si dice omogeneo se e generato da polinomi omogenei.

4. VARIETA PROIETTIVE 16

Ad ogni ideale omogeneo I di K [X0, . . . , Xn] possiamo associare un sottoinsieme V = V (I) di Pn(K),

V (I) = P ∈ Pn(K) |F (P ) = 0 per ogni F ∈ I omogeneo .

Si dice insieme algebrico proiettivo un qualunque insieme V = V (I), con I ideale omogeneo di K [X0, . . . , Xn]. Se V e un

insieme algebrico proiettivo, l’ideale omogeneo di V denotato con I(V ) e l’ideale in K [X0, . . . , Xn] generato da

F ∈ K [X0, . . . , Xn] |F omogeneo, F (P ) = 0, per ogni P ∈ V .

Analogamente al caso affine possiamo dare la seguente definizione di varieta proiettiva.

Definizione 1.44. Un insieme algebrico proiettivo si dice riducibile se V = V1 ∪ V2 con V1, V2 ⊆ Pn(K) insiemi algebrici

diversi da V. Si dice irriducibile altrimenti. Un insieme algebrico proiettivo irriducibile si dice varieta proiettiva.

Proposizione 1.45. Un insieme algebrico proiettivo V e irriducibile se e solo se I(V ) e un ideale primo.

Come nel caso affine si puo definire l’anello delle coordinate omogenee come

K [V ] = K [X0, . . . , Xn] /I(V ),

mentre come campo delle funzioni razionali si prende un sottoinsieme del campo dei quozienti di K [V ]:

K (V ) =

F + I(V )

G+ I(V )|F,G polinomi omogenei, deg(F ) = deg(G), G /∈ I(V )

.

Inoltre se V e una varieta proiettiva e P ∈ V , una funzione razionale α ∈ K(V ) si dice regolare in P se esistono

F,G ∈ K [X0, . . . , Xn], omogenei dello stesso grado tali che α =F + I(V )

G+ I(V ), con G(P ) 6= 0. Pertanto possiamo anche

definire l’anello locale K[V ]P come in 1.25.

Vediamo ora il legame che c’e tra insiemi algebrici affini e proiettivi. Ricordiamo che e sempre possibile rivedere lo spazio

affine An(K) come sottoinsieme dello spazio proiettivo Pn(K). Basta infatti considerare le mappe ϕi : An(K) → Ui,

definite da (a1, . . . , an) 7→ (a1 : . . . : ai−1 : 1 : ai+1 : . . . : an), con Ui := P = (X0 : . . . : Xn) ∈ Pn(K) |Xi 6= 0. Per

semplicita di notazione fissiamo i = 0. Osserviamo allora che Pn(K) \ U0 e l’iperpiano H0 = (X0 : . . . : Xn) |X0 = 0.

Inoltre, se f ∈ K [x1, . . . , xn] si definisce il polinomio omogeneizzato di f rispetto a X0 come f∗ ∈ K [X0, . . . , Xn],

f∗(X0, . . . , Xn) = Xd0f

(X1

X0, . . . ,

Xn

X0

), dove d e il grado di f . Analogamente, se F ∈ K [X0, . . . , Xn] si definisce il

polinomio disomogeneizzato di F rispetto a X0 come F∗ ∈ K [X1, . . . , Xn], F∗(X1, . . . , Xn) = F (1, X1, . . . , Xn).

Definizione 1.46. Sia V ⊆ An(K) una varieta affine. Si dice chiusura proiettiva V di V l’insieme algebrico proiettivo

V (I), dove I ⊆ K [X0, . . . , Xn] e l’ideale omogeneo generato da F ∗ |F ∈ I(V ).

Proposizione 1.47. Sia V una varieta affine. Allora:

(1) V e irriducibile;

(2) V = V ∩ An(K);

(3) la mappa ϕ : K(V )→ K(V ), ϕ

(F + I(V )

G+ I(V )

)=F∗ + I(V )

G∗ + I(V )e ben definita. Inoltre ϕ e un isomorfismo che induce

un isomorfismo di anelli tra K[V ]P e K[V ]P , se P ∈ V .

Inoltre la corrispondenza V 7→ V definisce una biiezione tra gli insiemi delle varieta affini di An(K) e delle varieta

proiettive di Pn(K) non contenute in H0.

Non daremo la dimostrazione di questo risultato. Lo studente e invitato a ricostruire per esercizio la funzione inversa

ϕ−1.

Naturalmente la Proposizione 1.47 vale sostituendo H0 con uno qualsiasi degli iperpiani Hi, cambiando adeguatamente

la definizione della mappa V 7→ V .

Definizione 1.48. La dimensione di una varieta proiettiva V e il grado di trascendenza dell’estensione di campi K(V ) : K.

Si dice curva proiettiva una varieta proiettiva di dimensione 1.

5. MAPPE RAZIONALI 17

Naturalmente dalla Proposizione 1.47 segue immediatamente che la dimensione di una varieta proiettiva e la stessa di

una sua parte affine.

4.1. Proprieta locali delle varieta proiettive. Come corollario della proposizione 1.47 si ha che anche per una

varieta proiettiva V l’anello K[V ]P e dominio locale noteheriano. Indicheremo ancora con MP il suo ideale massimale.

La proposizione 1.47 permette di definire le proprieta locali di varieta proiettive in termini delle loro parti affini. Ad

esempio, se V e una varieta proiettiva lo spazio tangente di V in P ∈ V e la chiusura proiettiva dello spazio tangente di

V ∩An(K) in P , dove An(K) e identificato con uno qualsiasi degli iperpiani Hi non contenenti P . Che tale definizione non

dipenda da i non viene dimostrato in questa sede. Osserviamo soltanto che in virtu della Proposizione 1.47 e del Teorema

1.28 si ha che lo spazio tangente di una varieta proiettiva V in un suo punto P ha la stessa dimensione di MP /M2P , e che

pertanto per calcolarla non e necessario ricondursi ad una parte affine di V .

Un punto di una varieta proiettiva V e semplice (risp. singolare) se e solo se e un punto semplice (resp. singolare) di una

sua qualsiasi parte affine. Che la definizione non dipenda dalla parte affine scelta segue proprio dalla Proposizione 1.47,

essendo tale condizione equivalente a dim(MP /M2P ) > dimV .

Sempre come conseguenza della Proposizione 1.47 e dei risultati della sezione precedente si ha allora che un punto di una

curva proiettiva e semplice se e solo se MP e un ideale principale.

Nota 3. La Proposizione 1.17 vale anche per le varieta proiettive. In particolare, un sottoinsieme algebrico proprio di

una curva proiettiva e necessariamente costituito da un numero finito di punti.

5. Mappe razionali

Definizione 1.49. Sia V1 ⊆ Pn(K) varieta proiettiva. Una mappa razionale di V1 in Pm(K) e un elemento

ϕ = (α0 : . . . : αm) ∈ Pm(K(V1)) .

Si osservi che (α0 : . . . : αm) e (λα0 : . . . : λαm), per λ ∈ K(V1), λ 6= 0, danno luogo alla stessa mappa razionale. Si noti

inoltre che una mappa razionale φ di V1 in Pm(K) non e necessariamente una funzione definita su tutti i punti di V1,

perche possono esistere punti P di V1 dove non tutte le αi sono definite.

Con un piccolo abuso di notazione scriveremo comunque ϕ : V1 → Pm(K) per indicare una mappa razionale di V1 in

Pm(K).

Si osservi che talvolta e possibile valutare ϕ(P ) in punti P di V1 dove alcuni αi non sono regolari, rimpiazzando αi con

λαi per un opportuno λ ∈ K(V1).

Definizione 1.50. Una mappa razionale

ϕ : V1 → Pm(K), ϕ = (α0 : . . . : αm)

si dice regolare (o definita) in P ∈ V1 se esiste λ ∈ K(V1) tale che

(i) ogni λαi e regolare in P ,

(ii) per qualche i0 = 0, . . . ,m si ha (λαi0)(P ) 6= 0.

Se tale λ esiste, si pone

ϕ(P ) = ((λα0)(P ) : . . . : (λαm)(P )).

Si noti che nella definizione precedente puo essere necessario considerare λ diversi per punti diversi.

Definizione 1.51. Date due varieta proiettive V1 ⊆ Pn(K), V2 ⊆ Pm(K), una mappa razionale di V1 in V2 (in simboli

ϕ : V1 → V2) e una mappa razionale di V1 in Pm(K) tale che per ogni P dove ϕ e regolare si abbia ϕ(P ) ∈ V2.

Definizione 1.52. Una mappa razionale

ϕ : V1 → V2, ϕ = (α0 : . . . : αm)

regolare in ogni punto P ∈ V1 e detta morfismo di V1 in V2.

5. MAPPE RAZIONALI 18

Esercizio 7. Sia V = V (〈X2〉) ⊆ P2(K). Sia x1 = X1 + I(V )/X0 + I(V ), e sia

φ : V → P3(K), φ = (x1 : x21 : x3

1 : x41).

Stabilire in quali punti di V la mappa razionale φ e regolare.

5.1. Composizone di mappe razionali e birazionalita. Siano φ : V1 → V2 e ψ2 : V2 → V3 mappe razionali fra

varieta proiettive. Anche se φ e ψ non sono in generale vere e proprie funzioni, la mappa razionale composta ψφ : V1 → V3

risulta definita in modo naturale.

Definizione 1.53. Sia φ = (α0 : . . . : αm) una mappa razionale di V1 in V2, e sia ψ : (β0 : . . . : βr) una mappa razionale

di V2 in V3. Siano Fi, Gi polinomi tali che

βi = Fi + I(V2)/Gi + I(V2).

Se Gi(α0, . . . , αm) 6= 0 per ogni i, si pone

ψ φ = (γ0 : . . . : γr)

dove γi = Fi(α0, . . . , αm)/Gi(α0, . . . , αm).

Nel caso in cui Gi0(α0, . . . , αm) = 0 per qualche i0, allora ψ φ non e definita.

Per controllare che la definizione non dipende dalla scelta di αi, βi, Fi, Gi sostituiamo αi con λαi, βj con µβj , Fi e Gi con

Fi e Gi, in modo tale che che λ ∈ K(V1)∗, µ = H1 + I(V2)/H2 + I(V2) ∈ K(V2)∗, e βi = Fi + I(V2)/Gi + I(V2).

Consideriamo la (r + 1)-pla

H1(λα0, . . . , λαm)/H2(λα0, . . . , λαm) · F1(λα0, . . . , λαm)/G1(λα0, . . . , λαm),

......

......

......

......

......

......

...

H1(λα0, . . . , λαm)/H2(λα0, . . . , λαm) · Fr(λα0, . . . , λαm)/Gr(λα0, . . . , λαm).

Occorre dimostrare che tale (r + 1)-pla e uguale a (γ0, . . . , γr) a meno di un fattore di proporzionalita ρ ∈ K(V1)∗. E

evidente che λ non influisce, dato che sia H1, H2 che Fi, Gi sono coppie di polinomi omogenei dello stesso grado. Si puo

inoltre porre

ρ = H1(α0, . . . , αm)/H2(α0, . . . , αm).

Bastera quindi ragionare su

Fi(α0, . . . , αm)/Gi(α0, . . . , αm)

e

Fi(α0, . . . , αm)/Gi(α0, . . . , αm)

sapendo che FiGi − FiGi ∈ I(V2).

Supponiamo senza restrizione che αi = (Li + I(V1))/(L + I(V1)), cioe che le αi abbiano lo stesso denominatore. Ora e

evidente che l’insieme dei punti P di V1 dove L(P ) = 0 o dove tutti gli Li si annullano e un insieme algebrico proprio di

V1, diciamo S. Pertanto, per P che varia in V1 \ S si ha (α0(P ) : . . . : αm(P )) ∈ V2, e quindi

Fi(α0(P ), . . . , αm(P ))Gi(α0(P ), . . . , αm(P )) = Fi(α0(P ), . . . , αm(P ))Gi(α0(P ), . . . , αm(P )).

Tenendo conto dell’omogeneita di Fi, Fi, Gi, Gi, e del fatto che deg(Fi) = deg(Gi) e deg(Fi) = deg(Gi), si ha allora che

per ogni P ∈ V1 \ S,

Fi(L0(P ), . . . , Lm(P ))Gi(L0(P ), . . . , Lm(P )) = Fi(L0(P ), . . . , Lm(P ))Gi(L0(P ), . . . , Lm(P )).

Visto che V1 non puo essere unione di insiemi algebrici propri, si ha che la precedente uguaglianza e vera per ogni P , e

quindi il polinomio

Fi(L0, . . . , Lm)Gi(L0, . . . , Lm)− Fi(L0, . . . , Lm)Gi(L0, . . . , Lm) ∈ I(V ).

Cio implica facilmente che

Fi(α0, . . . , αm)/Gi(α0, . . . , αm) = Fi(α0, . . . , αm)/Gi(α0, . . . , αm),

e la dimostrazione e pertanto conclusa.

5. MAPPE RAZIONALI 19

Lasciamo allo studente osservare come, se φ e definita in P e φ(P ) = Q, e ψ e definita in Q e ψ(Q) = R, allora (ψ φ)

e definita in P e (ψ φ)(P ) = R. In altri termini, nei punti dove ha senso chiederselo, ψ φ si comporta come l’usuale

funzione composta.

Definizione 1.54. Siano V1 e V2 varieta proiettive. Una mappa razionale φ : V1 → V2 si dice birazionale se esiste una

mappa razionale ψ : V2 → V1 tale che ψ φ = idV1e φ ψ = idV2

. Una mappa birazionale φ si dice isomorfismo se sia φ

che φ−1 sono morfismi.

Due varieta proiettive V1 e V2 si dicono birazionalmente equivalenti (risp. isomorfe) se esiste una mappa birazionale (risp.

un isomorfismo) di V1 in V2.

E facile verificare che l’equivalenza birazionale e l’isomorfismo definiscono relazioni di equivalenza.

Esempio 1.55. Sia V = V (〈X2〉) ⊆ P2(K), W = V (〈X2X0 −X21 〉) ⊆ P2(K). Sia

φ : V →W, φ = (1 : x1 : x21) con x1 =

X1 + I(V )

X0 + I(V ).

Allora φ e un isomorfismo, con φ−1 = (1 : x1 : 0) con x1 = X1+I(W )X0+I(W ) .

Esempio 1.56. Sia V = V (〈X2〉) ⊆ P2(K), W = V (〈X22X0 −X3

1 〉) ⊆ P2(K). Sia

φ : V →W, φ = (1 : x21 : x3

1) con x1 =X1 + I(V )

X0 + I(V ).

Allora φ e un’equivalenza birazionale, con φ−1 = (1 : x2/x1 : 0) con xi = Xi+I(W )X0+I(W ) . Inoltre φ e un morfismo. Mostreremo

nella prossima sezione che pero φ non e un isomorfismo.

Esempio 1.57. Sia V = V (〈X2〉) ⊆ P2(K), W = V (〈X22X0 −X3

1 −X30 〉) ⊆ P2(K). Sia

φ : W → V, φ = (1 : x1 : 0) con x1 =X1 + I(W )

X0 + I(W ).

Allora φ e una mappa razionale, ma non e un’equivalenza birazionale. Mostreremo nei prossimi capitoli che in realta non

puo esistere una mappa razionale non costante di V in W .

5.2. Mappe razionali dominanti.

Definizione 1.58. Una mappa razionale φ : V1 → V2 di dice dominante se non esiste un sottonsieieme algebrico proprio

di V2 che contiene l’insieme delle immagini di φ.

Chi ha familiarita con la topologia di Zariski puo osservare come una mappa razionale e dominante se e solo se l’insieme

delle immagini e denso in V2 (rispetto alla topologia di Zariski).

Ricordando che ogni sottoinsieme algebrico proprio di una curva e necessariamente finito, lo studente puo svolgere

facilmente il seguente esercizio.

Esercizio 8. Si dimostri che

• se V2 e una curva, allora una mappa razionale φ : V1 → V2 e dominante precisamente quando l’insieme delle

immagini e infinito;

• se inoltre V1 e una curva, allora φ e dominante se e solo se e non costante. (Suggerimento: se φ = (1 : α1 : . . . , αm)

e non costante, allora esiste i con αi non costante; allora per ogni c ∈ K i punti P di V1 con αi(P ) = c formano

un sottoinsieme algebrico proprio, e pertanto sono in numero finito; questo implica che i valori di c per cui esiste

un punto (1 : . . . : c : . . .) nell’insieme delle immagini di φ sono infiniti).

Proposizione 1.59. La composizione di due mappe razionali dominanti e dominante.

Dimostrazione. Siano φ : V1 → V2 e ψ : V2 → V3 mappe razionali dominanti. Supponiamo per assurdo che ψ φabbia immagine contenuta in un sottoinsieme algebrico proprio W di V2. Le controimmagini di questo insieme mediante

ψ, unite ai punti dove ψ non e definita, formano un sottoinsieme algebrico Z di V2. In realta Z e un sottoinsieme proprio,

perche altrimenti ψ non sarebbe dominante. Siccome φ e dominante, esiste quindi P con φ(P ) non in Z (si osservi che

per definizione di Z si ha che ψ e definita in φ(P )). Pertanto ψ(φ(P )) non e in W , contro la definizione di W .

5. MAPPE RAZIONALI 20

5.3. Pull-back di una mappa razionale dominante. Sia φ : V1 → V2 una mappa razionale dominante di due

varieta proiettive V1 e V2. In questa sezione vedremo come si possa associare a φ un omomorfismo di campi di K(V2) in

K(V1).

Il primo passo e osservare che, data una varieta proiettiva V , esiste una biiezione hV fra gli elementi di K(V ) e le mappe

razionali di V in P1(K) che non siano la mappa costante (0 : 1). La definizione di hV e molto naturale: per ogni α ∈ K(V )

si pone

hV (α) = (1 : α).

E facile vedere come hV sia effettivamente una biiezione. A tale scopo e utile notare come ogni mappa razionale (0 : α)

sia in realta uguale alla mappa costante (0 : 1).

Definizione 1.60. Sia φ : V1 → V2 una mappa razionale dominante, e sia β ∈ K(V2). Il pull-back di β mediante φ si

definisce come

φ∗(β) = h−1V1

(hV2(β) φ)).

Proviamo che la definizione e ben posta. L’unico controllo necessario e che (hV2(β) φ) non sia la funzione costante di

V1 in (0 : 1). Se hV2(β) e non costante, questo segue dalla Proposizione 1.59 e dal fatto che P1(K) e una curva (si ricordi

l’Esercizio 8). Se hV2(β) e costante, allora per definizione questa costante e di tipo (1 : a); chiaramente anche (hV2

(β) φ)

e la costante (1 : a), e quindi il controllo e superato.

Proviamo a dare una visione piu concreta del pull-back di una funzione razionale: se φ = (α0 : . . . : αm), e se β =

F + I(V2)/G+ I(V2), allora φ∗(β) e uguale a

F (α0, . . . , αm)/G(α0, . . . , αm).

Tenendo conto di questa relazione, la dimostrazione della seguente proposizione e un semplice esercizio di calligrafia

matematica.

Proposizione 1.61. Sia φ : V1 → V2 una mappa razionale dominante. Allora il pull-back

φ∗ : K(V2)→ K(V1)

e omomorfismo di campi non banale. Se inoltre V2 non e contenuta nell’iperpiano H0 allora φ = (1 : α1 : . . . : αm) e φ∗ e

l’unico omomorfismo di campi di K(V2) in K(V1) che fissa K elemento per elemento, e che per ogni i = 1, . . . ,m manda

xi = Xi + I(V )/X0 + I(V ) in αi.

Viceversa, dato un omomorfismo γ di campi da K(V2) in K(V1) che fissa K elemento per elemento e possibile associare

una mappa razionale dominante φ di V1 in V2 con γ = φ∗. Supponiamo per semplicita che V2 non sia contenuta in H0,

cosicche K(V2) = K(x1, . . . , xm) con xi = Xi+ I(V2)/X0 + I(V2). Si ponga allora φ = (1 : γ(x1) : . . . : γ(xn)). La verifica

che φ e mappa razionale dominante di V1 in V2 e lasciata allo studente. E poi evidente che φ∗ = γ, dato che φ∗ ed γ

hanno lo stesso comportamento su K e xi, i = 1, . . . ,m.

E un facile esercizio provare le seguenti proprieta funtoriali del pull-back.

Proposizione 1.62. Sia idV l’identita di una varieta proiettiva V . Siano φ : V1 → V2, ψ : V2 → V3 mappe razionali

dominanti.

• (idV )∗ e l’automorfismo identico di K(V );

• (ψ φ)∗ = φ∗ ψ∗.

Corollario 1.63. Due varieta V1 e V2 sono birazionalmente equivalenti se e solo se i loro campi di funzioni K(V1) e

K(V2) sono K-isomorfi (ovvero isomorfi mediante un isomorfismo che fissa K elemento per elemento).

Il pull-back ci permette di interpretare una mappa razionale come mappa definita sugli anelli locali, oltre che sui punti.

Precisamente vale la seguente proposizione.

Proposizione 1.64. Sia φ : V1 → V2, φ = (α0 : . . . : αm), una mappa razionale dominante di due varieta proiettive.

Allora, dati P ∈ V1 e Q ∈ V2 le seguenti condizioni sono equivalenti:

6. ALCUNI RICHIAMI SULLE ESTENSIONI DI CAMPI 21

(i) φ e definita in P e φ(P ) = Q.

(ii) K[V1]P contiene φ∗(K[V2]Q), e MP contiene φ∗(MQ).

Dimostrazione. Proviamo separatemente le due implicazioni.

• (i) ⇒ (ii). Sia β una funzione razionale di V2 definita in Q. Ricordiamo che φ∗(β) e, per definizione,

F (α0 : . . . : αm)/G(α0 : . . . : αm), dove β = F + I(V2)/G+ I(V2).

Chiaramente si ha che φ∗(β) e definita in P . Se inoltre β(Q) = 0, allora φ∗(β)(P ) = β(Q) = 0.

• (ii) ⇒ (i). Possiamo supporre Q sia “affine”, ovvero Q = (1 : b1 : . . . : bm) (in caso contrario basta “spostare”

oppurtunamente l’1). Pertanto V2 non e contenuta in H0, e quindi possiamo assumere anche α0 = 1.

Denotiamo come al solito, per ogni i = 1, . . . ,m, xi = Xi + I(V2)/X0 + I(V2). Siccome xi e definita in Q si

ha che φ∗(xi) e definita in P , e siccome xi − bi e definita e si annulla in Q, si ha che φ∗(xi − bi) = φ∗(xi)− bi e

definita e si annulla in P .

Ricordiamo che φ∗(xi) per definizione non e altro che αi. Allora αi e definita in P per ogni i = 1, . . . ,m, e

αi(P )− bi = 0. Questo significa precisamente che φ(P ) = (1 : b1 : . . . : bm) = Q.

La dimostrazione del seguente corollario e immediata.

Corollario 1.65. Sia φ : V1 → V2 un isomorfismo di due varieta proiettive. Allora per ogni P ∈ V1 si ha φ∗(K[V2]φ(P )) =

K[V1]P e φ∗(Mφ(P )) = MP . In particolare gli anelli locali in P e φ(P ) sono isomorfi.

Una conseguenza del corollario precedente e che non puo esistere un isomorfismo fra varieta prive di punti singolari

e varieta con almeno un punto singolare. Cio prova che il morfismo φ dell’Esempio 1.56, pur essendo un’equivalenza

birazionale, non puo essere un isomorfismo.

6. Alcuni richiami sulle estensioni di campi

Il pull-back di una mappa razionale dominante φ : V1 → V2 e uno strumento molto utile per lo studio delle proprieta

birazionali delle varieta algebriche. Per questo motivo e necessario aprire una parentesi relativa alle proprieta algebriche

delle estensioni di campi.

Ricordiamo che ogni omomorfismo non banale di campi e iniettivo. Pertanto φ∗(K(V2)) e un campo isomorfo a K(V2)

contenuto in K(V1). Nel seguito tratteremo proprieta generale delle estensioni L : F . Spesso applicheremo tali proprieta

al caso L = K(V1) e F = φ∗(K(V2)).

6.1. Estensioni separabili e inseparabili. Data un’estensione algebrica di campi L : F , un elemento α di L si

dice separabile se il polinomio minimo di α su F non ha radici multiple (nella chiusura algebrica di L). L’estensione si

dice separabile se ogni elemento α ∈ L lo e.

Ricordiamo che un polinomio ha radici multiple in F se e solo se ha un fattore comune in F [T ] con la propria derivata

formale. Dato che per definizione ogni polinomio minimo e irriducibile su F [T ], ne segue che un elemento e separabile

se e solo se la derivata formale del suo polinomio minimo non e identicamente nulla. Pertanto in caratteristica 0 ogni

estensione algebrica e separabile.

Un esempio di estensione non separabile e il seguente. Sia F un campo algebricamente chiuso di caratteristica p > 0, e

sia z un elemento non appartenente a F . Allora F (z) : F (zp) e non separabile, in quanto il polinomio minimo di z su

F (zp) divide T p − zp, che ha una sola radice contata p volte.

Data una torre M ⊇ L ⊇ F di estensioni algebriche, risulta che M : F e separabile se e solo se lo sono M : L e L : F .

E inoltre possibile dimostrare che data una estensione algebrica L : F esiste sempre un campo intermedio S tale che S : F

e separabile mentre L : S e tale che il polinomio minimo su S di un qualunque elemento di L\S e di tipo T pr −α, essendo

p la caratteristica di F . In particolare, l’insieme degli elementi di L separabili su F costituisce un sottocampo di S.

6. ALCUNI RICHIAMI SULLE ESTENSIONI DI CAMPI 22

Un campo si dice perfetto se ogni sua estensione algebrica e separabile. Sono perfetti ovviamente tutti i campi di

caratteristica 0. In generale un campo F di caratteristica p > 0 e perfetto se e solo se per ogni α ∈ F esiste β ∈ F con

α = βp. Infatti in tal caso ogni polinomio in F [T ] con derivata formale nulla e potenza p-ma di un polinomio in K[T ], e

quindi e riducibile. Pertanto sono perfetti tutti i campi algebricamente chiusi, ed anche tutti i campi finiti.

Esercizio 9. Dato un campo F di caratteristica p, e dato un intero positivo i, si definisca F (pi) = αpi | α ∈ F. Si

dimostri che F (pi) e sottocampo di F , e che se tale sottocampo e proprio, allora F : F (pi) non e separabile.

6.2. Il Teorema dell’elemento primitivo e le sue conseguenze.

Teorema 1.66. Sia L : F un’estensione finita e separabile. Allora esiste γ ∈ L tale che L = F (γ).

Dimostrazione. Essendo L : F finita e separabile, si ha L = F (α1, . . . , αn), con ogni αi algebrico su F .

Se F e finito, allora lo e anche L, e allora possiamo prendere γ come un qualunque generatore del gruppo moltiplicativo

(ciclico) di L. Quindi possiamo assumere che F sia infinito.

Possiamo inoltre supporre n = 2, dato che con una semplice induzione e possibile ricondurre il caso generale al caso n = 2.

Quindi sia L = F (α, β), con α, β algebrici su K e separabili.

Definiamo un sottoinsieme finito S di F . Sia f il polinomio minimo di α su F , e g il polinomio minimo di β su F .

Estendiamo L a un campo M dove sia f che g si spezzano completamente. Allora definiamo S come l’insieme degli

elementi di F di tipoα′ − αβ′ − β

essendo α′ ∈M una radice di f e β′ 6= β una radice di g in M .

Si fissi λ ∈ F \ S e si ponga γ = α + λβ. Mostreremo che L = F (γ). Sara sufficiente provare che l’estensione semplice

F (γ) contiene β, e quindi anche α = γ − λβ. A tale scopo mostreremo che il polinomio minimo di β su F (γ) non puo

avere grado maggiore o uguale di 2.

Notiamo innanzitutto che β soddisfa f(γ−λβ) = 0; cio significa che β e una radice del polinomio h ∈ F (γ)[T ] definito da

h(T ) = f(γ − λT ).

Pertanto il polinomio minimo di β su F (γ) divide sia g che h. Supponiamo che un massimo comun divisore di h e g abbia

grado maggiore o uguale di 2. Allora g e h hanno una radice comune β′ 6= β in M . Si noti che questo e il punto in cui

stiamo usando l’ipotesi di separabilita. Allora si ha che h(β′) = f(γ − λβ′) = 0 e quindi

γ − λβ′ = α′

per qualche radice α′ di f . Ricordandoci che γ = α+ λβ abbiamo quindi che

α+ λ(β − β′) = α′,

in contraddizione con λ /∈ S.

Esercizio 10. Usare il metodo della dimostrazione del Teorema 1.66 per trovare un elemento primitivo di

Q(i,3√

2) : Q.

Un risultato importante per gli scopi del corso, di cui non daremo la dimostrazione, e il seguente.

Teorema 1.67. Sia K un campo algebricamente chiuso, e sia L = K(α1, . . . , αn). Allora esiste un sottoinsieme

αi1 , . . . , αik di α1, . . . , αn tale che

• αi1 , . . . , αik e base di trascendenza di L : K;

• L : K(αi1 , . . . , αik) e separabile.

Esercizio 11. Sia p > 2 la caratteristica di K, e sia V = V (< Y 2 +Xp+ 1 >) ⊆ A2(K). Si dimostri che V e irriducibile.

Si consideri poi il campo K(V ) = K(x, y), con x = X + I(V ), y = Y + I(V ). Si dimostri che sia x che y sono basi

di trascendenza di K(V ) su K. Si determini se K(V ) : K(x) e K(V ) : K(y) sono separabili.

6. ALCUNI RICHIAMI SULLE ESTENSIONI DI CAMPI 23

Il seguente corollario giustifica la parentesi puramente algebrica appena chiusa.

Corollario 1.68. Sia X una curva proiettiva di Pn(K). Allora

• K(X ) = K(ξ, η) per qualche ξ, η in K;

• X e birazionalmente equivalente a una curva piana.

Dimostrazione. Supponiamo senza restrizione che X non sia contenuta nell’iperpiano H0. Sappiamo allora che

K(X ) coincide con K(x1, . . . , xn). Allora dal Teorema 1.67 esiste i intero compreso fra 1 e n con K(X ) : K(xi) finita e

separabile. Pertanto, dal Teorema dell’elemento primitivo, esiste η con K(X ) = K(xi)(η) = K(xi, η). Il primo asserto

quindi si ottiene ponendo ξ = xi.

Dato che η e ξ sono algebricamente dipendenti, esiste un polinomio f ∈ K[X,Y ] tale che f(ξ, η) = 0. Naturalmente

e possibile assumere f irriducibile. Sia allora Y la curva piana di equazione V (〈f∗(X0, X1, X2)〉). E evidente che

K(ξ, η) ∼= K(Y). Pertanto X e Y sono birazionalmente equivalenti dal Corollario 1.63.

Definizione 1.69. Sia X una curva proiettiva di Pn(K). Un elemento ξ ∈ K(X ) \K si dice separante se K(X ) : K(ξ) e

separabile.

CAPITOLO 2

Richiami sulle curve algebriche piane

In questo capitolo richiameremo alcuni concetti sulle curve in senso esteso, ovvero sulle curve algebriche piane non

necessariamente irriducibili, che in larga parte lo studente dovrebbe ricordare dai corsi della Laurea Triennale. La parola

curva sara quindi usata - solo in questo capitolo - con un’accezione diversa dal capitolo precedente (dove, una curva affine

o proiettiva e stata definita come un insieme algebrico affine irriducibile di dimensione 1).

1. Definizioni

Le definizioni e le proprieta fondamentali riguardanti le curve in senso esteso reali o complesse dovrebbero essere gia note

allo studente dai corsi della Laurea Triennale. In questa sezione tali nozioni saranno rapidamente riviste in un contesto

piu genererale, ovvero quello delle curve algebriche definite su un campo qualsiasi.

Anche in questo capitoloK denotera un campo algebricamente chiuso. Per curva in senso esteso definita su K intenderemo

una classe di proporzionalita di polinomi omogenei in tre indeterminate a coefficienti in K. Per indicare che la curva in

senso esteso X e rappresentata dal polinomio F (X0, X1, X2) scriveremo usualmente

X : F (X0, X1, X2) = 0 .

L’idea intuitiva di curva intesa come insieme di punti si realizza nella definizione di supporto.

Definizione 2.1. Sia X : F (X0, X1, X2) = 0 una curva in senso esteso defnita su K. Il supporto di X si definisce come

l’insieme dei punti del piano proiettivo P2(K) le cui coordinate omogenee (X0 : X1 : X2) soddisfano l’equazione

F (X0, X1, X2) = 0 .

Si noti che due curve in senso esteso distinte possono avere lo stesso supporto; si pensi ad esempio alle curve

X : X1 = 0, Y : X21 = 0 .

Osserviamo che essendo le coordinate di un punto definite a meno di proporzionalita , l’omogeneita di F e necessaria

altrimenti si potrebbe avere

F (X0, X1, X2) = 0, F (λX0, λX1, λX2) 6= 0 .

Con abuso di linguaggio spesso indicheremo il supporto di una curva in senso esteso X : F (X0, X1, X2) = 0 con lo stesso

simbolo X ; inoltre con l’espressione punto di una curva in senso esteso X intenderemo il concetto di punto del supporto

di una curva in senso esteso X .

Definizione 2.2. Sia X : F (X0, X1, X2) = 0 una curva in senso esteso. Il grado d del polinomio F si dice ordine di X .

Definizione 2.3. Una curva in senso esteso si dice irriducibile se e definita da un polinomio F irriducibile su

K[X0, X1, X2].

Si noti che il supporto di una curva in senso esteso irriducibile e una curva algebrica nel senso del Capitolo 1.

Supponiamo ora che X : F (X0, X1, X2) non sia irriducibile. Ricordiamo che K[X0, X1, X2] e dominio a fattorizzazione

unica, e scriviamo il polinomio F come prodotto di potenze di fattori irriducibilli (a due a due non proporzionali)

F = F r11 · Fr22 · · ·F rss .

24

2. PUNTI SEMPLICI E SINGOLARI 25

Diremo allora che le curve in senso esteso Xi : Fi(X0, X1, X2) = 0 sono le componenti irriducibili di X , e che ri e la

molteplicita di Xi come componente di X . Chiaramente l’insieme dei punti di X e l’unione degli insiemi dei punti delle

curve Xi.

Per praticita di calcolo, si preferisce in molte situazioni fare uso di coordinate non omogenee per i punti e di polinomi

non omogenei per le curve.

Concludiamo questa sezione osservando che le proiettivita di P2(K) agiscono in modo naturale sulle curve in senso esteso.

Sia φ la proiettivita φ indotta dalla matrice A, e sia X : F (X0, X1, X2) una curva in senso esteso. Allora definiamo φ(X )

come la curva in senso esteso definita dal polinomio

FA(X0, X1, X2) := F ((X0, X1, X2) ·A−1).

Osserviamo che i punti di φ(X ) sono i trasformati dei punti di X mediante φ. Infatti, se

(Y0, Y1, Y2) = (X0, X1, X2) ·A

con (X0 : X1 : X2) ∈ X , allora

FA(Y0, Y1, Y2) = F ((Y0, Y1, Y2) ·A−1) = F ((X0, X1, X2) ·A ·A−1) = F (X0, X1, X2) = 0,

e quindi (Y0 : Y1 : Y2) ∈ φ(X ).

2. Punti semplici e singolari

Sia X : F (X0, X1, X2) = 0 una curva in senso esteso di ordine d definita su K, e sia P = (x0 : x1 : x2) un punto di X .

Sia ` una qualunque retta passante per P che non sia una componente di X . Se Q = (y0 : y1 : y2) e un qualunque punto

di ` distinto da P , avremo che il generico punto di ` avra coordinate omogenee

(λx0 + µy0 : λx1 + µy1 : λx2 + µy2) , λ, µ ∈ K, (λ, µ) 6= (0, 0).

Sia FP,Q(λ, µ) il polinomio omogeneo

FP,Q = F (λx0 + µy0 : λx1 + µy1 : λx2 + µy2) .

Chiaramente gli zeri di FP,Q corrispondono ai punti comuni di X e `. Si noti che FP,Q non puo essere identicamente nullo

in quanto ` non e contenuta in X . Pertanto FP,Q ha grado d. Essendo K algebricamente chiuso si avra

FP,Q = aΠdi=1(aiλ− biµ) ,

per qualche ai, bi ∈ K, i = 1, . . . , d. Si noti quindi che le coppie non proporzionali di zeri di FP,Q sono al massimo d, e

pertanto i punti comuni a X e ` saranno al piu d. Si e pertanto provata la seguente proposizione.

Proposizione 2.4. Una curva in senso esteso di ordine d e una retta che non sia una sua componente si incontrano in

al piu d punti.

Definizione 2.5. Si definisce molteplicita di intersezione di X e ` nel punto P il massimo intero m per cui µm divide

FP,Q.

Si puo dimostrare che tale intero m non dipende dalla scelta di Q ma solo da ` e P . Inoltre, se ` e componente di X ,

diremo che la molteplicita di intersezione di X e ` nel punto P e infinita.

Nel caso in cui il punto P sia affine, i calcoli si possono semplificare di molto. Sia X : F (X,Y ) = 0 e sia P = (x, y) un

punto affine di X . Sia ` una retta per P . Se Q = (a, b) e un altro punto affine di `, il generico punto affine di ` avra

coordinate affini

(x+ t(a− x), y + t(b− y)) .

La molteplicita di intersezione di X e ` nel punto P si puo allora calcolare come molteplicita di t = 0 come radice del

polinomio in t

F (x+ t(a− x), y + t(b− y)) .

Esercizio 12. Con K = C, sia X : XY 2 + 3X2 + 2X2Y 2, P = (0, 0), ` : X + 3Y = 0. Si calcoli la molteplicita di

intersezione di X e ` nel punto P .

2. PUNTI SEMPLICI E SINGOLARI 26

Esercizio 13. Con K = C, sia X : X30 +3X2

0X1 +2X31−4X1X

22 , P = (0 : 0 : 1), ` : X0 +X1 = 0. Si calcoli la molteplicita

di intersezione di X e ` nel punto P .

Vale il seguente teorema.

Teorema 2.6. Sia P un punto di una curva in senso esteso X di ordine d. Allora esiste un intero s, 1 ≤ s ≤ d, tale che:

• la generica retta per P incontra X in P con molteplicita maggiore o uguale di s;

• esistono al piu s rette per P che incontrano X in P con molteplicita maggiore s.

L’intero s del Teorema precedente si indica con mP (X ). Se mP (X ) = 1, allora P si dice punto semplice di X . Altrimenti,

P si dice punto singolare di molteplicita mP (X ). Le rette per P che incontrano la curva X con molteplicita maggiore di

mP (X ) in P si dicono tangenti principali (o semplicemente tangenti) di X in P .

Esercizio 14. Si dimostri che il punto affine O = (0, 0) e punto semplice di una curva X : F (X,Y ) = 0 se e solo se il

grado minimo dei monomi di F e esattamente 1.

L’esercizio precedente si puo generalizzare nel seguente modo. Sia X : F (X,Y ) = 0 una curva in senso esteso di ordine d

passante per O = (0, 0). Si scriva

F (X,Y ) = Fd(X,Y ) + Fd−1(X,Y ) + . . .+ Fm(X,Y ),

con Fi(X,Y ) polinomio omogeneo di grado i. Allora mO(X ) = m. Inoltre, scrivendo φm come prodotto di m polinomi di

primo grado (non necessariamente distinti), si ha che le tangenti principali di X in O sono le rette corrispondenti a tali

polinomi.

Per la ricerca dei punti singolari di una curva in senso esteso si danno i seguenti criteri.

Teorema 2.7. Sia X : F (X,Y ) = 0 una curva in senso esteso e sia P = (a, b) un punto di X . Allora P e singolare se e

solo se

FX(a, b) = FY (a, b) = 0 .

Se P e semplice, un’equazione della retta tangente a X in P e

FX(a, b)(X − a) + FY (a, b)(Y − b) = 0 .

La versione in coordinate omogenee e la seguente.

Teorema 2.8. Sia X : F (X0, X1, X2) = 0 una curva in senso esteso e sia P = (a : b : c) un punto di X . Allora P e

singolare se e solo se

FX0(a, b, c) = FX1

(a, b, c) = FX2(a, b, c) = 0 .

Se P e semplice, un’equazione della retta tangente a X in P e

FX0(a, b, c)X0 + FX1

(a, b, c)X1 + FX2(a, b, c)X2 = 0 .

Si noti che se la caratteristica del campo base e 0, allora la condizione che P = (a : b : c) sia un punto della curva e

automaticamente soddisfatta se (a, b, c) annulla le tre derivate parziali di F . Cio segue dal Teorema di Eulero sui polinomi

omogeneei di grado m: mF = X0FX0+X1FX1

+X2FX2.

Esempio 2.9. Sia K un campo di caratteristica 2 e sia X : X21X2 − X3

0 + X20X2. In tal caso FX0 = X2

0 , FX1 = 0,

FX2= X2

1 − X20 = (X1 − X0)2. Pertanto P = (a : b : c) e singolare se e solo se a = 0, b = a. Quindi P = (0 : 0 : 1) e

l’unico punto singolare di X .

Esempio 2.10. Sia X : X50 + X5

1 + X52 . Si vede che FX0 = 5X4

0 , FX1 = 5X41 , FX2 = 5X4

2 . Se la caratteristica p di K e

diversa da 5, allora X e non singolare. Altrimenti, ogni punti di X e singolare. Per p = 5, X e infatti riducibile essendo

F = (X0 +X1 +X2)5.

3. RISULTANTE DI DUE POLINOMI 27

Esempio 2.11 (quartica di Klein). SiaK di caratteristica 2, e sia X : X30X1+X3

1X2+X32X0. Si vede che FX0 = X2

0X1+X32 ,

FX1= X2

1X2 + X30 , FX2

= X22X0 + X3

1 . Assumiamo che P = (a : b : c) sia singolare. Allora (i) a2b = c3 e (ii)

a3b + b3c + c3a = 0 implicano b3c = 0. Se b = 0, allora (i) implica c = 0 e quindi (iii) FX1(P ) = 0 a sua volta implica

a = 0. Se c = 0, allora b = 0 da (i), e di nuovo a = 0 da (iii). Cio significa che X e non singolare.

Esempio 2.12 (curva Hermitiana ). Sia X la curva definita su Fq da F = Xq0X2 + X0X

q2 −X

q+11 . Siccome FX0 = Xq

2 ,

FX1= −Xq

1 e FX2= Xq

0 , la curva X e non singolare.

3. Risultante di due polinomi

Ricordiamo rapidamente la definizione e le principali proprieta del risultante di due polinomi.

Sia D un dominio a fattorizzazione unica, e sia D[T ] l’anello dei polinomi su D. Siano f(T ) = a0 + a1T + . . . + anTn e

g(T ) = b0+b1T+. . .+bmTm due polinomi a coefficienti in D di grado rispettivo n e m (ovvero supponiamo che anbm 6= 0).

Si definisce risultante di f e g l’elemento di D calcolato come determinante della seguente matrice (m+ n)× (m+ n)

RT (f, g) = det

a0 a1 . . . an 0 . . . 0

0 a0 a1 . . . an 0 . . . 0...

...

0 . . . a0 a1 . . . anb0 b1 . . . bm 0 . . . 0

0 b0 b1 . . . bm 0 . . . 0...

...

0 . . . b0 b1 . . . bm

le cui prime m righe sono i coefficienti a0, . . . , an, mentre le successive n righe sono formate dai coefficienti b0, . . . , bn.

Teorema 2.13. Esistono un polinomio p1 di grado minore o uguale di m e un polinomio p2 di grado minore o uguale di

n, entrambi a coefficienti in A, non entrambi nulli, tali che

RT = p1f + p2g .

Dimostrazione. Notiamo che per ogni a ∈ A, due polinomi p′1 di grado minore o uguale di m e p′2 di grado minore

o uguale di n tali che

a = p′1f + p′2g .

corrispondono alle un sistema lineare a coefficienti in A, le cui incognite sono i coefficienti di p′1 e p′2 e la cui matrice ha

come determinante proprio RT (f, g).

Se RT (f, g) = 0, il rango della matrice del sistema omogeneo

0 = p′1f + p′2g

e minore di (m + n), per cui tale sistema ha una soluzione non nulla nel campo dei quozienti di A. Eliminando i

denominatori si ottiene la relazione voluta.

Supponiamo quindi che RT (f, g) 6= 0. Il sistema

1 = p′1f + p′2g .

ha una e una sola soluzione p′1, p′2 nel campo dei quozienti di A. Ponendo p1 = RT (f, g)p′1 e p2 = RT (f, g)p′2 si ha che p1

e p2 hanno coeffienti in A per la regola di Cramer. Chiaramente RT = p1f + p2g, e la dimostrazione e conclusa.

Siano ora F,G polinomi in r indeterminate a coefficienti in un campo K, diciamo F,G ∈ K[X1, X2, . . . , Xr]. Ponendo

A = K[X1, . . . , Xr−1], e possibile vedere F e G come polinomi in A[Xr], e quindi calcolarne il risultante RXr (F,G), che

sara un elemento di K[X1, . . . , Xr−1]. Si noti in virtu del Teorema 2.13, per ogni r-pla (a1, . . . , ar) di elementi di K che

annulla sia F che G, si ha che (a1, . . . , ar−1) annulla RXr (F,G).

4. INTERSEZIONE DI DUE CURVE IN SENSO ESTESO 28

4. Intersezione di due curve in senso esteso

Per studiare l’intersezione di due curve in senso esteso X e Y definite su un campo K iniziamo dal considerare la parte

affine delle due curve. Sia quindi X : F (X,Y ) = 0, Y : G(X,Y ) = 0.

Teorema 2.14. L’insieme dei punti affini comuni a due curve in senso esteso prive di componenti comuni e un insieme

finito.

Dimostrazione. Si calcoli RY (F,G), polinomio in K[X]. Se RY (F,G) e identicamente nullo allora dal Teorema

2.13 segue che

p1(X)F (X,Y ) = p2(X)G(X,Y )

per due polinomi p1, p2 non identicamente nulli. Essendo G ed F senza fattori in comune, ne segue che G(X,Y ) divide

p1(X) e F (X,Y ) divide p2(X). Quindi sia F che G sono polinomi in X privi di radici in comune, e l’asserto segue

immediatamente.

Supponiamo allora che RY (F,G) non sia identicamente nullo. Sia quindi

RY (F,G) = aΠri=1(X − ai) .

Per quanto detto alla fine della sezione precedente, ogni punto di intersezione di X e Y dovrebbe trovarsi su una retta di

equazione affine X = ai per qualche i. Ma allora, ancora grazie alla Proposizione 2.4, il numero di punti comuni a X e Ysarebbe al piu dr, ove d e l’ordine di X .

Corollario 2.15. I punti comuni a due curve in senso esteso prive di componenti comuni sono in numero finito.

Dimostrazione. L’asserto segue immediatamente dal teorema precedente e dalla Proposizione 2.4 applicata alla

retta `∞.

Il concetto di molteplicita di intersezione di una curva in senso esteso e una retta si generalizza grazie al teorema seguente.

Teorema 2.16. Esiste ed e unica una applicazione I che associa a due curve in senso esteso X : F (X0, X1, X2) = 0 e

Y : G(X0, X1, X2) = 0 e ad un punto P un elemento I(P,X ∩ Y) ∈ Z≥0 ∪ ∞ con le seguenti proprieta :

(1) I(P,X ∩ Y) e un intero non negativo se e solo se X e Y non hanno componenti comuni passanti per P ;

(2) I(P,X ∩ Y) = 0 se e solo se P /∈ X ∩ Y;

(3) I(P,X ∩ Y) = 1 se X e Y sono rette distinte per P ;

(4) I(P,X ∩ Y) = I(P,Y ∩ X );

(5) Se P e affine, I(P,X ∩ Y) = I(P,X ∩ Z), dove Z : HF∗ +G∗ = 0 per qualche H ∈ K[X,Y ];

(6) Se Z : GH = 0, allora I(P,X ∩ Z) = I(P,X ∩ Y) + I(P,X ∩ Y ′), dove Y ′ : H = 0;

(7) I e invariante per proiettivita .

Non ci preoccuperemo della dimostrazione di questo risultato, ma piuttosto del ricordare un efficiente procedimento di

calcolo dell’intero I(P,X ∩ Y).

A meno di proiettivita , e possibile supporre che le curve in senso esteso prive di componenti comuni X : F (X,Y ) = 0 e

Y : G(X,Y ) = 0 ed il punto P soddisfino le seguenti proprieta :

• P = (a, b) sia affine;

• Y∞ = (0 : 0 : 1) non sia punto ne di X , ne di Y;

• su ogni retta di equazione X = a vi sia al piu un punto di X ∩ Y;

• nessuna tangente a X o Y in un punto di X ∩ Y sia di equazione X = a.

Allora I(P,X ∩ Y) e la molteplicita di a come radice del risultante RY (F,G).

Talvolta il calcolo di I(P,X ∩ Y) puo risultare semplificato. Si puo infatti dimostrare questo teorema.

5. MOLTEPLICITA DI INTERSEZIONE E VALUTAZIONI 29

Teorema 2.17. Siano X e Y due curve in senso esteso prive di componenti in comune. Allora

I(P,X ∩ Y) ≥ mP (X )mP (Y);

inoltre l’uguaglianza vale se e solo se ogni tangente a X in P non e tangente a Y in P .

Un metodo ancora piu veloce per il calcolo di I(P,X ∩ Y) si puo descrivere nel caso in cui P sia un punto semplice di

una delle due curve, diciamo X . Sia X : F (X,Y ) = 0 e Y : G(X,Y ) = 0. A meno di proiettivita possiamo supporre che

P coincida con O = (0, 0), e che la tangente di X in O sia la retta di equazione X = 0. Se tale retta non e tangente

principale di Y in O, allora possiamo utilizzare il teorema precedente e concludere che I(O,X ∩Y) = mO(Y). Altrimenti,

si avra :

F (X,Y ) = Fd(X,Y ) + . . .+ F2(X,Y ) +X, G(X,Y ) = Ge(X,Y ) + . . .+XGm−1(X,Y )

dove d e l’ordine di X , e e l’ordine di Y, m = mO(Y), Fi (risp. Gj) e omogeneo di grado i (risp. j). Ora, poniamo

H = G−Gm−1F e consideriamo la curva in senso esteso Z : H = 0. Dalla proprieta 6 della molteplicita di intersezione

segue che

I(O,X ∩ Y) = I(O,X ∩ Z) .

Scriviamo H come somma di polinomi omogenei di grado decrescente:

H = Hl + . . .+Hm′ .

Per costruzione, m′ > m. A questo punto avremo due possibilita . Se X non divide Hm′ , allora possiamo concludere

dal Teorema 2.17 che I(O,X ∩ Z) = m′. Se invece X divide Hm′ , allora iteriamo il procedimento. L’algoritmo dovra

concludersi dopo un numero finito di passi in quanto e noto a priori che I(O,X ∩Y) e finito, e ad ogni passo cresce l’intero

m tale che I(O,X ∩ Y) > m.

Esercizio 15. Con K = C, si calcoli la molteplicita di intersezione nel punto (0, 0) delle seguenti coppie di curve:

• X : Y 3 −X2 = 0, Y : 6Y 5 − 2Y 5X + 4X2 − 2Y 2 + 2X = 0;

• X : 3X2 + 2XY − 3X, Y : X3 + 5X3Y − 6Y 4.

Concludiamo questa sezione riportando il famoso Teorema di Bezout, di cui omettiamo la dimostrazione.

Teorema 2.18. Due curve in senso esteso prive di componenti comuni di ordine rispettivo m e n si incontrano in

esattamente mn punti, contati con molteplicita .

5. Molteplicita di intersezione e valutazioni

In questa ultima sezione del capitolo torniamo a trattare le curve in senso stretto, ovvero le varieta algebriche (affini o

proiettive) di dimensione 1. In particolare vedremo come nel caso in cui la curva sia piana, la valutazione di una funzione

razionale in un suo punto singolare possa essere calcolata facendo riferimento alla molteplicita di intersezione di curve in

senso esteso.

Teorema 2.19. Sia X = V (〈F (X,Y )〉) una curva piana affine, e sia P un punto non singolare di X . Sia α ∈ K(X )∗.

Si scriva α come classe di un quoziente di due polinomi:

α =G+ 〈F 〉H + 〈F 〉

.

Siano inoltre Y e Z le curve in senso esteso di equazione Y : G(X,Y ) = 0, Z : H(X,Y ) = 0. Allora

ordP (α) = I(P,Y ∩ X )− I(P,Z ∩ X ) .

(con il simbolo X si abbiamo indicato sia la curva V (〈F 〉) che la curva in senso esteso definita da F ).

5. MOLTEPLICITA DI INTERSEZIONE E VALUTAZIONI 30

Dimostrazione. Sia aX + bY + c = 0 l’equazione di una retta passante per P non tangente a X in P , e sia

t = aX + bY + c + 〈F 〉 il parametro locale di X in P corrispondente. Si ponga inoltre m = ordP (α). Per definizione di

ordine, esiste u ∈ K[X ]P , u invertibile, tale che α = tmu. Dall’invertibilita di u segue che

u =G1 + 〈F 〉H1 + 〈F 〉

per qualche G1, H1 che non si annullano in P . Da

α =G1(aX + bY + c)m + 〈F 〉

H1 + 〈F 〉segue che F divide GH1 −G1HG1(aX + bY + c)m, ovvero esiste un polinomio Q ∈ K[X,Y ] tale che

QF +G1H(aX + bY + c)m = GH1.

Dalla proprieta 5 della molteplicita di intersezione segue che

I(P,X ∩ GH1 = 0) = I(P,X ∩ G1H(aX + bY + c)m = 0),

e quindi dalla proprieta 6 si ha che I(P,X ∩ G = 0) + I(P,X ∩ H1 = 0) coincide con

I(P,X ∩ G1 = 0) + I(P,X ∩ H = 0) +mI(P,X ∩ aX + bY + c = 0).

Dato che l’equazione aX + bY + c = 0 rappresenta una retta per P non tangente, si ha I(P,X ∩ aX + bY + c = 0) = 1.

Inoltre, dato che G1, H1 che non si annullano in P , si ottiene I(P,X ∩ G1) = I(P,X ∩ H1) = 0. Pertanto l’asserto e

dimostrato.

La versione proiettiva del Teorema 2.19 e la seguente

Teorema 2.20. Sia α una funzione razionale non nulla della curva algebrica piana proiettiva X = V (〈F (X0, X1, X2)〉),e sia P un punto non singolare di X . Si scriva α come classe di un quoziente di due polinomi omogenei dello stesso

grado:

α =G+ 〈F 〉H + 〈F 〉

.

Siano inoltre Y e Z le curve in senso esteso di equazione Y : G(X0, X1, X2) = 0, Z : H(X0, X1, X2) = 0. Allora si ha

che

ordP (α) = I(P,Y ∩ X )− I(P,Z ∩ X ) .

Teorema 2.21. Sia X una curva algebrica piana proiettiva non singolare. Allora ogni funzione α ∈ K(X ) non nulla ha

lo stesso numero di zeri e di poli, contati con molteplicita .

Dimostrazione. L’asserto segue dal Teorema precedente e dal Teorema di Bezout.

Nel prossimo capitolo generalizzeremo il Teorema 2.21 a curve con punti singolari.

CAPITOLO 3

Valutazioni, Divisori, Zeri e Poli

1. DVR di campi di funzioni algebriche

In questo capitolo K indichera sempre un campo algebricamente chiuso.

Definizione 3.1. Sia F : K un’estensione di campi tale che F e un’estensione finita di K(x) per qualche x trascendente

su K. Allora F e detto campo di funzioni algebriche su K.

In virtu dei risultati del Capitolo 1 i campi di funzioni algebriche sono precisamente i campi di funzioni razionali delle

curve algebriche.

Iniziamo col provare una proprieta dei campi di funzioni algebriche che sara usata spesso nel seguito.

Lemma 3.2. Sia F un campo difunzioni algebriche su K. Sia y ∈ F \K. Allora F : K(y) e finita.

Dimostrazione. Sia x tale che F : K(x) e finita.

Osserviamo che F : K(x, y) e finita, dato che K(x, y) contiene K(x).

Ma anche K(x, y) : K(y) e finita. Infatti il grado di trascendenza di F : K e pari a uno, e quindi x e y sono algebricamente

indipendenti. Cio significa in particolare che y e radice di un polinomio a coefficienti in K(x).

Consideriamo quindi la catena di estensioni di campi

K(y) ⊆ K(x, y) ⊆ F.

Dalla transitivita delle estensioni finite segue allora l’asserto.

Proposizione 3.3. Sia F un campo di funzioni algebriche su K. Sia O un DVR di F contenente K, e sia M il suo

ideale massimale. Allora

O/M ∼= K.

Dimostrazione. La mappa naturale ψ : K → O/M definita da c 7→ cM e evidentemente un omomorfismo di campi

non banale, e quindi un monomorfismo.

Proviamo che l’estensione [O/M : ψ(K)] e finita.

Sia t parametro locale di O. Siano z1M, . . . , znM in O/M linearmente indipendenti su ψ(K). Dimostriamo che z1, . . . , znsono linearmente indipendenti su K(t). Sia

n∑i=1

ηi(t)zi = 0, ηi(t) ∈ K(t).

Senza restrizione assumiamo che ηi(t) siano polinomi in t, non tutti divisi da t. Cioe

ηi(t) = ai + tgi(t), ai ∈ K, ai 6= 0 per qualche i.

Risulta chiaramente ηi(t)M = aiM . Pertanto in O/M

0 =

n∑i=1

(ηi(t)M)(ziM) =

n∑i=1

(aiM)(ziM),

in contraddizione con z1M, . . . , znM in O/M linearmente indipendenti su ψ(K). Pertanto se l’estensione [O/M : ψ(K)]

non fosse finita, non lo sarebbe neanche [F : K(t)], ma cio e impossibile in virtu del Lemma 3.2.

31

2. LA CORRISPONDENZA PUNTI-VALUTAZIONI 32

Osserviamo ora che ψ(K) e algebricamente chiuso, essendo chiaramente isomorfo a K. Siccome abbiamo appena provato

che [O/M : ψ(K)] e finita, e quindi algebrica, l’unica possibilita e che O/M = ψ(K).

Definizione 3.4. Data una curva X , con l’espressione DVR di K(X ) intenderemo un DVR contenuto in K(X ), contenente

K, il cui campo dei quozienti sia K(X ). Analogamente, dato un campo F di funzioni algebriche su K, con l’espressione

DVR di F intenderemo un DVR contenuto in F , contenente K, il cui campo dei quozienti sia F .

Lemma 3.5. Siano O1, O2 DVR di un campo di funzioni algebriche F . Allora non e possibile che O1 ( O2.

Dimostrazione. Proviamo che O1 e un sottoanello proprio massimale di F . Per convincersene basta provare che

per ogni elemento z appartenente a F ma non a O1, l’anello O1[z] generato dal O1 e da z coincide in realta con l’intero

F : un qualunque elemento x del campo, moltiplicato per una opportuna potenza di z a esponente negativo, diventa un

elemento di O1, e questo prova che x e un’espressione polinomiale in z con coefficienti in O1.

2. La corrispondenza punti-valutazioni

Dal primo capitolo sappiamo che l’anello locale in un punto semplice di una curva e un DVR. In generale, gli anelli locali

nei punti semplici non esauriscono tutti i DVR del campo delle funzioni razionali della curva. Il seguente teorema e di

cruciale importanza in quanto descrive la relazione fra i DVR di K(X ) e i punti di X .

Teorema 3.6. Sia O un DVR di K(X ), e sia M l’ideale massimale di O. Allora

(a) esiste un unico punto P di X tale che

K[X ]P ⊆ O, K[X ]P ∩M = MP .

Tale punto P si dice il centro del DVR O.

(b) Se P e un punto semplice di X , allora K[X ]P e l’unico DVR di K(X ) centrato in P .

Dimostrazione. Dimostreremo il teorema per una curva di P2(K), di equazione F (X0, X1, X2) = 0 (o equivalen-

temente F?(X,Y ) = 0). La dimostrazione nel caso generale e analoga, ed e lasciata per esercizio. Supponiamo senza

restrizione che X non sia una delle rette Xi = 0, i = 0, 1, 2.

(a) Unicita: Supponiamo per assurdo che esistano due punti distinti P e Q con K[X ]P ∩M = MP e K[X ]Q ∩M =

MQ. Scegliamo α ∈ K(X ) tale che α e definita sia in P che in Q, α(P ) = 0, α(Q) 6= 0 (e facile vedere che tale

α esiste). Allora dato che α ∈MP si ha α ∈M . Ma del resto α ∈ K[X ]Q \MQ implica α /∈M .

Esistenza: Denotiamo con vO la valutazione associata ad O. Sia N il massimo delle valutazioni vO(αi,j),

essendo αi,j = Xi + 〈F 〉/Xj + 〈F 〉, i, j = 0, 1, 2. Senza restrizione supponiamo che N = vO(αj,0). Allora per

ogni i si ha

vO(αi,0) = vO

(Xj + 〈F 〉X0 + 〈F 〉

· Xi + 〈F 〉Xj + 〈F 〉

)= N − vO(αj,i) ≥ 0.

Pertanto O contiene le funzioni x = X1+〈F 〉X0+〈F 〉 e y = X2+〈F 〉

X0+〈F 〉 , e quindi tutto K[X ].

Poniamo ora J = M ∩K[X ]. Osserviamo che J non puo essere l’ideale nullo, altrimenti ogni elemento non

nullo di K[X ] sarebbe un elemento invertibile in O, e quindi l’intero K(X ) sarebbe contenuto in O. D’altro

canto J non puo essere l’intero K[X ], altrimenti avremmo che vO(1) > 0, il che e palesemente assurdo essendo

1 invertibile. Quindi 0 6= J 6= K[X ].

Osserviamo che J e ideale primo: da vO(αβ) = vO(α) + vO(β) segue facilmente che αβ ∈M implica α ∈Mo β ∈M .

Consideriamo ora J ′ = g + sF∗ | [g] ∈ J, s ∈ K[X,Y ], ideale di K[X,Y ] contenente 〈F∗〉 e tale che

π(J ′) = J , essendo π la proiezione canonica π : K[X,Y ]→ K[X ]. Mostriamo che anche J ′ e primo. Se gh ∈ J ′allora π(g)π(h) ∈ J , e quindi π(g) o π(h) appartiene a J . Supponiamo che π(g) ∈ J . Allora per costruzione

g ∈ J ′.Pertanto l’insieme degli zeri di J ′ e una varieta irriducibile non vuota contenuta propriamente in X . L’unica

possibilita e che corrisponda a un punto (affine) P di X .

3. VALUTAZIONI E MAPPE RAZIONALI 33

Proviamo ora che la tesi vale per P . Dimostriamo che MP ⊆ K[X ]P ∩ M . Fissiamo α in MP . Sia

α = g + 〈F∗〉/h + 〈F∗〉 con g(P ) = 0, h(P ) 6= 0. Chiaramente g ∈ J ′, quindi g + 〈F∗〉 ∈ J ⊆ M . D’altro canto

h+〈F∗〉 ∈ K[X ]\J , e quindi h+〈F∗〉 ∈ O\M . Ma allora 1/(h+〈F∗〉) ∈ O, e quindi α = g+〈F∗〉·1/(h+〈F∗〉) ∈M .

Proviamo adesso che K[X ]P ∩M ⊆ MP , o equivalentemente che ogni elemento di K[X ]P \MP non puo

appartenere a M . Un elemento α di K[X ]P \MP si puo scrivere come α = g + 〈F∗〉/h + 〈F∗〉 con g(P ) 6= 0,

h(P ) 6= 0. Allora sia g + 〈F?〉 che h+ 〈F∗〉 appartengono a O \M , e quindi α /∈M .

Mostriamo infine che K[X ]P e sottoinsieme di O. Supponiamo per assurdo che esista α ∈ K[X ]P \O. Dato

che MP ⊆ M , si ha che α e necessariamente invertibile in K[X ]P . Pertanto 1/α /∈ MP e quindi 1/α /∈ M . Ma

siccome α /∈ O implica 1/α ∈M otteniamo una contraddizione.

(b) Se P e un punto semplice di X , chiaramente K[X ]P e DVR centrato in P . Sia O un altro DVR centrato in P .

Allora O = K[X ]P in virtu del Lemma 3.5.

Una interessante conseguenza della Proposizione 3.6 e data dal seguente corollario.

Corollario 3.7. Se X e una curva non singolare, allora la corrispondenza P 7→ K[X ]P definisce una biiezione da Xnell’insieme dei DVR di K(X ).

3. Valutazioni e mappe razionali

Iniziamo questa sezione presentando una caratterizzazione dei DVR di un campo di funzioni algebriche.

Proposizione 3.8. Sia F un campo di funzioni algebriche su K. Allora un sottoanello O di F avente le seguenti proprieta:

(a) K ( O ( F ,

(b) per ogni α ∈ F si ha α ∈ O oppure 1/α ∈ O,

e un DVR di F (e viceversa).

Divideremo la dimostrazione in 3 Lemmi.

Lemma 3.9. Sia O come nella Proposizione 3.8. Allora O e locale e il suo ideale massimale e principale.

Dimostrazione.

• O e un anello locale. Sia M l’insieme degli elementi non invertibili di O.

Sia x ∈ M , z ∈ O. Allora xz non e invertibile, altrimenti x lo sarebbe essendo x(z(xz)−1) = 1. Pertanto

xz ∈M .

Siano ora x, y ∈ M . Senza restrizione, da (b), possiamo assumere che x/y ∈ O. Allora 1 + x/y ∈ O e

pertanto x+ y = y(1 + x/y) ∈M .

Questo prova che M e un ideale, e quindi che O e locale.

• M e principale. Ragioniamo per assurdo assumendo che che M non sia principale.

Sia x1 in M , x1 6= 0. Siccome M non e principale, esiste x2 ∈ M \ 〈x1〉. Quindi x2x−11 /∈ O. Da (b) segue

che x−12 x1 appartiene a O ma non e invertibile in O; ovvero (x1/x2) ∈M .

Ripetendo il processo costruiamo una successione x1, x2, x3, . . . , xn, . . . tale che (xi/xi+1) ∈ M per ogni

i ≥ 1. Ne segue (xi/xj) ∈M per ogni i < j. Mostriamo che una tale successione non puo esistere.

Proveremo che per ogni n, gli elementi x1, x2, x3, . . . , xn sono linearmente indipendenti su K(x1). Questo

sara sufficiente, essendo in contraddizione con il fatto che F |K(x1) e finita (si osservi che x1 ∈ M esclude che

x1 ∈ K).

Si ponga per semplicita x = x1. Supponiamo che esista una combinazione lineare non banale

n∑i=1

φi(x)xi = 0, con φi(x) ∈ K(x).

3. VALUTAZIONI E MAPPE RAZIONALI 34

Possiamo assumere che tutti gli φi siano polinomi in x, e che x non li divida tutti. Sia ai = φi(0), e si definisca

j come l’indice per cui aj 6= 0 ma ai = 0 per ogni i > j. Otteniamo

(2) −φj(x)xj =∑i 6=j

φi(x)xi.

Osserviamo che φi(x) ∈ O dato che in partenza x = x1 ∈ M ⊆ O. Ricordiamo poi che xi ∈ xjM per i < j e

φi(x) = xgi(x) per i > j, con gi ancora polinomio in x. Dividendo (2) per xj otteniamo

−φj(x) =∑i<j

φi(x)xi/xj +∑i>j

gi(x)x/xj · xi.

Tutti gli addendi a secondo membro appartengono a M , pertanto anche φj(x) ∈ M . D’altro canto φj(x) =

aj + xgj(x), con aj ∈ K, aj 6= 0. Pertanto aj = φj(x)− x1jj(x) ∈M , che e ovviamente impossibile.

Lemma 3.10. Sia O come nella Proposizione 3.8. Sia t un generatore di M . Allora ogni elemento z di F ∗ ha un’unica

rappresentazione z = tnu con u invertibile in O e n ∈ Z.

Dimostrazione. In virtu di (b), possiamo assumere senza restrizione z ∈ O. Se z e invertibile in O, allora basta

scrivere z = t0z. Altrimenti z ∈M .

Mostriamo che non e possibile che z ∈ tnO per ogni n. Se cosı fosse, ponendo

x1 = z, x2 = tn−1, x3 = tn−2, . . . , xn = t

si avrebbero sequenze arbitrariamente lunghe di elementi xi tali che x1 = z e xi ∈ xi+1M . Nella dimostrazione del Lemma

precedente abbiamo provato come tali sequenze non possano esistere.

Sia allora m il massimo intero positivo tale che z ∈ tmO. Si scriva z = tmu con u ∈ O. Se u non fosse invertibile si

avrebbe u = tu′ e quindi z = tm+1u, che e assurdo.

La dimostrazione dell’unicita della rappresentazione e lasciata allo studente come esercizio.

Lemma 3.11. Sia O come nella Proposizione 3.8. Allora O e Noetheriano.

Dimostrazione. Proveremo in realta una proprieta piu forte, ovvero che O e un dominio a ideali principali. Sia I

un ideale non nullo di O, e sia t un generatore di M . L’insieme

Λ = r ∈ N | tr ∈ I

e non vuoto. Infatti, se x ∈ I, x 6= 0, scrivendo x = tru si ha subito tr = xu−1 ∈ I. Sia n il minimo elemento di Λ.

Banalmente si ha che 〈tn〉 ⊆ I. Viveversa, per ogni y ∈ I non nullo si scriva y = tsw con w invertibile in O. Allora ts ∈ Ie quindi s ≥ n. Questo dimostra che y = tnts−nw ∈ 〈tn〉. Pertanto I = 〈tn〉.

Che un DVR abbia le proprieta (a) e (b) segue facilmente dall’Esercizio 5. Pertanto la dimostrazione della Proposizione

3.8 e conclusa.

Esercizio 16. Si dimostri la seguente generalizzazione della Proposizione 1.33: Un dominio di integrita R che non sia

un campo e un DVR se e solo se esiste un elemento irriducibile t ∈ R tale che ogni elemento non nullo z ∈ R puo essere

scritto in un unico modo come z = utn, con u invertibile in R e n un intero non negativo.

E possibile interpretare le mappe razionali fra curve in termini di valutazioni. Siano X e Y due curve irriducibili, e sia

φ : X → Y una mappa razionale dominante.

Proposizione 3.12. Siano X e Y curve proiettive, e sia φ : X → Y una mappa razionale non costante. Allora K(X ) :

φ∗(K(Y)) e un’estensione finita.

Dimostrazione. Per ogni α ∈ K(Y)\K si ha che φ∗(α) ∈ φ∗(K(Y))\K. Dal Lemma 3.2 segue che K(X ) : K(φ∗(α))

e finita. Questo ovviamente e sufficiente per dedurre che anche K(X ) : φ∗(K(Y)) lo e.

3. VALUTAZIONI E MAPPE RAZIONALI 35

Proposizione 3.13. Sia φ : X → Y una mappa razionale dominante. Allora per ogni O DVR di K(X ) l’anello

φ(O) = (φ∗)(−1)(O ∩ φ∗(K(Y))) ⊆ K(Y)

e un DVR di K(Y) il cui ideale massimale M e tale che

Mφ(O) = (φ∗)(−1) (MO ∩ φ∗(K(Y)))

(dove Mφ(O) e MO sono gli ideali massimali di φ(O) e O, rispettivamente).

Dimostrazione. Tenendo conto del fatto che φ∗ e un isomorfismo dei campi K(Y) e φ∗(K(Y)) sara sufficiente

provare che

i) O′ = O ∩ φ∗(K(Y)) e DVR di φ∗(K(Y));

ii) MO′ = MO ∩ φ∗(K(Y)).

Per dimostrare che O′ e DVR di K(Y) utilizzeremo la Proposizione 3.8. La condizione (b) della Proposizione 3.8 e

banalmente verificata. Per quanto riguarda la condizione (a), e evidente che K ⊆ O′. Mostreremo che O′ contiene

propriamente K provando che

(∗) esiste α ∈ φ∗(K(Y)) con ordO(α) 6= 0.

Assumiamo che questa affermazione sia falsa e scegliamo t ∈ K(X ) con ordO(t) > 0. Essendo l’estensione [K(X ) :

φ∗(K(Y))] algebrica c’e un’equazione

n∑i=0

citi = 0, ci ∈ φ∗(K(Y)), c0 6= 0, cn 6= 0.

Se fosse ordO(ci) = 0 per ogni i, si avrebbe ordO(citi) = i · ordO(t); quindi, per la disuguaglianza triangolare delle

valutazioni, si otterrebbe ordO(0) = n, una contraddizione.

Per concludere che O′ e un DVR di φ∗(K(Y)) basta osservare che O′ e contenuto propriamente in φ∗(K(Y)); se cosı non

fosse allora φ∗(K(Y)) ⊆ O, e quindi per ogni α ∈ K(Y)\K si avrebbe φ∗(α), φ∗(α)−1 ∈ O \K, in contraddizione con (*).

Proviamo ora ii). Per un elemento z in φ∗(K(Y)) si ha

z ∈MO′ ⇔ 1/z /∈ O′ ⇔ 1/z /∈ O ⇔ 1/z ∈MO,

da cui l’asserto.

Corollario 3.14. Sia φ : X → Y una mappa razionale dominante. Allora per ogni P punto semplice di X la mappa φ

e definita in P .

Dimostrazione. Basta applicare la Proposizione 3.13 al caso O = K[X ]P e tener conto della Proposizione 1.64 e

del Teorema 3.6 applicato a (φ∗)(−1)(O ∩ φ∗(K(Y))).

Proposizione 3.15. Sia P punto semplice di X , e Q punto di Y. Allora φ(P ) = Q se e soltanto se φ(K[X ]P ) e un DVR

di K(Y) centrato in Q.

Dimostrazione. Osserviamo preliminarmente che se φ(P ) = Q allora, φ∗(MQ) = MP ∩ φ∗(K[Y]q). Che φ∗(MQ) ⊆MP ∩ φ∗(K[Y]q) e gia noto dalla Proposizione 1.64. Sia allora z ∈ φ∗(K[Y]Q) ∩ MP . Allora - supponendo come di

consueto φ = (1 : α1 : . . . : αm) e P,Q affini - si ha che z = φ∗(η), con η = g(x1,...,xm)h(x1,...,xm) e h polinomio tale che h(Q) 6= 0.

Pertanto z = g(α1,...,αm)h(α1,...,αm) . Dato che z ∈MP si ha g(α1, . . . , αm)(P ) = 0, ovvero g(Q) = 0. Questo prova η ∈MQ, e quindi

z ∈ φ∗(MQ).

Pertanto dalla Proposizione 1.64 segue

φ(P ) = Q ⇔ [φ∗(K[Y]Q) ⊆ K[X ]P e φ∗(MQ) = MP ∩ φ∗(K[Y]Q)].

Chiaramente la condizione si puo anche scrivere come

φ∗(K[Y]Q) ⊆ K[X ]P ∩ φ∗(K(Y) e φ∗(MQ) = (MP ∩ φ∗(K(Y))) ∩ φ∗(K[Y]Q).

3. VALUTAZIONI E MAPPE RAZIONALI 36

Applicando (φ∗)(−1) si ottiene allora che φ(P ) = Q se e solo se

K[Y]Q ⊆ φ(K[X ]P ) e MQ = (φ∗)(−1)(MP ∩ φ∗(K(Y))) ∩K[Y]Q.

Tenendo conto che in virtu della Proposizione 3.13 (φ∗)(−1)(MP ∩ φ∗(K(Y))) e l’ideale massimale di φ(K[X ]P ), la

condizione e chiaramente equivalente al fatto che Q sia il centro di φ(K[X ]P ).

Nei prossimi tre esempi vedremo alcune possibili comportamenti di una mappa razionale rispetto a punti singolari di

una curva. Come gia ricordato puo capitare che una mappa razionale non sia definita in un punto singolare. Questo

“inconveniente” si puo superare in due passi: (1) individuare i DVR centrati nel punto singolare (2) calcolare le immagini

di tali DVR e i loro centri.

Esempio 3.16. Sia

X : Y 2 −X2 −X3 = 0.

Lo studente puo verificare facilmente che X e irriducibile. Il punto (1 : 0 : 0) e doppio e ammette due tangenti principali

distinte. L’intuizione suggerisce che per questo motivo potrebbero essere due i DVR centrati nel punto. E infatti le cose

stanno proprio cosı (approfondiremo meglio questa intuizione nella Sezione 5).

Consideriamo la curva Y : X = 0, chiaramente non singolare, e costruiamo una mappa razionale da Y in X :

φ : Y → X , φ = (1 : x2 − 1 : x(x2 − 1)).

La mappa e ben definita dato che chiaramente (x(x2 − 1))2 − (x2 − 1)2 − (x2 − 1)3 = 0. Inoltre e birazionale dato che

ψ : X → Y, ψ = (1 : 0 : y/x)

e una sua inversa.

E evidente che φ(1 : 0 : 1) = φ(1 : 0 : −1) = (1 : 0 : 0). Pertanto sono almeno due i DVR di K(X ) ∼= K(Y) centrati in

(1 : 0 : 0) (vedremo nella Sezione 5 che in realta sono esattamente due).

Osserviamo infine che la mappa razionale di X in P1(K) definita da (1 : yx ) non e definita in (1 : 0 : 0). Ma vista

come funzione sui DVR centrati in (1 : 0 : 0), e definita, e precisamente ha come immagine del DVR corrispondente a

(1 : 0 : 1) ∈ Y il DVR di P1(K) centrato in (1 : 1), mentre come immagine del DVR corrispondente a (1 : 0 : −1) ∈ Y il

DVR di P1(K) centrato in (1 : −1).

Esempio 3.17. Sia

X : Y 2 −X3 = 0.

Lo studente puo verificare facilmente che X e irriducibile. Il punto (1 : 0 : 0) e doppio e ammette una sola tangente

principale. L’intuizione suggerisce che per questo motivo potrebbe unco il DVR centrato nel punto. Le cose in questo

esempio stanno cosı ma nel prossimo esempio vedremo come questo non e un fatto generale.

Consideriamo di nuovo la curva Y : X = 0, chiaramente non singolare, e costruiamo una mappa razionale da Y in X :

φ : Y → X , φ = (1 : x2 : x3).

La mappa e ovviamente ben definita. Inoltre e birazionale dato che

ψ : X → Y, ψ = (1 : 0 : y/x)

e una sua inversa.

E evidente che φ(1 : 0 : 0) = (1 : 0 : 0). Pertanto se O indica il DVR di K(Y) centrato in (1 : 0 : 0), allora φ∗(O) e DVR

di K(X ) centrato in (1 : 0 : 0).

Potrebbero esistere altri DVR di K(X ) centrati in (1 : 0 : 0)? No. Infatti un altro DVR centrato in (1 : 0 : 0) dovrebbe

corrispondere a un DVR O′ di K(Y). Siccome Y e non singolare, O′ dovrebbe coincidere con K[Y]Q per qualche Q. In

tal caso allora si avrebbe φ(Q) = (1 : 0 : 0). Ma e immediato controllare che φ(Q) = (1 : 0 : 0) si verifica soltanto per

Q = (1 : 0 : 0) e quindi O′ = O.

4. IMMAGINI DI MAPPE RAZIONALI 37

Esempio 3.18. Sia p 6= 2, 3 la caratteristica di K. Sia

X : −X2 +X4 + Y 6 = 0.

Lo studente puo verificare che X e una curva irriducibile.

Mostreremo che nonostante vi sia un’unica tangente principale in (1 : 0 : 0), i DVR di K(X ) centrati in (1 : 0 : 0) sono

almeno due.

Consideriamo la curva X : X6 + Y 6 − 1 = 0. La verifica che H e una curva non singolare (e quindi irriducibile) e

immediata. Si osservi che l’ipotesi che la caratteristica non sia 2 o 3 e necessaria.

Costruiamo una mappa razionale φ : H → X ponendo φ = (1 : x3 : xy).

Controlliamo che per ogni punto P ∈ H si ha φ(P ) ∈ X . Se P e affine, allora P = (1 : a : b) con a6 + b6 − 1 = 0, e quindi

φ(P ) = (1 : a3, ab). Ma allora

−(a3)2 + (a3)4 + (ab)6 = a6(−1 + a6 + b6) = 0,

ovvero φ(P ) e un punto affine di X . La verifica nel caso P non affine e lasciata per esercizio.

Osserviamo che i punti affini P di H con φ(P ) = (1 : 0 : 0) sono sei, e precisamente i punti (1 : 0 : ωi), con ω radice

primitiva sesta dell’unita e i = 1, . . . , 6. Dimostriamo che i DVR O1 e Oω di H centrati rispettivamente in (1 : 0 : 1) e

in (1 : 0 : ω) hanno restrizioni in φ∗(K(X )) = K(x3, xy) entrambe ovviamente centrate in (1 : 0 : 0), ma distinte. Infatti

y3− 1 = (xy)3

x3 − 1, elemento di φ∗(K(X )), appartiene a O1 e al suo ideale massimale, ma non all’ideale massimale di Oω.

Analogamente y3−ω3 = y3 + 1 = (xy)3

x3 + 1 appartiene a Oω e al suo ideale massimale, ma non all’ideale massimale di O1.

Osserviamo infine che la mappa razionale di X in P1(K) definita da (1 : yx ) non e definita in (1 : 0 : 0). Ma vista come

funzione sui DVR centrati in (1 : 0 : 0), e definita, e precisamente ha come immagine di ((φ∗)−1)(O1 ∩φ∗(K(X ))) il DVR

di P1(K) centrato in (1 : 1), mentre come immagine di ((φ∗)−1)(Oω ∩ φ∗(K(X ))) il DVR di P1(K) centrato in (1 : −1).

4. Immagini di mappe razionali

In questa breve sezione proveremo il seguente risultato, facile conseguenza della teoria sviluppata nel Capitolo 1.

Proposizione 3.19. Sia X una curva proiettiva, e sia φ : X → Pm(K) una mappa razionale non costante. Allora esiste

una curva proiettiva Y di Pm(K) tale che φ e mappa razionale dominante di X in Y.

Dimostrazione. Sia h il minimo intero tale che esiste una varieta proiettiva V di Pm(K) tale che φ e mappa razionale

di X in V . Tale intero ovviamente esiste ed e minore o uguale di m.

Vogliamo provare innanzitutto che per ogni tale V si ha che φ : X → V e dominante. Se cosı non fosse esisterebbe un

sottoinsieme algebrico proprio di V , diciamo W , tale che le immagini di X sono tutte contenute in W . Se W e irriducibile,

cio e assurdo dato che dim(W ) < h. Supponiamo allora W = W1 ∪W2 con Wi sottoinsiemi algebrici propri. Osserviamo

che gli insiemi V1 = φ−1(W1) e V2 = φ−1(W2) sono sottoinsiemi algebrici di V . Mostreremo che le immagini di φ devono

essere contenute o in W1 o in W2. In questo modo procedendo per induzione troveremmo una varieta proiettiva di

dimensione minore di h che contiene tutte le immagini di X , in contraddizione con la definizione di h. Supponiamo quindi

che le immagini di φ non siano contenute ne in W1 ne in W2. Cio significa precisamente che che gli insiemi V1 e V2 sono

sottonsiemi propri, distinti e non vuoti di X \ S, essendo S l’insieme (algebrico e finito) dei punti dove φ non e definita.

Ma allora scrivendo X = (V1 ∪ S) ∪ (V2 ∪ S) si ottiene una contraddizione con l’irriducibilita di X .

Ora e facile concludere che V deve essere una curva (o, equivalentemente, che h = 1): essendo φ : X → V dominante e

non costante, si ha che φ∗(K(V )) e un sottocampo di K(X ) diverso da K. Cio implica che il grado di trascendenza di

K(V ) su K e 1.

Si lascia come esercizio la dimostrazione del fatto che esiste un’unica curva Y come nella Proposizione 3.19.

Definizione 3.20. Sia X una curva proiettiva, e sia φ : X → Pm(K), una mappa razionale non costante. La curva Ydella Proposizione 3.19 si dice la curva immagine di X mediante φ.

5. TRASFORMAZIONI QUADRATICHE DI CURVE PIANE 38

5. Trasformazioni quadratiche di curve piane

5.1. Trasformazioni quadratiche locali. Sia X una curva piana passante per O = (1 : 0 : 0) e tale che la retta

X1 = 0 non sia tangente a X in O. Sia F (X,Y ) = 0 un’equazione affine di X . Sia inoltre x = X1 + I(X )/X0 + I(X ) e

y = X2 + I(X )/X0 + I(X ).

La mappa razionale φ : X → P2(K), φ = (1 : x : yx ) si dice trasformazione quadratica locale di X .

Lemma 3.21. Se O e un punto r-plo di X , allora F ′(X,Y ) = F (X,XY )/Xr e un polinomio irriducibile. Sia Y e la curva

piana di equazione affine F ′(X,Y ) = 0. Allora φ e una mappa birazionale di X in Y.

Dimostrazione. Si osservi innanzitutto che

F (X,Y ) = Fr(X,Y ) + Fr+1(X,Y ) + . . .+ Fv(X,Y )

con Fi omogeneo per i = r, . . . , v e con Fr non nullo e non diviso da X. Pertanto

F ′(X,Y ) = F (X,XY )/Xr =1

Xr

(XrFr(1, Y ) +Xr+1Fr+1(1, Y ) + . . .+XvFv(1, Y )

)e un polinomio, e precisamente

(3) F ′(X,Y ) = Fr(1, Y ) +XFr+1(1, Y ) + . . .+Xv−rFv(1, Y ).

Proviamo quindi che F ′ e irriducibile. Supponiamo che F ′(X,Y ) = G(X,Y )H(X,Y ) con G(X,Y ), H(X,Y ) polinomi non

costanti. Inizialmente esaminiamo la possibilita che H(X,Y ) = h(X). Si osservi che necessariamente h(0) 6= 0, altrimenti

X dividerebbe F ′, cosa che non puo verificarsi per (3). Allora F (X,XY ) = Xrh(X)G(X,Y ). Ponendo Y = Z/X si ha

F (X,Z) = Xrh(X)G(X,Z/X).

Scriviamo G(X,Z/X) individuando il minimo comun denominatore: sia G(X,Z/X) = L(X,Z)/Xd. Osserviamo che per

minimalita si ha che Xd−1G(X,Z/X) non e un polinomio. Inoltre d ≤ r, altrimenti F (X,Z) non sarebbe un polinomio

(per affermare questo stiamo usando il fatto che h(0) 6= 0).

Si ha quindi

F (X,Z) = Xr−dh(X)L(X,Z)

Dato che F (X,Y ) contiene Y , si ha che F (X,Z) deve contenere Z e di conseguenza L non e una costante. Pertanto

l’irriducibilita di F e contraddetta.

Escludiamo adesso la possibilita che sia H(X,Y ) che G(X,Y ) contengano Y . Se cosı fosse, allora

F (X,Z) = XrG(X,Z/X)H(X,Z/X)

= [XmG(X,Z/X)][(Xr−mH(X,Z/X)],

dove entrambi i fattori fra parentesi quadre sono polinomi. Ma sono entrambi non costanti, dato che contengono Z, e cio

contraddice l’irriducibilita di F .

Proviamo adesso che Y e l’immagine di X mediante φ. Ma questo segue immediatemante dalla definizione di F ′: per ogni

punto P = (1 : a : b) di X con a 6= 0 si ha φ(P ) = (1 : a : b/a) e F ′(a, b/a) = 1arF (a, b) = 0.

La birazionalita di φ si vede immediatamente osservando che φ∗(K(Y)) = K(x, y/x) = K(x, y) = K(X ).

Nel caso in cui O sia un punto r-plo ordinario, la trasformazione quadratica locale assume un significato geometrico

interessante. Sia infatti

F (X,Y ) =

r∏i=1

(Y −miX) + Fr+1(X,Y ) + . . .+ Fv(X,Y ).

con m1, . . . ,mr a due a due distinti. Allora

F ′(X,Y ) =

r∏i=1

(Y −mi) +X(G(X,Y )).

Chiaramente i punti affini di Y appartenenti alla retta X = 0 sono i punti (1 : 0 : mi), in corrispodenza biunivica con le

tangenti principali a X in O. Si osserva facilmente che sono punti semplici di Y, e pertanto individuano precisamente r

5. TRASFORMAZIONI QUADRATICHE DI CURVE PIANE 39

DVR di K(Y). I corrispondenti DVR di K(X ) sono precisamente i DVR di K(X ) centrati in O, che quindi si trovano in

corrispondenza biunivoca con le tangenti di X in P . Piu in generale, nel caso in cui O non sia necessariamente un punto

ordinario, vale la seguente proposizione.

Proposizione 3.22. Sia φ come in Lemma 3.21. Il pull-back φ∗ della trasformazione quadratica locale φ definisce una

biiezione fra i DVR di X centrati in O e i DVR di K(Y) centrati nei punti affini di Y appartenenti alla retta X = 0.

Dimostrazione. (1) Proviamo innanzitutto un fatto generale: Un DVR O di una curva piana C e centrato

nel punto P = (1 : a : b) se e solo se vO(x− a) > 0, vO(y − b) > 0. Osserviamo che x− a e y − b appartengono

a MP . Pertanto se O e centrato in P , allora x − a e x − b appartengono anche all’ideale massimale M di O, e

quindi vO(x − a) > 0, vO(y − b) > 0. Viceversa, supponiamo vO(x − a) > 0, vO(y − b) > 0. Osserviamo che

vO(x) = vO((x− a) + a) e uguale a 0 se a 6= 0, ed e maggiore di 0 se a = 0. Similmente vO(y) ≥ 0. Allora dalla

dimostrazione della Proposizione 3.6 segue che il centro di O e un punto affine, diciamo (1 : c : d). Per quanto

dimostrato in precedenza allora vO(x− c) > 0, vO(y − d) > 0. Ma allora vO(c− a) = vO((x− a)− (x− c)) > 0

e vO(d− b) = vO((y − b)− (y − d)) > 0, e questo e possibile solo per a = c e b = d.

(2) Osserviamo che essendo φ birazionale, φ∗ : K(Y) → K(X ) e un K-isomorfismo di campi, e pertanto stabilisce

una biiezione dai DVR di K(Y) nei DVR di K(X ). Bastera allora provare che: (a) ogni DVR OY di K(Y)

centrato in un punto (1 : 0 : b) e tale che φ∗(OY) e centrato in (1 : 0 : 0); (b) ogni DVR OX di K(X ) centrato

in (1 : 0 : 0) e tale che (φ∗)−1(OX ) e centrato in un punto (1 : 0 : b) per qualche b.

(a) Se OY e centrato in (1 : 0 : b), allora vOY (x) > 0, vOY (y−b) > 0. Quindi vφ∗(OY)(φ∗(x)) > 0, vφ∗(OY)(φ

∗(y−b)) > 0. Dato che φ∗(x) = x e φ∗(y) = y/x, abbiamo che

vφ∗(OY)(x) > 0, vφ∗(OY)((y − bx)/x) > 0⇒ vφ∗(OY)(y − bx) > vφ∗(OY)(x) > 0.

Sia b 6= 0. Se fosse vφ∗(OY)(y) ≤ 0, allora vφ∗(OY)(y) sarebbe strettamente minore di vφ∗(OY)(bx), e quindi

vφ∗(OY)(y − bx) ≤ 0. Pertanto vφ∗(OY)(y) > 0. La stessa conclusione vale chiaramente anche per b = 0.

Pertanto in virtu del punto (1), OY e centrato in (1 : 0 : 0).

(b) Se OX e centrato in (1 : 0 : 0), allora vOX (x) > 0, vOX (y) > 0.

Proviamo che vOX (x) ≤ vOX (y). Questo dipende dal fatto che X = 0 non e tangente di X in (1 : 0 : 0).

Supponiamo per assurdo che vOX (x) > vOX (y) > 0. Allora ogni monomio xiyj di grado i+ j ≥ r e tale che

(4) vOX (xiyj) = ivOX (x) + jvOX (y) ≥ rvOX (y) = vOX (yr),

dove vale sempre la disuguaglianza stretta, a parte che nel caso i = 0, j = r.

Dal fatto che X non divide Fr(X,Y ) si puo scrivere

Fr(X,Y ) = aY r +XL(X,Y ), a 6= 0, L omogeneo , deg(L) = r − 1,

Da F (x, y) = 0 segue allora

−ayr = xL(x, y) +v∑

i=r+1

Fi(x, y),

e quindi

vOX (−ayr) = vOX

(xL(x, y) +

v∑i=r+1

Fi(x, y)

).

Ma questo non e possibile per la disuguaglianza triangolare delle valutazioni: da (4) a secondo membro

compaiono tutti addendi con valutazione strettamente maggiore del primo membro.

Quindi

v(φ∗)−1(OX )((φ∗)−1(x)) > 0, v(φ∗)−1(OX )((φ

∗)−1(x)) ≤ v(φ∗)−1(OX )((φ∗)−1(y)).

Dato che (φ∗)−1(x) = x e (φ∗)−1(y) = yx, abbiamo che

v(φ∗)−1(OX )(x) > 0, v(φ∗)−1(OX )(x) ≤ v(φ∗)−1(OX )(xy).

Ne segue v(φ∗)−1(OX )(y) ≥ 0. Quindi il centro di (φ∗)−1(OX ) e sicuramente affine, e di tipo (1 : 0 : b)

essendo v(φ∗)−1(OX )((φ∗)−1(x)) > 0.

6. ESPANSIONE IN SERIE DI LAURENT 40

Sappiamo quindi che in un punto singolare r-plo ordinario sono centrati esattamente r DVR. E che se un punto singolare

r-plo ha m ≤ r tangenti principali, allora sono almeno m i DVR centrati nel punto. In generale, il problema di stabilire

il numero esatto di DVR centrati in un punto singolare non e banale.

Un utile strumento in tal senso e il seguente teorema.

Teorema 3.23. Ogni curva piana proiettiva e birazionalmente equivalente a una curva piana con sole singolarita

ordinarie.

Non daremo la dimostrazione del Teorema 3.23. Diremo soltanto che e una dimostrazione costruttiva, nel senso che

esistono algoritmi che consentono di costruire esplicitamente la mappa birazionale da una curva piana arbitraria in una

curva piana con sole singolarita ordinarie.

Forse questo e il momento di citare un altro teorema fondamentale, la cui dimostrazione esula dagli scopi del corso.

Teorema 3.24. Ogni curva proiettiva e birazionalmente equivalente a una curva proiettiva non singolare (non

necessariamente piana).

6. Espansione in serie di Laurent

6.1. Serie formali di potenze. Sia K[[T ]] l’insieme degli elementi della forma

a0 + a1T + a2T2 + . . .+ anT

n + . . . , ai ∈ K,

nel quale due operazioni, somma e prodotto, sono definite come segue:

(a0 + a1T + a2T2 + · · · ) + (b0 + b1T + b2T

2 + · · · )= (a0 + b0) + (a1 + b1)T + (a2 + b2)T 2 + · · · ;

(a0 + a1T + a2T2 + · · · )× (b0 + b1T + b2T

2 + · · · )= a0b0 + (a0b1 + a1b0)T + (a2b0 + a1b1 + a0b2)T 2 + · · · .

Allora (K[[T ]],+,×) e un anello commutativo unitario i cui elementi sono chiamati serie formali di potenze. L’unita e

rappresentata dall’elemento 1 + 0X + 0Y + · · · , mentre lo zero da 0 + 0X + 0Y + · · · . Una serie formale di potenze puo

essere scritta nella forma

F = F0 + F1 + F2 + · · · ,

dove Fi e un polinomio omoteneo in T di grado i. Con questa convenzione, se

G = G0 +G1 +G2 + · · · ,

allora

F +G = (F0 +G0) + (F1 +G1) + · · · ,(5)

F G = (F0G0) + (F0G1 + F1G0) + · · · .(6)

Se F = Fr + Fr+1 + · · · , con Fr 6= 0, allora r e detto l’ordine o sottogrado of F. L’elemento 0 = 0 + 0X + 0Y + · · ·chiaramente non ha un ordine; la convenzione e scrivere ord(0) =∞. Allora, per F,G ∈ K[[T ]],

ord(F +G) ≥ minord(F ), ord(G),ord(FG) = ord(F ) + ord(G).

Dato che K[[T ]] e un dominio di integrita, ha un campo dei quozienti

K((T )) = F/G | F,G ∈ K[[T ]], G 6= 0,

chiamato campo dei quozienti delle serie formali di potenze, o anche campo delle serie formali di Laurent.

6. ESPANSIONE IN SERIE DI LAURENT 41

Dati F1, F2, . . . ∈ K[[T ]], la definizione di∑ni=0 Fi segue dalla definizione della somma di due serie formali di potenze,

(5). E possibile anche definire una somma infinita∑∞i=0 Fi, a patto che ord(Fi) → ∞ per i → ∞. Sia Fi = Fi0 + Fi1 +

· · ·+ Fij + · · · , e si supponga che ord(Fi)→∞ per i→∞; allora si definisca

∞∑i=0

Fi =

∞∑i=0

Fi0 +

∞∑i=0

Fi1 + · · · .

Cio ha senso, dato che ogni somma∑∞i=0 Fij e in realta una somma finita (per ogni j esiste i tale che se i ≥ i allora

ord(Fi) > j, e quindi Fij = 0). Valgono le seguenti proprieta:

∞∑i=0

Fi +

∞∑i=0

Gi =

∞∑i=0

(Fi +Gi);(7)

F

∞∑i=0

Gi =

∞∑i=0

FGi.(8)

Teorema 3.25. Gli elementi invertibili in K[[T ]] sono le serie formali di potenze di ordine 0.

Dimostrazione. Sia F invertibile in K[[T ]]. Allora esiste G ∈ K[[T ]] tale che FG = 1; pertanto 0 = ord(1) =

ord(FG) = ord(F ) + ord(G). Dato che ord(F ) e ord(G) sono non negativi, si ha ord(F ) = ord(G) = 0.

Viceversa, sia ord(F ) = 0; allora, con a0 6= 0,

F = a0 + a1T + a2T2 + · · ·

= a0(1 +a1

a0T +

a2

a0T 2 + · · · )

= a0(1−G(T )),

con ord(G(T )) > 0. Scriviamo

(9) F = a0(1−G).

Si noti che se ord(G) = r, allora ord(Gi) = ir e quindi ord(Gi) → ∞ per i → ∞. Pertanto∑∞

0 Gi ha senso. Quindi,

moltiplicando (9) per∑∞

0 Gi otteniamo:

F (1 +G+G2 + · · ·+Gi + · · · )= a0(1−G)(1 +G+G2 + · · ·+Gi + · · · )

= a0(1−G)

∞∑i=0

Gi

= a0

∞∑i=0

(1−G)Gi

= a0

∞∑i=0

(Gi −Gi+1)

= a0(1−G+G−G2 + · · · )= a0.

Dividendo per a0 si ottiene

F (a0−1(1 +G+G2 + · · ·+Gi + · · · )) = 1;

vale a dire, F e invertibile con inversa a0−1(1 +G+G2 + · · ·+Gi + · · · ).

Per F ∈ K[[T ]] con ord(F ) = r scriviamo d’ora in poi

F = T r(ar + ar+1T + · · · ) = T rE(T )

con E(T ) invertibile.

Proposizione 3.26. L’anello delle serie formali di potenze K[[T ]] e un DVR.

6. ESPANSIONE IN SERIE DI LAURENT 42

Dimostrazione. Gia sappiamo che K[[T ]] e un dominio di integrita. Dalla Proposizione precedente segue che K[[T ]]

e locale con ideale massimale principale, dato che gli elementi non invertibili sono precisamente i multipli di T . Resta da

mostrare che K[[T ]] e noetheriano. Sia I un ideale di K[[T ]]. Come nel Lemma 3.11 dimostreremo che I e principale.

Consideriamo l’insieme

Λ = r ∈ N | T r ∈ I.Tale insieme e non vuoto. Infatti, se F ∈ I, F 6= 0, scrivendo F = T rE(T ) si ha subito T r = FE−1 ∈ I. Sia n il minimo

elemento di Λ. Banalmente si ha che 〈Tn〉 ⊆ I. Viveversa, per ogni G ∈ I non nullo si scriva G = T sL con L invertibile.

Allora T s ∈ I e quindi s ≥ n. Questo dimostra che G = TnT s−nL ∈ 〈Tn〉. Pertanto I = 〈Tn〉.

Il campo delle serie formali di Laurent (ovvero il campo dei quozienti di K[[T ]]) si puo descrivere come

K((T )) = F/G | F,G ∈ K[[T ]], G 6= 0

=

T sE1(T )

T rE2(T )= T s−rE(T ) = TmE(T )

,

con E1(T ), E2(T ), E(T ) invertibili in K[[T ]] e m un intero. La definizione di ord(F ) si estende a K((T )): quando

F = TmE(T ) ∈ K((T )) con E(T ) invertibile in K[[T ]], allora ord(F ) = m.

Se τ ∈ K[[T ]], τ 6= 0 with ord(τ) ≥ 1, allora la sostituzione T 7→ τ e la funzione

(10)K[[T ]]→ K[[T ]],∑∞i=0 ciT

i 7→∑∞i=0 ciτ

i.

L’ordine della sostituzione e l’ordine di τ . E immediato che una tale mappa e un K-monomorfismo di K[[t]].

Riportiamo il seguente teorema senza dimostrazione (si veda [5, p. 66]).

Teorema 3.27. (i) I K-monomorfismi di K[[T ]] sono precisamente le sostituzioni T 7→ τ .

(ii) Un K-monomorfismo di K[[T ]] e un K-automorfismo se e solo se la sostituzione associata ha ordine 1.

(iii) Ogni K-monomorfismo di K((T )) induce un K-monomorfismo di K[[T ]], e viceversa.

6.2. Espansione di una funzione razionale. Sia O un DVR di K(X ) e sia t un parametro locale di O. Possiamo

usare t per costruire un’immersione φt di O (resp. K(X )) nell’anello delle serie formali di potenze K[[T ]] (resp. nel campo

delle serie formali di Laurent K((T ))).

Sappiamo dalla Proposizone 3.3 che K e isomorfo a O/〈t〉. Per ogni α ∈ O allora esiste un unico c0 in K tale che

α = c0 + α1t, con α1 ∈ O.

Iterando il processo si vede facilmente che per ogni intero positivo i esistono e sono unici c0, c1, . . . , ci ∈ K tali che

α = c0 + c1t+ . . .+ citi + αi+1t

i+1, αi+1 ∈ O.

La mappa φt e innanzitutto definita sugli elementi α di O da

φt(α) =

∞∑i=0

ciTi.

Proposizione 3.28. La mappa φt e un K-monomorfismo iniettivo di anelli. Inoltre per ogni α in O si ha ordO(α) =

ord(φt(α)).

Dimostrazione. Se φt(α) = φt(β), allora ordO(α − β) ≥ n per ogni n, cioe α − β = 0. Questo prova che φt e

iniettiva. Naturalmente φt fissa K[t] elemento per elemento, e quindi ovviamente K elemento per elemento. Mostriamo

che φt e un omomorfismo di anelli. Sia

α = a0 + a1t+ . . .+ aiti + αi+1t

i+1, αi+1 ∈ O,

e

β = b0 + b1t+ . . .+ biti + βi+1t

i+1, βi+1 ∈ O.

6. ESPANSIONE IN SERIE DI LAURENT 43

Allora

α+ β = a0 + b0 + (a1 + b1)t+ . . .+ (ai + bi)ti + (αi+1 + βi+1)ti+1, αi+1 + βi+1 ∈ O.

Questo dimostra che i primi i termini di φt(α + β) sono gli stessi di φt(α) + φt(β). Per arbitrarieta di i si ha allora

φt(α+ β) = φt(α) + φt(β).

Si ha inoltre

αβ = (a0b0) + (a0b1 + a1b0)t+ . . .+ (a0bi + . . .+ aib0)ti + γti+1

con

γ = a0βi+1 + a1bi + . . .+ aib1 + αi+1a0 ∈ Oe quindi vale anche che i primi i termini di φt(αβ) sono gli stessi di φt(α)φt(β), per cui di nuovo dall’arbitrarieta di i

segue φt(αβ) = φt(α)φt(β).

Infine e immediato verificare che ordO(α) = ord(φt(α)).

Per estendere φt a K(X ) basta osservare che K(X ) e il campo dei quozienti di O, e pertanto φt : O → K[[T ]] si estende in

modo naturale a un K-monomorfismo di campi da K(X ) al campo dei quozienti di K[[T ]], ovvero K((T )). La definizione

esplicita di φt per α ∈ K(X ) puo essere data in modo molto semplice scrivendo

α = tru, r ∈ Z, u ∈ O \M,

da cui

φt(α) = T rφt(u) ∈ K((T )), ord(φt(u)) = 0.

Pertanto ogni parametro locale di un DVR di K(X ) determina un’immersione di K(X ) nel campo delle serie formali di

Laurent. Due domande naturali si pongono: e vero che ogni immersione di K(X ) nel campo delle serie formali di Laurent

e di tipo φt per qualche parametro locale? quando due immersioni sono associate a parametri locali dello stesso DVR?

Proposizione 3.29. Sia η : K(X ) → K((T )) un K-monomorfismo di campi. Allora esiste t ∈ K(X ), parametro locale

di un DVR di K(X ), tale che η = φt se e solo se T ∈ Im(η).

Dimostrazione. La condizione necessaria segue banalmente da φt(t) = T .

Supponiamo quindi che T ∈ Im(η), e sia inoltre t ∈ K(X ) tale che η(t) = T . Sia

O = α ∈ K(X ) | η(α) ∈ K[[T ]].

Proviamo che O e DVR di K(X ) utilizzando la Proposizione 3.8.

La condizione (a) e banalmente soddisfatta: K ⊂ O, t ∈ O \K, 1/t ∈ K(X ) \O essendo η(1/t) = 1/T .

Sia quindi α ∈ K(X ) \O. Allora η(α) /∈ K[[T ]], e quindi η(1/α) ∈ K[[T ]]. Si ha pertanto 1/α ∈ O. Questo dimostra che

la condizione (b) vale, e pertanto O e un DVR di K(X ).

L’ideale massimale di O e dato dagli elementi non invertibili di O. Sia allora α ∈ O, α non invertibile in O. Scriviamo

α = t · αt.

Per dimostrare che t e un parametro locale di O basta provare che α/t ∈ O. Cio e equivalente a ord(η(α/t)) =

ord(η(α)/T ) ≥ 0, o anche ord(η(α)) > 0.

Chiaramente η(1/α) e l’inverso di η(α) in K((T )). Se fosse ord(η(α)) = 0 allora anche ord(η(1/α)) = 0, cioe 1/α ∈ O,

ma cio e impossibile perche α era stato scelto non invertibile in O.

A questo punto resta da dimostrare che η = φt. Basta provare che η e φt coincidono su O, perche in tal caso ovviamente

coincidono anche le estensioni al campo dei quozienti di O. Sia allora α ∈ O con

α = a0 + a1t+ . . .+ aiti + αi+1t

i+1, αi+1 ∈ O.

Risulta φt(α) = a0 + a1T + . . .+ aiTi + φt(αi+1)T i+1, ord(φt(αi+1)) ≥ 0. D’altro canto, dato che η fissa K e η(t) = T ,

si ha η(α) = a0 + a1T + . . .+ aiTi + η(αi+1)T i+1. Da αi+1 ∈ O segue ord(η(αi+1)) ≥ 0, e quindi η(α) e φt(α) coincidono

nei primi i termini. Per arbitrarieta di i si ha η(α) = φt(α).

6. ESPANSIONE IN SERIE DI LAURENT 44

Proposizione 3.30. Siano t, t′ parametri locali dei DVR O,O′ di K(X ), rispettivamente. Allora O = O′ se e solo se

esiste un K-automorfismo σ : K((T ))→ K((T )) tale che φt = σ φt′ .

Dimostrazione. Supponiamo O = O′ e consideriamo la mappa σ = φt φ−1t′ , K-omomorfismo di φt(K(X )) in

K((T )). Dato che ordO(t′) = 1 si ha evidentemente che σ(T ) = φt(t′) e una serie di potenze di ordine 1. Proviamo che

per ogni G(T ) ∈ φt(K(X )) si ha σ(G(T )) = G(σ(T )). Sia G(T ) =∑∞n=0 anT

n. Allora per ogni i ≥ 0 possiamo scrivere

G(T ) = a0 + a1T + · · ·+ aiTi + E(T )T i+1, E(T ) ∈ K[[T ]] ∩ φt′(K(X )).

(si osservi che E(T ) ∈ φt′(K(X )) dato che appartengono a φt′(K(X )) gli elementi G(T ), T , le loro potenze e le loro

combinazioni a coefficienti in K). Dato che σ e un K-omomorfismo abbiamo allora che

σ(G(T )) = a0 + a1σ(T ) + · · ·+ ai(σ(T ))i + σ(E(T ))(σ(T ))i+1.

Osserviamo che σ conserva gli ordini, dato che sia φt che φ−1t′ lo fanno. Pertanto σ(E(T )) ∈ K[[T ]]. Quindi i primi i

termini di σ(G(T )) e di G(σ(T )) coincidono. Dall’arbitrarieta di i segue allora σ(G(T )) = G(σ(T )). In altri termini, σ e

la restrizione a φt′(K(X )) dell’automorfismo σ di K((T )) definito dalla sostituzione T 7→ σ(T ) (si consideri il Teorema

3.27).

Viceversa, se esiste un K-automorfismo σ : K((T ))→ K((T )) tale che φt = σ φt′ , allora per il Teorema 3.27 esiste una

serie di potenze F (T ) di ordine 1 tale che

(φt(α))(T ) = σ(φt′(α)(T )) = (φt′(α))(F (T )).

In particolare φt(t′) = F (T ). Cio implica che ordO(t′) = 1, e quindi O = O′.

6.3. Rami di una curva algebrica (cenni). Sia P = (a0 : . . . : an) un punto di X , curva di Pn(K). Per semplicita

supporremo a0 6= 0, e quindi dividendo se necessario le coordinate omogenee di P per a0, possiamo assumere a0 = 1. Si

ponga come di consueto xi = Xi + I(X )/X0 + I(X ) per ogni i = 0, . . . , r. Sia O un DVR di K(X ) centrato in P e sia t

un paramatro locale di O. Allora

φt(x1), φt(x2), . . . , φt(xn)

sono serie di potenze, che per comodita scriveremo

x1(T ), x2(T ), . . . , xn(T ).

Proposizione 3.31. Per ogni F ∈ I(X ) si ha

F∗(x1(T ), x2(T ), . . . , xn(T )) = 0.

Dimostrazione. Si ha

F∗(x1(T ), x2(T ), . . . , xn(T )) = F∗(φt(x1), φt(x2), . . . , φt(xn)).

Dato che φt e K-omomorfismo di campi si ha

F∗(x1(T ), x2(T ), . . . , xn(T )) = φt(F∗(x1, x2, . . . , xn)).

Tenendo conto del fatto che F ∈ I(X ), si ha che F∗(x1, x2, . . . , xn) = 0, da cui l’asserto.

Nel caso in cui K e il campo dei numeri complessi, le serie di potenze formali possono essere anche serie di potenze

sostanziali. In particolare, nel caso in cui il minimo raggio di convergenza delle serie x1(T ), x2(T ), . . . , xn(T ) sia stretta-

mente positivo, per ogni z ∈ C per cui le serie convergono in z si ha che Pz = (1 : x1(z) : . . . : xn(z)) e un punto di Pn(C).

In virtu della precedente Proposizione Pz e in realta un punto di X .

Quindi ogni DVR centrato in P determina una sorta di parametrizzazione analitica di una porzione di curva (costituita

da infiniti punti). Questa e la nozione intuitiva di ramo di una curva algebrica complessa. Una trattazione rigorosa

dell’argomento si puo trovare in [1].

7. ZERI E POLI 45

7. Zeri e poli

Si ricorda che uno zero (resp. polo) di una funzione razionale α ∈ K(X ) e un DVR O di K(X ) tale che ordO(α) > 0

(resp. < 0). Nel caso di curva non singolare i DVR di K(X ) sono precisamente gli anelli locali K[X ]P . In tal caso per

comodita si puo chiamare zero (polo) il punto P invece del DVR K[X ]P .

7.1. Esistenza degli zeri. La prima parte di questa sezione e dedicata a dimostrare qualcosa di apparentemente

ovvio: ogni funzione razionale non costante ha almeno uno zero. Sembra ovvio perche se X e birazionalmente equivalente

alla curva piana f(X,Y ) = 0 allora una funzione razionale G + 〈f〉/H + 〈f〉 apparentemente si annulla in tutti i puinti

comuni alle curve f(X,Y ) = 0 e G(X,Y ) = 0. Ma che succede al denominatore? Che succede se i punti di intersezione

sono tutti singolari?

Proviamo il seguente lemma.

Lemma 3.32. Sia R un sottoanello di K(X ) contenente K, e sia I un suo ideale proprio. Allora esiste O DVR di K(X )

tale che

R ⊆ O, I ⊆M,

dove M indica l’ideale massimale di O.

Dimostrazione. Consideriamo l’insieme

F = S sottoanello di K(X ) contenente R e tale che IS 6= S.

Si ha che R ∈ F , pertanto F e non vuoto. Proviamo che F e induttivamente ordinato dall’inclusione, o in altri termini

che ogni sottoinsieme totalmente ordinato H possiede un maggiorante. Ovviamente il candidato a essere maggiorante di

H e

T = ∪S | S ∈ H.Chiaramente T e un sottoanello di K(X ) contenente R. Dobbiamo provare IT 6= T . Se cio non fosse vero, allora

1 =

d∑ν=1

aνsν , aν ∈ I, sν ∈ T.

Dato che H e totalmente ordinato, esiste S0 ∈ H con s1, . . . , sd ∈ S0, e quindi si avrebbe 1 ∈ IS0, una contraddizione.

Dal Lemma di Zorn allora F contiene un elemento massimale, cioe esiste O ∈ F tale che R ⊆ O ⊆ K(X ), IO 6= O, e O

massimale rispetto a tali proprieta. Vogliamo provare che O e DVR di K(X ).

Osserviamo che dato che I e ideale proprio di O, l’anello O non puo essere un campo e quindi O ( K(X ); inoltre I non

contiene elementi invertibili di O. Si ha poi K ⊂ R, e quindi K ( O.

Per concludere la dimostrazione basta escludere che esista z ∈ K(X ) con z /∈ O e 1/z /∈ O. Supponiamo per assurdo che

cio sia vero. Allora per massimalita di O si avrebbe

IO[z] = O[z], IO[z−1] = O[z−1].

Pertanto 1 ∈ IO[z] ∩ IO[z−1], ed esisterebbero a0, a1, . . . , an, b0, b1, . . . , bm ∈ IO con

1 = a0 + a1z + . . .+ anzn = b0 + b1z

−1 + . . .+ bmz−m.

Chiaramente n ≥ 1,m ≥ 1 altrimenti 1 ∈ IO. Possiamo assumere senza restrizione che n e m siano minimali e che m ≤ n.

Allora moltiplicando le due relazioni precedenti per (1− b0) e per anzn rispettivamente otterremmo

(1− b0) = (1− b0)a0 + (1− b0)a1z + . . .+ (1− b0)anzn

e

anzn = anz

nb0 + anb1zn−1 + . . .+ anbmz

n−m,

da cui, sommando le due equazioni, una relazione di tipo

1 = c0 + c1z + . . .+ cn−1zn−1, ci ∈ IO,

contro la minimalita di n.

7. ZERI E POLI 46

Corollario 3.33. Ogni funzione α ∈ K(X ) \K ha almeno uno zero.

Dimostrazione. Si applichi il precedente Lemma a R = K[α] e I = 〈α〉. Cio e possibile essendo I ( R (altrimenti

1 = α · g(α) implicherebbe α algebrico su K). E evidente allora che O e uno zero di α.

Di interesse indipendente e anche il seguente corollario.

Corollario 3.34. Ogni punto P di una curva proiettiva X e centro di almeno un DVR di K(X ).

Dimostrazione. Si applichi il Lemma 3.32 al caso R = K[X ]P e I = MP . Esiste quind un DVR O con K[X ]P ⊆ Oe MPO 6= O. Dato che MO contiene tutti gli ideali propri di O, si ha MP ⊆ MO e quindi MP ⊆ MO ∩K[X ]P . Inoltre

MP contiene tutti gli ideali propri di K[X ]P , e pertanto MP = MO ∩K[X ]P .

7.2. Il Teorema di indipendenza. Il senso del prossimo teorema e il seguente: se O1, . . . , On sono DVR distinti

di K(X ), e α ∈ K(X )∗, allora conoscere le valutazioni di α in O1, . . . , On−1 non da nessuna informazione su ordOn(α).

Teorema 3.35. Dati O1, . . . , On DVR di K(X ), x1, . . . , xn ∈ K(X ), r1, . . . , rn ∈ Z, esiste x ∈ K(X ) con

ordOi(x− xi) = ri, per i = 1, . . . , n.

Dimostrazione. La dimostrazione e abbastanza tecnica e per questo sara divisa in 4 passi. Per semplicita scriveremo

vi al posto di ordOi .

1. Esiste u ∈ K(X ) con v1(u) > 0, vi(u) < 0 per i = 2, . . . , n.

Ragioniamo per induzione su n. Sia n = 2. Ricordiamo che per il Lemma 3.5 non si possono avere due DVR

distinti di cui uno contenuto nell’altro; pertanto esistono y1 ∈ O1 \O2 e y2 ∈ O2 \O1. L’elemento u = y1/y2 ha

la proprieta desiderata.

Sia n > 2. Per ipotesi induttiva abbiamo y con v1(y) > 0 e vi(y) < 0 per i = 2, . . . , n−1. Se anche vn(y) < 0

la dimostrazione e conclusa. In caso contrario scegliamo z con v1(z) > 0 e vn(z) < 0, e poniamo u = y + zr.

Qui r ≥ 1 e scelto in modo tale che r · vi(z) 6= vi(y) per i = 1, . . . , n− 1. Ne segue

v1(u) > 0, vi(u) = minvi(y), r · vi(z) < 0 per i = 2, . . . , n.

2. Esiste w ∈ K(X ) con v1(w − 1) > r1, vi(w) > ri per i = 2, . . . , n.

Si scelga u come nel passo 1 e si ponga w = (1 + us)−1. Per s abbastanza grande si ha

v1(w − 1) = v1

(− us

1 + us

)= sv1(u) > r1,

e

vi(w) = −svi(u) > ri, per i = 2, . . . , n.

3. Dati y1, . . . , yn ∈ K(X ) esiste z ∈ K(X ) con vi(z − yi) > ri per i = 1, . . . , n.

Scegliamo s ∈ Z tale che vi(yj) ≥ s per ogni i, j. Dal passo 2 esistono w1, . . . , wn con

vi(w1 − i) > ri − s, vi(wj) > ri − s per i 6= j.

Allora z =∑nj=1 yjwj ha le proprieta desiderate.

4. Conclusione.

Dal passo 3 possiamo trovare z tale che vi(z − xi) > ri, i = 1, l . . . , n. Scegliamo poi zi con vi(zi) = ri. Di

nuovo dal passo 3 esiste z′ con vi(z′ − zi) > ri per i = 1, . . . , n. Ne segue che

vi(z′) = vi((z

′ − zi) + zi) = minvi(z′ − zi), vi(zi) = ri.

Poniamo x = z + z′. Allora

vi(x− xi) = vi((z − xi) + z′) = minvi(z − xi), vi(z′) = ri.

7. ZERI E POLI 47

7.3. Sul numero di zeri di una funzione razionale. Abbiamo visto in una delle sezioni precedenti che ogni

funzione razionale non costante ha almeno uno zero. Grazie al Teorema di Indipendenza siamo in grado ora di dare una

limitazione superiore al numero di zeri che una funzione razionale puo avere. In particolare mostreremo che tale numero

e finito. Questo risultato sara precisato ulteriormente con il Teorema 3.45.

Proposizione 3.36. Sia x ∈ K(X ) \K. Sia Z l’insieme dei DVR O di K(X ) per cui ordO(x) > 0. Allora∑O∈Z

ordO(x) ≤ [K(X ) : K(x)].

Dimostrazione. Osserviamo preliminarmente che il grado [K(X ) : K(x)] e finito, in virtu del Lemma 3.2. Scriviamo

d = [K(X ) : K(x)], e supponiamo per assurdo che∑O∈Z ordO(x) > d. Esistono quindi O1, . . . , Or zeri di x con

(11)

r∑i=1

ni > d.

dove ni = ordOi(x).

Utilizziamo il Teorema di Indipendenza. Osserviamo che per ogni i = 1, . . . , r esiste una funzione razionale ti con le

seguenti proprieta:

ordOi(ti) = −1, ordOj (ti) = 0 per ogni j 6= i, 1 ≤ j ≤ r.

La contraddizione a cui giungeremo. Proveremo che gli elementi

tki , 1 ≤ i ≤ r, 1 ≤ k ≤ nisono linearmente indipendenti su K(X ). Questo naturalmente contraddice (11).

Se le funzioni tki fossero dipendenti su K(X ), allora si avrebber∑i=1

ni∑k=1

φi,k · tki = 0, per qualche φi,k ∈ K(x).

Dopo aver eventualmente eliminato i denominatori si puo ottenere una relazione dello stesso tipo con φi,k ∈ K[x]. Dopo

aver messo in evidenza x col massimo grado possibile possiamo anche supporre che x non divida φi,k per almeno una

coppia i, k. In altri termini possiamo supporre

φi,k = fi,k + xgi,k(x), fi,k ∈ K, gi,k ∈ K[x], fi,k non tutti nulli .

Pertantor∑i=1

ni∑k=1

fi,k · tki + x

r∑i=1

ni∑k=1

gi,k · tki = 0.

Siano ora i0 e k0 tali che fi0,k0 6= 0, e k0 sia il massimo per cui cio accade. Ovviamente dall’uguaglianza precedente segue

immediatamente che

ordOi0

(r∑i=1

ni∑k=1

fi,k · tki

)= ordOi0

(x

r∑i=1

ni∑k=1

gi,k · tki

).

Ora, da un lato

ordOi0

(r∑i=1

ni∑k=1

fi,k · tki

)< 0,

dato che (1) per i 6= i0 ordOi0 (fi,ktki ) ≥ 0, (2) ordOi0 (fi0,k0t

k0i0

) = −k0, e (3) per k 6= k0 i valori ordOi0 (fi0,ktki0

) sono

maggiori di −k0 sia nel caso in cui fi0,k 6= 0, che nel caso in cui fi0,k = 0.

Ma d’altro canto

ordOi0

(x

r∑i=1

ni∑k=1

gi,k · tki

)≥ 0,

dato che (1) per i 6= i0 ordOi0 (xgi,ktki ) ≥ 0, (2) ordOi0 (xgi0,kt

ki0

) ≥ ordOi0 (x)− k = ni0 − k ≥ 0.

Le due conclusioni sono in contraddizione, e cio prova allora che gli elementi tki sono linearmente indipendenti su K(X ).

8. DIVISORI 48

Corollario 3.37. Il numero di zeri e di poli di una funzione razionale x ∈ K(X )∗ e finito.

Dimostrazione. L’asserto e ovvio se x ∈ K∗. E gia stato osservato nella dimostrazione della Proposizione 3.36 che

se x ∈ K(X ) \K allora il grado [K(X ) : K(x)] e finito. Quindi l’asserto vale per il numero di zeri. Per quanto riguarda

il numero di poli, basta osservare che i poli di x coincidono con gli zeri di 1/x ∈ K(X ) \K.

Corollario 3.38. Il numero di DVR centrati in un punto P di X e finito.

Dimostrazione. Sia α ∈MP , α 6= 0. Allora per ogni DVR O centrato in P si ha ordO(α) > 0, ovvero O e uno zero

di α. L’asserto segue dal fatto che il numero di zeri di α e finito.

8. Divisori

Sia X una curva algebrica piana non singolare. Sia P l’insieme dei DVR di K(X ). Diversamente dalle sezioni precedenti,

ricordando che nel caso in cui X sia non singolare i DVR di K(X ) sono in biiezione con in punti di X , un elemento di P

sara denotato con la lettera P . Inoltre negli esempi riguardanti curve non singolari i punti di X e i DVR corrispondenti

potranno essere indicati con lo stesso simbolo (in altri termini P indichera sia un punto di X che K[X ]P ).

Il gruppo abeliano libero generato dai DVR di K(X ) e chiamato il gruppo dei divisori di X . I suoi elementi sono detti

divisori di X . In altre parole, un divisore D e una somma formale finita di elementi di P, ovvero D =∑P∈P npP , dove

nP e un intero, diverso da 0 solo per un numero finito di elementi di P.

Il supporto di D si definisce come supp(D) := P ∈ P | nP 6= 0. Due divisori D =∑P∈P npP e D′ =

∑P∈P n

′pP si

sommano in modo naturale

D +D′ :=∑P∈P

(np + n′P )P .

L’elemento neutro del gruppo dei divisori e∑P∈P nPP con nP = 0 per ogni P ∈ P. Sara denotato come 0.

Un ordine parziale nel gruppo dei divisori e definito da

D ≤ D′ ⇔ nP ≤ n′P per ogni P ∈ P.

Se nP ≥ 0 per ogni P ∈ P diremo che D e positivo o effettivo. Il grado di D e la somma degli interi nP , ovvero

deg(D) =∑P∈P np.

Ad ogni funzione razionale f non nulla si associa in modo naturale un divisore: (f) :=∑ordP (f)P . Tale divisore e il

divisore nullo se e solo se f e costante. Se viceversa f /∈ K, allora (f) si puo scrivere come differenza di due divisori effettivi:

(f) = (f)0 − (f)∞, dove (f)0 =∑ordP (f)>0 ordP (f)P e il divisore degli zeri di f , e (f)∞ =

∑ordP (f)<0−ordP (f)P e il

divisore dei poli di f .

Esempio 3.39. Siano X e f definiti come nell’Esempio 1.38. Allora (f) = 2P0 − 2P∞.

Due divisori D e D′ sono detti linearmente equivalenti se D −D′ = (f) per qualche funzione razionale f .

Il concetto che introduciamo adesso giochera un ruolo cruciale nel seguito. Dato un divisore D =∑npP , l’insieme di

tutte le funzioni razionali f tali che ordP (f) ≥ −nP in ogni DVR P (comprendente anche la funzione nulla), si dice spazio

associato a D e si denota con L(D). In altri termini,

L(D) = f ∈ K(X )∗ | (f) +D ≥ 0 ∪ 0.

Per un divisore effettivo D, L(D) consiste di quelle funzioni f tali che tutti i poli di f appartengono al supporto di D, e

la molteplicita di ogni polo P di f e minore o uguale di nP . Si verifica facilmente che L(D) e uno spazio vettoriale su K,

la cui dimensione si indica con `(D).

Si denoti con DX il gruppo dei divisori di X . Proveremo il seguente lemma.

Lemma 3.40. Sia D ∈ DX .

(1) Se D′ e linearmente equivalente a D, allora L(D) e isomorfo a L(D′) (come spazio vettoriale su K);

(2) L(0) = K.

8. DIVISORI 49

Dimostrazione. (1) Siccome D e D′ sono equivalenti esiste z ∈ K(X ) tale che D = D′ + (z). Si definisca

l’applicazione ϕ : L(D) → K(X ), x 7→ xz. Chiaramente ϕ e K-lineare e la sua immagine e contenuta in

L(D′): ordP (xz) = ordP (x) + ordP (z) ≥ −nP + ordP (z) = −n′P per ogni P ∈ P. Inolte ϕ e biiettiva dato che

ψ : L(D′)→ L(D), x 7→ xz−1 e una sua inversa.

(2) Chiaramente K e contenuto in L(0). D’altro canto ogni elemento in L(0) non ha poli, e quindi e necessariamente

costante.

Dimostriamo una limitazione superiore alla dimensione di L(D).

Proposizione 3.41. Sia D un divisore effetivo. Allora

dimK(L(D)) ≤ deg(D) + 1 .

Dimostrazione. Proviamo l’asserto per induzione su deg(D). Se deg(D) = 0, allora D ≥ 0 implica D = 0. Dal

Lemma 3.40 segue dunque che

dimK(L(D)) = dimK(L(0)) = dimK(K) = 1 = deg(D) + 1 .

Supponiamo allora che deg(D) > 0. Allora esiste P ∈ P tale che nP > 0. Sia D′ = D − P . Essendo D′ ≥ 0 e deg(D′) =

deg(D)− 1, per ipotesi induttiva si ha dimK(L(D′)) ≤ deg(D). Per completare la dimostrazione rappresenteremo L(D′)

come nucleo di una applicazione lineare di L(D) in K. Sia t parametro locale di K(X ) in P . Osserviamo che per ogni α

in L(D) si ha ordP (tnPα) = nP + ordP (α) ≥ 0, ovvero tnPα appartiene al DVR P . Pertanto l’applicazione

Φ : L(D)→ K, α 7→ (tnPα)(P ) := φt(tnPα)(0)

e ben definita (si ricordi che φt e l’espansione in serie lineari di potenze rispetto a t). Si verifica immediatamente che Φ e

K-lineare. Inoltre, α ∈ Ker(Φ) se e solo se P e uno zero di tnPα, ovvero

ordP (tnPα) > 0⇔ ordP (α) ≥ (nP − 1)⇔ (α) +D′ ≥ 0.

Pertanto, Ker(Φ) coincide con L(D′). Essendo

dimK(L(D)) = dimK(Ker(Φ)) + dimK(Im(Φ))

l’asserto segue da dimK(Ker(Φ)) ≤ deg(D) e dimK(Im(Φ)) ≤ 1.

Proposizione 3.42. Sia D = D1 −D2, con D1 e D2 effettivi. Allora

dimK(L(D)) ≤ deg(D1) + 1 .

Dimostrazione. E sufficiente osservare che L(D) ⊆ L(D1), e quindi applicare la Proposizione 3.41.

Esempio 3.43. Esaminiamo la curva X definita su F2 da X31 + X3

2 + X30 . Sia D = 2P , con P = (1 : 0 : 1) ∈ X .

Cerchiamo elementi in L(D), ovvero funzioni razionali che hanno un polo di molteplicita al piu 2 in P , e che sono definite

in tutti gli altri punti. Chiaramente ogni costante e contenuta in L(D). Esistono funzioni razionali non costanti in L(D)?

Osserviamo che la retta tangente a X in P e la retta X0 +X2 = 0; tale retta incontra X nel solo punto P , con molteplicita

3. Osserviamo allora che ogni funzione di tipo

α =L(X0, X1, X2)

X0 +X2,

con L polinomio di primo grado, ha polo solo in P , e tale polo ha molteplicita al massimo 3. Per far sı che ordP (α) sia

maggiore o uguale di −2 bastera fare in modo che L rappresenti una retta passante per P diversa dalla tangente. Ad

esempio, si ha che

α :X1

X2 +X0∈ L(D) .

Dato che α e 1 sono chiaramente linearmente indipendenti su K, la dimensione di L(D) e almeno 2. Vedremo in seguito

che in realta vale l’uguaglianza.

8. DIVISORI 50

Esempio 3.44. Sia X : F (X0, X1, X2) = 0 una curva algebrica non singolare di ordine d > 3. Sia D∞ il divisore

D∞ =∑P∈`∞

I(P,X ∩ `∞)P .

Si ponga W = (d− 3)D∞. Si osservi che il grado di W e d(d− 3). Inoltre, ogni funzione

αi0,i1,i2 =Xi0

0 Xi11 X

i22

Xd−30

= xi1 yi2

con i0, i1, i2 non negativi, i0 + i1 + i2 = d− 3, appartiene a L(W ). Le possibilita per gli indici i0, i1, i2 sono in numero di

1 + 2 + . . .+ (d− 2) =(d− 1)(d− 2)

2.

Inoltre le funzioni αi0,i1,i2 sono linearmente indipendenti su K, altrimenti F dovrebbe dividere un polinomio di grado

d− 3. Pertanto la dimensione di L(W ) e almeno (d−1)(d−2)2 . Vedremo in seguito che vale l’uguaglianza.

Concludiamo il capitolo dimostrando finalmente un risultato preciso sul numero di zeri di una funzione razionale.

Teorema 3.45. Sia x ∈ K(X ) \K. Allora

deg((x)0) = [K(X ) : K(x)].

Dimostrazione. Sia d = [K(X ) : K(x)]. Dalla Proposizione 3.36 sappiamo che deg((x)0) ≤ d. Proviamo allora che

deg((x)0) ≥ d. Sia y1, . . . , yd una base di K(X ) su K(x). Introduciamo il divisore effettivo

C =

d∑j=1

(yj)∞.

Fissiamo un intero m ≥ 1 e consideriamo le funzioni razionali

x−iyj , 0 ≤ i ≤ m, 1 ≤ j ≤ d.

Proviamo che questi elementi sono linearmente indipendenti su K. Se fosse∑i,j aijx

−iyj = 0 allora si avrebbe∑j bj(x)yj = 0, con bj(x) =

∑i aijx

−i ∈ K(x). Dal fatto che yj sono linearmente indipendenti su K(x) segue allora

bj(x) = 0, e quindi, dato che x e trascendente su K, ai,j = 0 per ogni i, j.

Si osservi per ogni 0 ≤ i ≤ m, 1 ≤ j ≤ d si ha x−i ∈ L(m(x)0) e yj ∈ L(C). Pertanto

x−iyj ∈ L(m(x)0 + C).

Ne segue

`(m(x)0 + C) ≥ d(m+ 1).

Ma d’altro canto

`(m(x)0 + C) ≤ 1 + deg(m(x)0) + deg(C) = m · deg((x)0) + deg(C) + 1,

e quindi

d(m+ 1) ≤ m · deg((x)0) + deg(C) + 1.

Pertanto

m(deg((x)0)− d) ≥ d− deg(C)− 1.

Se fosse (deg((x)0)− d) < 0, allora m ≤ d−deg(C)−1deg((x)0)−d , in contraddizione con l’arbitarieta di m.

Corollario 3.46. Ogni divisore principale ha grado 0. Inoltre 2 divisori equivalenti hanno sempre lo stesso grado.

Dimostrazione. Data x ∈ K(X ), si ha che l’asserto e ovvio se x ∈ K∗. Se x ∈ K(X ) \K, allora il divisore dei poli

di x coincide con il divisore degli zeri di 1/x. Dal Teorema 3.45 segue che il grado d di (x)∞ e il grado dell’estensione

K(X ) : K(1/x). Ma siccome K(x) = K(1/x), ancora dal Teorema 3.45 si ha che d e uguale al grado di (x)0. Per cui il

grado di (x) e zero.

8. DIVISORI 51

.

Corollario 3.47. Se deg(D) < 0, allora L(D) = 0.

Dimostrazione. Supponiamo che esista x ∈ L(D) con x 6= 0. Essendo deg(x) = 0, si ha che D′ ha lo stesso grado

di D. Allora D′ := D + (x) e effettivo e linearmente equivalente a D. Pertanto 0 ≤ deg(D′) = deg(D), in contraddizione

con l’ipotesi.

Siamo anche in grado di precisare la Proposizione 3.42.

Corollario 3.48. Sia deg(D) ≥ 0. Allora

dimK(L(D)) ≤ deg(D) + 1 .

Dimostrazione. Se dimK(L(D)) = 0, allora l’asserto e chiaramente vero. Se dimK(L(D)) > 0, allora esiste

x ∈ L(D), x 6= 0. Sia D′ = D+ (x). Dalla Proposizione 3.41 si ha che dimK(L(D′)) ≤ deg(D′) + 1. Essendo deg(x) = 0,

si ha che D′ ha lo stesso grado di D. Inoltre L(D) e isomorfo a L(D′), essendo D e D′ equivalenti. Pertanto

dimK(L(D)) = dimK(L(D′)) ≤ deg(D′) + 1 = deg(D) + 1.

Esercizio 17. Sia X : Y n +Xm(1 +Xf(X)) = 0, con n > m una curva piana irriducibile. Si osservi che P = (1 : 0 : 0)

e un punto singolare m-plo per X , con una sola tangente principale. Si dimostri che se (n,m) = 1, allora in P e centrato

un unico DVR O di K(X ), tale DVR e l’unico zero di x e di y, e inoltre valgono

ordO(x) = n, ordO(y) = m

CAPITOLO 4

Genere, Divisori canonici, Teorema di Riemann-Roch, Semigruppo di

Weierstrass

1. Genere e Teorema di Riemann

In questa sezione prepareremo il terreno per uno dei risultati fondamentali sulle curve, il Teorema di Riemann-Roch.

Nel corso del capitolo X indichera come di consueto una curva algebrica proiettiva.

Teorema 4.1 (Teorema di Riemann). Esiste un intero non negativo γ, dipendente solo da X , tale che per ogni divisore

D di X si ha

`(D) ≥ deg(D) + 1− γ.

Dimostrazione. Per ogni divisore D definiamo s(D) = deg(D) + 1− `(D). Il compito e trovare un intero γ tale che

s(D) ≤ γ per ogni D.

0. Premessa: s e monotona non decrescente. Dalla dimostrazione della Proposizione 3.42 abbiamo che per ogni

divisore D si ha `(D − P ) ≥ `(D) − 1. Se ne deduce immediatamente che, in generale, se E e effettivo allora

`(D − E) ≥ `(D)− deg(E).

Proviamo allora che

D1 ≤ D2 ⇒ s(D1) ≤ s(D2).

Sia D2 = D1 + E con E effettivo. Allora `(D1) = `(D2 − E) ≥ `(D2)− deg(E) = `(D2)− deg(D2) + deg(D1).

1. Proviamo l’asserto per i divisori di tipo m(x)0, x /∈ K fissata. Sia x ∈ K(X ) \ K e sia m ≥ 1 intero. Nella

dimostrazione del Teorema 3.45 abbiamo provato che esiste un divisore effettivo C con

`(m(x)0 + C) ≥ deg((x)0)(m+ 1).

Dal passo 0, si ha

`(m(x)0 + C) ≤ `(m(x)0) + deg(C).

Ne segue

`(m(x)0) ≥ deg((x)0)(m+ 1)− deg(C),

ovvero

s(m(x)0) = m · deg((x)0) + 1− `(m(x0)) ≤ deg(C)− deg((x)0) + 1.

Pertanto possiamo definire l’intero

γx = maxs(m(x)0) | m ≥ 1.

2. Proviamo che dato un arbitrario divisore D, esistono D1, A e un intero m ≥ 0 con

D ≤ D1 ∼ A ≤ m(x)0.

Scegliamo D1 effettivo e con D1 ≥ D. Allora per m sufficientemente grande si ha

`(m(x)0 −D1) ≥ `(m(x)0)− deg(D1) ≥ deg(m(x)0)− γx + 1− deg(D1) > 0.

Pertanto esiste z ∈ L(m(x)0 −D1). Si ponga A = D1 − (z). Allora D1 ∼ A, A ≤ m(x)0, come desiderato.

52

2. IL GENERE DI UNA CURVA PIANA NON SINGOLARE 53

3. Conclusione Dalla monotonia di s si ha

deg(D)− `(D) ≤ deg(D1)− `(D1)

e

deg(A)− `(A) ≤ deg(m(x)0)− `(m(x0)).

Pertanto, essendo deg(D1)− `(D1) = deg(A)− `(A), si ha

deg(D)− `(D) + 1 ≤ deg(m(x)0)− `(m(x0)) + 1 ≤ γx.

L’asserto quindi vale per γ = γx.

Definizione 4.2. Il genere g di X e definito da

g = maxdeg(D)− `(D) + 1 | D divisore di K(X ).

Naturalmente la definizione ha senso in virtu del Teorema di Riemann. Inoltre chiaramente il genere di una curva e

sempre non negativo dato che per esempio deg(0) − `(0) + 1 = 0. Il genere e senza dubbio il piu importante invariante

birazionale delle curve algebriche.

Teorema 4.3. Sia X una curva di genere g. Allora esiste un intero c(X ), dipendente solo da K(X ), tale che per ogni

divisore D con deg(D) ≥ c(X ) si ha

`(D) = deg(D) + 1− g.

Dimostrazione. Sia D0 un divisore tale che s(D0) = g. Si ponga c(X ) = deg(D0) + g. Se deg(D) ≥ c(X ), allora

dalla definizione di g segue

s(D −D0) ≤ g,ovvero

`(D −D0) ≥ deg(D)− deg(D0)− g + 1 ≥ c(X )− deg(D0)− g + 1 = 1.

Pertanto esiste 0 6= z ∈ L(D −D0). Sia D′ = D + (z). Allora D′ ≥ D0 e pertanto, dalla monotonia della funzione s,

s(D0) ≤ s(D′).

L’asserto allora segue da s(D0) = g e da s(D′) = s(D) ≤ g.

2. Il genere di una curva piana non singolare

In questa sezione mostreremo come il genere di una curva piana non singolare sia determinato dal suo ordine.

Lemma 4.4. Una funzione razionale β definita in tutti i punti di una curva piana affine X = V (〈f(X,Y )〉) e polinomiale.

Dimostrazione. Sia I l’ideale di K[X,Y ] generato da f e da tutti i possibili denominatori di β, cioe tutti i polinomi

h ∈ K[X,Y ] per cui esiste g ∈ K[X,Y ] con β = g + 〈f〉/h + 〈f〉. Dal Teorema della Base di Hilbert I e finitamente

generato. Sia I = 〈f, h1, . . . , hr〉. Se I fosse un ideale proprio, V (I) sarebbe non vuoto, e quindi esisterebbe un punto P

di X dove si annullano tutti i denominatori di β. Cio vorrebbe dire che β non e definita in P . Allora 1 ∈ I:

1 = vf + v1h1 + . . .+ vrhr, vi ∈ K[X,Y ].

Siano gi ∈ K[X,Y ] tali che β = gi + 〈f〉/hi + 〈f〉. Allora

β = (g1 + 〈f〉) · (1 + 〈f〉)/(h1 + 〈f〉) =

= g1(vf + v1h1 + . . .+ vrhr) + 〈f〉/h1 + 〈f〉 =

=

r∑i=1

(g1vihi + 〈f〉/h1 + 〈f〉) .

2. IL GENERE DI UNA CURVA PIANA NON SINGOLARE 54

Tenendo conto che per ogni i > 1 si ha gih1 − g1hi ∈ 〈f〉, si ha allora

β =

r∑i=1

(givih1 + 〈f〉/h1 + 〈f〉) =

r∑i=1

givi + 〈f〉.

Dato che gi e vi sono polinomi, si ha che β ∈ K[X ].

Teorema 4.5. Sia X = V (〈F (X0, X1, X2)〉) una curva algebrica piana proiettiva non singolare di ordine d e di genere

g. Allora

g =(d− 1)(d− 2)

2.

Dimostrazione. Sia ` una retta che incontra X in d punti distinti. Supponiamo senza restrizione che sia ` : X0 = 0.

Siano P1, . . . , Pd i punti di X ∩ `. Supponiamo inoltre senza restrizione che Pi = [0 : 1 : mi]. Poniamo Pi = K[X ]Pi .

Sia D = P1 + P2 + . . .+ Pd. Proveremo che

(12) se n > d, allora `(nD) =d(2n+ 3− d)

2.

Questo sara sufficiente in quanto dal Teorema 4.3 per n sufficientemente grande si ha `(nD) = n · deg(D)− g+ 1 e quindi

g = nd+ 1− d(2n+ 3− d)/2 = (d− 1)(d− 2)/2.

1. Se α ∈ L(nD), allora α ∈ K[X ]. Essendo X non singolare, ogni α ∈ L(nD) e definita in tutti i punti affini di

X . L’affermazione allora segue dal Lemma 4.4.

2. Per α ∈ K[X ], sia α = G(X0, X1, X2) + 〈F 〉/Xu0 + 〈F 〉, con u minimo. Allora α ∈ L(nD) se e solo se u ≤ n.

Osserviamo che, per ogni i, la retta X0 = 0 passa per il punto semplice Pi ∈ X e non e tangente. Pertanto,

ordPi(α) = si − u,

essendo si la moletplicita di intersezione di X e di G(X0, X1, X2) = 0 in Pi.

Se u ≤ n allora si − u ≥ −n, quindi α ∈ L(nD).

Viceversa, se α ∈ L(nD), allora per ogni i risulta si−u ≥ −n. Quindi u ≤ n+ si. Se fosse u > n si avrebbe

si > 0 per ogni i, e quindi G(X0, X1, X2) = 0 passerebbe per tutti i punti P1, . . . , Pd. Scriviamo

G = G0(X1, X2)Xu0 +G1(X1, X2)Xu−1

0 + . . .+Gu(X1, X2),

F = F0(X1, X2)Xd0 + F1(X1, X2)Xd−1

0 + . . .+ Fd(X1, X2)

con Gj e Fj omogenei di grado j. Ricordiamo che Pi = (0 : 1 : mi). Allora si puo assumere (moltiplicando

eventualmente F per una costante) che

Fd =

d∏i=1

(X2 −miX1).

Si noti che Gu 6= 0 per minimalita di u. Inoltre, dal fatto che la curva G(X0, X1, X2) = 0 passa per tutti i

punti Pi segue

Fd(X1, X2) | Gu(X1, X2).

Si scriva Gu(X1, X2) = Hu−d(X1, X2)Fd(X1, X2). Allora

G+ 〈F 〉 = G0Xu0 +G1X

u−10 + . . .+Gu−1X0 +Hu−d(F0X

d0 + . . .+ Fd−1X0) + 〈F 〉,

e quindi

α = G0Xu−10 + . . .+Gu−1 +Hu−d(F0X

d−10 + . . .+ Fd−1) + 〈F 〉/Xu−1

0 + 〈F 〉,

contro la minimalita di u. Pertanto si = 0 per qualche i, e u ≤ n.

3. Conclusione Dobbiamo dimostrare (12). Osserviamo che i polinomi in X1, X2 di grado u ≤ n formano uno

spazio vettoriale Vn su K di dimensione (n+ 1)(n+ 2)/2. In virtu del passo 2 la dimensione `(nD) coincide con

la dimensione dell’immagine di Vn secondo la proiezione canonica di K[X1, X2] in K[X ]. Questa dipende dal

nucleo della proiezione, che coincide con Vn∩〈f〉, essendo f il disomogeneizzato di F rispetto a X0. E ovvio che

2. IL GENERE DI UNA CURVA PIANA NON SINGOLARE 55

i multipli di f in Vn sono in corrispondenza biiettiva con i polinomi di grado ≤ n − d. Pertanto la dimensione

su K di Vn ∩ 〈f〉 e precisamente (n− d+ 1)(n− d+ 2)/2. Da cui segue che

`(nD) = dimKVn − dimK(Vn ∩ 〈f〉) =(n+ 1)(n+ 2)

2− (n− d+ 1)(n− d+ 2)

2.

L’espressione coincide con d(2n+ 3− d)/2, e quindi la dimostrazione e conclusa.

Nota 4. Il risultato precedente non vale per curve singolari, dato che per una curva singolare possono esistere funzioni

non polinomiali i cui poli sono tutti centrati in punti della retta X0 = 0. Si consideri ad esempio X : X3 + Y 3 +X2 = 0.

Nel punto P = (1 : 0 : 0) e centrato un unico DVR O di K(X ). Per tale DVR si ha ordO(x) = 3 e ordO(y) = 2 (si applichi

l’Esercizio 17). Allora β = y2/x ha valutazione non negativa in O, pur non essendo polinomiale e pur non essendo definita

in P .

Esercizio 18. Si dimostri che per una curva piana arbitraria si ha

g ≤ (d− 1)(d− 2)

2.

(Suggerimento: si ripercorra la dimostrazione del Teorema 4.5 tenendo conto della Nota 4).

2.1. Divisori one-point. In questa sezione consideriamo divisori di tipo D = mP , m > 0, allo scopo di determinare

per essi un intero c tale che per ogni m > c si abbia `(mP ) = m− g + 1. Le funzioni di L(D) sono quelle f ∈ K(X ) tali

che (f)∞ = lP , l ≤ m. Sia H(P ) il seguente insieme di interi non negativi:

H(P ) := l| esiste f ∈ K(X ) con (f)∞ = lP.

Si vede facilmente che H(P ) e un semigruppo (cioe un insieme chiuso rispetto alla somma), chiamato il semigruppo di

Weierstrass in P . Gli elementi di H(P ) sono chiamati non-gaps di P , mentre ogni intero s ∈ N \H(P ) e detto gap.

Lemma 4.6. Un intero i e un non-gap in P se e solo se

L((i− 1)P ) $ L(iP )

Dimostrazione. Chiaramente ogni α per cui (α)∞ = −iP appartiene a L(iP ) ma non a L((i− 1)P ).

In virtu della dimostrazione della Proposizione 3.42, vale anche la caratterizzazione seguente.

Lemma 4.7. Un intero i e un non-gap in P se e solo se

`((i− 1)P ) = `(iP )− 1 .

Proposizione 4.8. La dimensione di L(mP ) coincide con il numero di non-gaps in P minori o uguali di m.

Dimostrazione. Si consideri la catena di spazi vettoriali L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ . . . ⊆ L(mP ). Dal lemma

precedente, per ogni i, 0 ≤ i ≤ m, la differenza `(iP ) − `((i − 1)P ) e al piu 1. Inoltre da (3) del Lemma 3.40 si ha che

dimL(0) = 1. Questo completa la dimostrazione.

Proposizione 4.9. Siano i0 = 0, i1, . . . , ir tutti i non-gaps in P minori o uguali di m. Siano f0, f1, . . . , fr ∈ K(X ) tali

che ordP (fi) = −ii. Allora f0, f1, . . . , fr costituiscono una base di L(mP ).

Dimostrazione. Dalla dimostrazione della proposizione precedente segue

L(0) $ L(i1P ) $ L(i2P ) $ . . . $ L(irP ) = L(mP ) ,

dove `(ijP ) = `(ij−1P ) + 1. Pertanto, dato che fj ∈ L(ijP ) \ L(ij−1P ), si ha L(ijP ) = 〈L(ij−1P ), fj〉. Segue allora che

f0, f1, . . . , fr sono linearmente indipendenti, e che

L(mP ) = 〈f0, f1, . . . , fr〉 .

L’asserto e dunque provato.

2. IL GENERE DI UNA CURVA PIANA NON SINGOLARE 56

Proposizione 4.10. Ci sono esattamente g gaps in ogni DVR P di K(X ).

Dimostrazione. Sia c come da Teorema 4.3. Allora, per ogni m maggiore o uguale di c, si ha `(mP ) = m− g + 1.

Dalla Proposizione 4.8 il numero di non-gaps in P che sono minori o uguali di m e m− g+ 1. Pertanto, il numero di gaps

in P minori o uguali di m e g. Dall’arbitrarieta di m segue l’asserto.

Corollario 4.11. Se g ≥ 1 allora esiste almeno un gap in ogni DVR P di K(X ). Inoltre 1 e un gap in ogni P ∈ X .

Proposizione 4.12. Ogni intero i ≥ 2g e un non-gap in ogni DVR P di K(X ).

Dimostrazione. Sia N il massimo gap in P . Proveremo che N ≤ 2g−1. Osserviamo che se i e un non-gap minore o

uguale di N , allora necessariamente N − i e un gap (minore o uguale di N), altrimenti N = i+ (N − i) ∈ H(P ). Pertanto

e ben definita l’applicazione

i | 0 ≤ i ≤ N, i non-gap in P → i | 0 ≤ i ≤ N, i gap in P, i 7→ N − i.

L’applicazione e chiaramente iniettiva. Inoltre, dalla Proposizione 4.10, il codominio ha cardinalita pari a g. Cio implica

che il dominio ha cardinalita minore o uguale di g, ovvero

N + 1− g ≤ g,

da cui l’asserto.

Corollario 4.13. Sia D un divisore one-point. Se deg(D) ≥ 2g − 1, allora `(D) = deg(D)− g + 1.

Dimostrazione. Sia D = mP . Dalle Proposizioni 4.10 e 4.12, l’ipotesi m ≥ 2g − 1 implica che il numero di gap

minori o uguali m e uguale a g. Pertanto `(D) = m+ 1− g.

Vedremo che il Corollario 4.13 in realta vale in generale, come conseguenza del Teorema di Riemann-Roch.

Esempio 4.14. Fissiamo le notazioni come nell’Esempio 3.43. Siccome il genere di X e uguale 1, il solo gap in P e 1.

Dalla Proposizione 4.8 segue `(2P ) = 2.

2.2. La curva Hermitiana. Sia X : Xq+11 −Xq

2X0−Xq0X2 = 0 curva definita sopra la chiusura algebrica del campo

finito Fq. Tale curva e chiamata curva Hermitiana, e gioca un ruolo molto importante nella teoria delle curve algebriche

in caratteristica positiva. In questa sezione ne vedremo alcune proprieta preliminari.

Si verifica facilmente che X e non singolare. Il suo genere g e quindi uguale a q(q− 1)/2. Si vede anche direttamente che

l’unico punto di X appartenente alla retta `∞ : X0 = 0 e il punto P∞ = (0 : 0 : 1). Si vede facilmente che la tangente a

X in P∞ e proprio la retta all’infinito `∞, e che

I(P∞;X ∩ `∞) = q + 1 .

Osserviamo che

ordP∞(x) = I(P∞;X ∩X1 = 0)− I(P∞;X ∩ `∞) = 1− (q + 1) = −q,

e

ordP∞(y) = I(P∞;X ∩X2 = 0)− I(P∞;X ∩ `∞) = 0− (q + 1) = −q − 1.

Inoltre dato che X0 non si annulla in nessun altro punto di X si ha che x e y hanno un unico polo in P∞; pertanto

(x)∞ = qP∞, (y)∞ = (q + 1)P∞ .

Proposizione 4.15. Sia r un intero positivo. Una base di L(mP∞) e costituita dalle funzioni

xiyj | iq + j(q + 1) ≤ m, i ≥ 0, 0 ≤ j ≤ q − 1 .

2. IL GENERE DI UNA CURVA PIANA NON SINGOLARE 57

Dimostrazione. Osserviamo innanzitutto che due elementi dell’insieme xiyj | iq + j(q + 1) ≤ m, i ≥ 0, 0 ≤ j ≤q− 1 hanno ordine diverso in P∞. Infatti, se fosse iq+ j(q+ 1) = i′q+ j′(q+ 1), supponendo senza restrizione j′ ≥ j, si

avrebbe

(j′ − j)(q + 1) = (i− i′)q .Essendo j′− j un intero minore di q, ed essendo MCD(q, q+ 1) = 1, non e possibile che q divida il primo membro a meno

che j = j′, nel qual caso si deve pero anche avere i = i′.

Bastera ora provare che il semigruppo di Weierstrass H(P∞) coincide con l’insieme

iq + j(q + 1) | i ≥ 0, 0 ≤ j ≤ q − 1 .

A tale scopo, osserviamo intanto che nell’insieme iq + j(q + 1) | i ≥ 0, 0 ≤ j ≤ q − 1 si trovano almeno (q2 − q)/2 = g

elementi e minori o uguali di 2g − 1 = q(q − 1) − 1 = q2 − q − 1. Cio dipende dal fatto che le somme iq + j(q + 1) con

0 ≤ i+ j ≤ q − 2 sono in numero di (q2 − q)/2.

Resta quindi da dimostrare che ogni intero n maggiore di 2g − 1 = q2 − q − 1 si puo esprimere come combinazione di q e

q+1. Procediamo per induzione su n. Se n = iq+j(q+1) con i > 0, allora n+1 = (i−1)q+(j+1)(q+1); se n = j(q+1)

con j = q − 1, allora n+ 1 = q2 = iq con i = q (se n = j(q + 1) con j < q − 1, allora n ≤ (q − 2)(q − 1) < 2g − 1).

Esercizio 19. Sia X la curva Hermitiana X72X0 + X2X

70 −X8

1 . Sia P = (0 : 0 : 1). Si trovino basi degli spazi L(10P ),

L(20P ) e L(30P ).

Esercizio 20. Si consideri la quartica di Klein in caratteristica p = 2, ovvero la curva algebrica di equazione affine

X : X3Y +Y 3 +X = 0 definita su K = F2. Sia P = (0, 0). Si calcoli una base dello spazio L(nP ) per ogni intero positivo

n. Suggerimento: si calcoli innanzitutto l’ordine in P delle funzioni x e y; successivamente si considerino le funzioni yi/xj

con j > i ≥ 0 e si determini il semigruppo H(P ).

Esercizio 21. Si calcoli esplicitamente la dimensione dello spazio L(nP ) per la curva Hermitiana per q = 4 e P = (0 :

0 : 1).

Esercizio 22. Sia X : X7 + Y 7 − 1 = 0 definita su K = F2. Sia P = (0, 1). Si calcoli L(nP ) per ogni intero n.

Suggerimento: si considerino le funzionixiyj

(y + 1)i+j.

2.3. Applicazioni alla Teoria dei codici (cenni).

2.3.1. Sottospazi vettoriali di Fnq come codici correttori di errore. Sia C un sottospazio vettoriale di Fnq di dimensione

k. Per ogni v = (v1, . . . , vn) ∈ Fnq si definisca w(v) = #i | vi 6= 0. Si ponga

d = d(C) = minw(c) | c ∈ C, c 6= (0, 0, . . . , 0).

Allora C puo essere interpretato come un linguaggio di qk parole di n lettere su un alfabeto di cardinalita q, avente la

seguente proprieta: se nella trasmissione di una parola si verificano al piu (d − 1)/2 errori, allora questi errori possono

essere corretti dal destinatario (il lettore interessato puo consultare a questo proposito un qualsiasi testo introduttivo di

Teoria dei Codici).

Uno dei parametri che misurano la qualita di un codice correttore e la somma fra il tasso di informazione R(c) = k/n e

la distanza relativa δ(C) = d/n. Si dimostra che R(C) + δ(C) ≤ 1 + 1n . E auspicabile che tale somma sia la piu grande

possibile.

2.3.2. Punti Fq-razionali e funzioni Fq-razionali di curve definite su Fq. Sia K = Fq e sia X ⊆ Pr(K) una curva

algebrica proiettiva non singolare definita su Fq (ovvero tale che I(X ) sia generato da polinomi a coefficienti in Fq).Allora definiamo X (Fq) come l’insieme dei punti P di X rappresentabili come P = (P0 : . . . : Pr) con Pi ∈ Fq, e Fq(X )

come l’insieme delle funzioni razionali su X rappresentate da rapporti di polinomi a coefficienti in Fq. Si osservi che la

cardinalita di X (Fq) e finita. Vale il seguente risultato, del quale omettiamo la dimostrazione.

Proposizione 4.16. Sia D un divisore con supporto contenuto in X (Fq). Allora L(D) ammette una base di elementi in

Fq(X ).

In altri termini, lo spazio vettoriale su Fq definito dall’intersezione L(D) ∩ Fq(X ) ha dimensione su Fq pari a `(D).

3. CARATTERIZZAZIONE DELLE CURVE DI GENERE 0 E 1 58

2.3.3. Codici correttori associati a divisori one-point. Sia X definita su Fq e non singolare. Sia P0 ∈ Fq(X ). Sia

X (Fq) = P0, P1, . . . , Pn. Fissato m intero positivo consideriamo la seguente applicazione:

ev : L(mP0) ∩ Fq(X )→ Fnq , α 7→ (α(P1), . . . , α(Pn)).

Si osserva facilmente che ev e ben definita e Fq-lineare. Pertanto Cm = Im(ev) e un sottospazio vettoriale di Fnq .

Proposizione 4.17. Sia n > m > 2g − 2. Allora il sottospazio Cm, interpretato come codice correttore, ha parametri

n = #X (Fq)− 1, k = `(mP0) = m− g + 1, d ≥ n−m.

Dimostrazione. Dato che n > m, la mappa ev risulta iniettiva: ogni α ∈ Ker(ev) avrebbe almeno n zeri, ma al

piu m poli. Pertanto k = `(mP0). Essendo m > 2g − 2 si ha quindi che k = m− g + 1. Sia c ∈ Cm, c diverso dal vettore

nullo, e sia w il peso di c. Se c = ev(α), allora α ha almeno n−w zeri, da cui n−w ≤ m. Pertanto w ≥ n−m. L’asserto

su d segue dall’arbitrarieta di c.

Corollario 4.18. Sia n > m > 2g − 2. Allora R(Cm) + δ(Cm) ≥ 1− g−1n .

Dal corollario precedente segue che le curve buone per la Teoria dei Codici Correttori sono quelle con tanti punti razionali

rispetto al loro genere.

2.3.4. Il Teorema di Hasse-Weil. Un risultato fondamentale della Geometria Algebrica su campi finiti e il seguente

Teorema, provato da Hasse per g = 1 e da Weil nel caso generale.

Teorema 4.19. Sia X una curva proiettiva non singolare definita su Fq. Allora

| #X (Fq)− (q + 1) |≤ 2g√q.

In particolare, #X (Fq) ≤ q+1+2g√q. Se una curva soddisfa l’uguaglianza viene detta Fq-massimale. La curva hermitiana

e un esempio di curva Fq2 -massimale. Le curve massimali sono in un certo senso le migliori per la teoria dei codici.

3. Caratterizzazione delle curve di genere 0 e 1

3.1. g = 0.

Teorema 4.20. Sia X ⊆ Pr(K) una curva algebrica proiettiva di genere g = 0. Allora X e birazionalmente equivalente

alla retta proiettiva P1(K).

Dimostrazione. Essendo g = 0, il semigruppo di Weierstrass in ogni DVR O di K(X ) coincide con Z≥0. Pertanto

esiste αinK(X ) con (α)∞ = O, e quindi deg((α)∞) = 1. Ne segue che il grado dell’estensione K(X ) : K(α) e uguale a 1,

e pertanto K(X ) = K(α).

Consideriamo la mappa razionale ϕ : X → P1(K), ϕ = [1 : α]. Allora ϕ?(K(P1(K))) = K(α) coincide con K(X ). Questo

dimostra che ϕ e birazionale.

3.2. g = 1.

Teorema 4.21. Sia X ⊆ Pr(K) una curva algebrica proiettiva di genere g = 1, e sia O un punto non singolare di X .

Allora esiste una mappa birazionale ϕ di X in una curva piana proiettiva C : f(X,Y ) = 0 con f(X,Y ) = Y 2 + a1XY +

a3Y − (X3 + a2X2 + a4X + a6) = 0, tale che ϕ(O) = [0 : 0 : 1].

Dimostrazione. Dato che il genere di X e uguale a 1, risulta che in ogni DVR di X il semigruppo di Weierstrass

coincide con Z≥0 \ 1. Pertanto dim(L(nO)) = n. In particolare esiste x ∈ K(X ) tale che 1, x e una base di L(2O).

Si noti che ordO(x) = −2. Infatti ordO(x) < 0, altrimenti x sarebbe costante e quindi linearmente dipendente con 1.

Inoltre ordO(x) 6= −1, altrimenti x ∈ L(O) implicherebbe 1 ∈ H(O).

Dato che L(2O) ⊂ L(3O) e dim(L(3O)) = 3, esiste una base B di L(3O) contenente 1, x, diciamo B = 1, x, y. Si

noti che ordO(y) = −3, altrimenti ordO(y) > −3 implicherebbe y ∈ L(2O).

3. CARATTERIZZAZIONE DELLE CURVE DI GENERE 0 E 1 59

Adesso consideriamo L(6O). Si noti che 1, x, y, xy, x2, y2, x3 appartengono a L(6O). Essendo dim(L(6O)) = 6, queste

funzioni sono linearmente dipendenti su K, ovvero esistono Ai ∈ K, i = 0, . . . , 6 con

A0 +A1x+A2x2 +A3x

3 +A4xy +A5y +A6y2 = 0 .

Si noti che A3A6 6= 0, altrimenti ordO(A0 +A1x+A2x2 +A3x

3 +A4xy +A5y +A6y2) sarebbe un intero negativo, dato

che gli ordini in O di tutti i termini non nulli sarebbero a due a due distinti. Rimpiazzando x, y con −A3A6x e A23A6y, e

dividendo per A43A

36 si ottiene una relazione di tipo

(13) y2 + a1xy + a3y − (x3 + a2x2 + a4x+ a6) = 0 ,

per qualche ai ∈ K.

Sia C = V (< f >) con f(X,Y ) = Y 2 + a1XY + a3Y − (X3 + a2X2 + a4X + a6). Si noti che f(x, y) = y2 + a1xy+ a3y−

(x3 + a2x2 + a4x+ a6) = 0, quindi la mappa razionale ϕ : X ∈ C, ϕ = [1 : x : y] e ben definita.

Sia t un parametro locale di X in O. Si scriva ϕ = [1 : x : y] = [t3 : t3x : t3y]. Chiaramente ordO(t3x) = 1 e ordO(t3y) = 0,

da cui ϕ(O) = [0 : 0 : 1].

Proviamo che ϕ e birazionale. E sufficiente provare che ϕ?(Fq(C)) coincide con K(X ). Si noti che ϕ?(Fq(C)) = Fq(x, y).

Si ha inoltre [K(X ) : K(x)] = 2 e [K(X ) : K(y)] = 3. D’altro canto,

[K(X ) : K(x)] = [K(X ) : K(x, y)][K(x, y) : k(x)] ,

[K(X ) : K(y)] = [K(X ) : K(x, y)][K(x, y) : K(y)] ,

vale a dire [K(X ) : K(x, y)] divide sia 2 che 3. Pertanto [K(X ) : K(x, y)] = 1, e quindi K(X ) = K(x, y).

Una proprieta interessante delle curve non singolari di genere g = 1 e che l’insieme dei suoi punti puo essere dotato in modo

naturale della struttura di gruppo abeliano. Cio rende le curve di genere 1 definite sopra campi finiti particolarmente

adatte alle applicazioni alla crittografia.

Sia Div0(X ) = D ∈ Div(X ) con deg(D) = 0. Chiaramente Div0(X ) e un sottogruppo del gruppo dei divisori Div(X ).

Sia inoltre P il sottogruppo dei divisori principali di X , ovvero P = (α) | α ∈ K(X )∗. Dato che per ogni α ∈ K(X )∗ si

ha deg(α) = 0, risulta ben definito il gruppo quoziente

Pic0(X ) = Div0(X )/P.

Esula dagli scopi di questo corso studiare la natura di varieta algebrica (in particolare di varieta abeliana di dimensione

g) di Pic0(X ). Per noi quindi Pic0(X ) rappresenta semplicemente un gruppo abeliano.

Teorema 4.22. Sia X una curva algebrica proiettiva di genere 1 e sia P0 un DVR di X . Allora l’applicazione Φ : P→Pic0(X ), P 7→ (P −P0) +P, e biiettiva. Pertanto P eredita in modo naturale da Pic0(X ) la struttura di gruppo abeliano.

Dimostrazione. Proviamo l’iniettivita di Φ. Siano P,Q ∈ P, con P 6= Q, e si assuma Φ(P ) = Φ(Q), ovvero

(P −P0)− (Q−P0) ∈ P. Pertanto esiste α ∈ K(X ) tale che (α) = (P −P0)− (Q−P0) = P −Q. In particolare 1 ∈ H(Q),

e quindi H(Q) = Z≥0, ma cio e impossibile essendo g = 1.

Dimostriamo ora la suriettivita. Sia D + P ∈ Pic0(X ). Scriviamo D =∑nPP = D1 − D2 con D1 ≥ 0, D2 ≥ 0,

deg(D1) = deg(D2), supp(D1) ∩ supp(D2) = ∅. Supponiamo inoltre senza restrizioni che P0 non appartenga al supporto

di D (in caso contrario si sostituisca D con il divisore equivalente D + (t−nP0 ), dove t e un parametro locale in P0).

La dimensione di (L(D + P0)) e almeno 1, essendo g = 1. Quindi esiste α ∈ K(X ) con (α) ≥ −D − P0. Si ha

(α) = (α)0 − (α)∞ ≥ D2 − (D1 + P0) ,

e pertanto

(α)0 ≥ D2, (α)∞ ≤ D1 + P0 .

Proviamo che

(*) esiste P in P con D + (α) = P − P0.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 60

Esaminiamo innanzitutto il caso (α)0 = D2. Allora deg((α)∞) = deg(D2) = deg(D1), e quindi esiste P con (α)∞ + P =

D1 + P0. Ne segue (*).

Se invece (α)0 > D2 allora risulta deg(D1) = deg(D2) < deg((α)∞) ≤ deg(D1) + 1, e quindi deg((α)∞) = deg((α)0) =

deg(D1) + 1 = deg(D2) + 1. Pertanto (α)∞ = D1 + P0, ed esiste P ∈ P con (α)0 = D2 − P . Di nuovo ne segue (*).

Infine, da (*) chiaramente segue che D + P = (P − P0) + P = Φ(P ).

Supponiamo che X sia una curva piana non singolare di equazione y2 +axy+by = x3 +cx2 +dx+e con a, b, c, d, e ∈ K. E

pertanto lecito identificare P con l’insieme dei punti di X . Ponendo P0 = (0 : 0 : 1) nel Teorema 4.22, la struttura di gruppo

abeliano sui punti di X e definita come segue. Siano P e Q due punti di X , e sia ` : L = 0 la retta per P e Q se P 6= Q, la

retta tangente a X in P in caso contrario. Chiamiamo T il terzo punto dell’intersezione `∩X , e sia `′ : L′ = 0 la retta per

T e (0 : 0 : 1). Sia infine S il terzo punto nell’intersezione `′ ∩X . Si noti che (P +Q− 2P0)− (S −P0) = P +Q− S −P0

e il divisore principale (α), dove α =L+ I(X )

L′ + I(X ). Questo vuol dire che (P +Q− 2P0)− (S − P0) appartiene a P, ovvero

che nel gruppo Pic0(X ) si ha

((P − P0) + P) + ((Q− P0) + P) = (S − P0) + P .Nella struttura di gruppo ereditata dal supporto di X si ha allora che la somma di P e Q e proprio S.

Esercizio 23. Si provi che l’opposto di un punto P e il terzo punto di X appartenente alla retta passante per P e per

P0.

Esercizio 24. Si provi che tre punti P,Q,R di X sono allineati se e solo se la loro somma e l’elemento neutro del gruppo.

4. Derivazioni, differenziali, divisori canonici

In questa sezione R e un anello commutativo contenente K, e M e un R-modulo.

Definizione 4.23. Una K-derivazione di R in M e una mappa K-lineare D tale che

D(xy) = xD(y) + yD(x) per x, y ∈ R.

Denotiamo l’insieme di tutte le K-derivazioni di R in M come DerK(R,M). E immediato da questa definizione che

D(1) = 0, da cui D(b) = 0 per ogni b in K.

Si osservi inoltre che se x1, . . . , xn sono elementi di R e D e una derivazione di R in M , allora per ogni polinomio

F ∈ K[X1, . . . , Xn] si ha

D(F (x1, . . . , xn)) =

n∑i=1

∂F

∂Xi(x1, . . . , xn)D(xi).

Questo si dimostra facilmente per i monomi Xs11 · · ·Xsn

n ragionando per induzione su∑si. Il passaggio dai monomi ai

polinomi segue dalla linearita di D.

Esempio 4.24. Sia R = M = K[[T ]], l’anello delle serie formali di potenze su K. Allora

D :

∞∑n=0

anTn 7→

∞∑n=0

nanTn−1

e una K-derivazione. La verifica e un facile esercizio.

Proposizione 4.25. Sia D una K-derivazione di R su M . Supponiamo inoltre di trovarci in uno dei seguenti casi:

(1) R e un dominio e T e il campo dei quozienti di R.

(2) R e un campo e T e un’estensione finita e separabile di R.

Se M e anche un T -modulo, allora D si estende in un unico modo a una K-derivazione D′ di T su M .

Dimostrazione.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 61

(1) Osserviamo che

D′(x

y

)=yD(x)− xD(y)

y2

e l’unica possibile definizione di D′, dato che

D(x) = D′(x

yy

)=x

yD(y) + yD′

(x

y

).

E facile poi dimostrare che D′ definisce in effetti una derivazione su T .

(2) Sia T = R(y). Ogni elemento di T e allora di tipo f(y), con f ∈ R[X]. Di nuovo c’e un’unica possibile definizione

di D′: se f(X) = e0 + e1X + . . .+ enXn allora

D′(f(y)) =

n∑i=1

(D(ei)yi + eiD

′(yi)),

e

D′(yi) = yi−1D′(y),

da cui

D′(f(y)) = f ′(y)D′(y) +

n∑i=1

D(ei)yi.

Resta da stabilire chi e D′(y). Per comodita si scriva fD(X) =∑ni=1D(ei)X

i. Sia ora g(X) il polinomio minimo

di y su R. Allora

0 = D′(0) = D′(g(y)) = gD(y) + g′(y)D′(y).

Pertanto

D′(y) = −gD(y)

g′(y).

Si osservi che g′(y) non e nullo perche l’estensione e separabile. E lasciata allo studente volenteroso la verifica

che

D′(f(y)) = −f ′(y)gD(y)

g′(y)+ fD(y)

e una buona definizione, e che la mappa D′ cosı definita e una K-derivazione.

Esempio 4.26. Sia R = K[[T ]], e sia T = M = K((T )) il campo delle serie formali di Laurent su K. Dalla Proposizione

4.25, la K-derivazione D definita nell’esempio 4.24 si estende in modo unico a una K-derivazione D′ : K((T ))→ K((T )).

Sia α = E(T )/T r; allora

D′(α) = D′(E(T )/T r) =T rD(E(T ))− rT r−1E(T )

T 2r=TD(E(T )− rE(T ))

T r+1.

In forma piu esplicita, se α =∑∞n=−r anT

n = (∑∞n=0 an−rT

n)/T r, allora

D′(α) = T−r−1∞∑n=0

(n− r)an−rTn =

∞∑n=0

(n− r)an−rTn−r−1

da cui

D′(α) =

∞∑n=−r

nanTn−1.

Esempio 4.27. Sia L = K(x, y) con x trascendente su K e L : K(x) finita e separabile. Sia D la K-derivazione standard

D : K[x]→ L, D(∑

aixi)

= iaixi−1.

Dalla Proposizione 4.25 D si estende in modo unico a una K-derivazione D′ : L → L, dato che K(x) e il campo dei

quozienti di K[x], ed L e un’estensione finita e separabile di K(x). Si osservi che D′(x) = 1.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 62

Esempio 4.28. Sia X una curva algebrica proiettiva. Sia P un DVR di K(X ), e sia t un parametro locale di P . Allora

ricordiamo che esiste un omomorfismo di campi

φt : K(X )→ K((T ))

in virtu del quale e possibile identificare K(X ) con un sottocampo di K((T )). Sia D′ la K-derivazione di K((T )) definita

nell’esempio 4.26. Allora la mappa D : K(X )→ K((T )) definita da

D(α) = D′(φt(α))

e una K-derivazione di K(X ) in M = K((T )). Si osservi che D(t) = 1.

Vogliamo adesso definire i differenziali di R come elementi di forma∑xidyi, xi, yi ∈ R che si comportino in modo analogo

ai differenziali dell’analisi. A tale scopo sara necessario definire preliminarmente una sorta di K-derivazione universale

per un anello commutativo R contenente K.

Sia F l’R-modulo libero generato dagli elementi [x], al variare di x ∈ R. Non c’e nessun significato sostanziale nel simbolo

[x]: vada interpretato come una lettera associata all’elemento x. L’R-modulo F consiste di tutti gli elementi di tipo∑ai[xi], ai ∈ R

sommati tra loro e moltiplicati agli elementi di R in modo simbolico.

Si consideri il sottomodulo N di F generato dai seguenti insiemi di elementi:

(i) [x+ y]− [x]− [y] | x, y ∈ R;(ii) [λx]− λ[x] | λ ∈ K,x ∈ R;

(iii) [xy]− x[y]− y[x] | x, y ∈ R.

Sia ΩK(R) = F/N il modulo quoziente. Sia dx l’immagine dell’elemento [x] in F/N , e sia

d : R→ ΩK(R)

la mappa che manda x in dx. Il modulo ΩK(R) e detto il modulo dei differenziali di R su K. E facile controllare che

d : R→ ΩK(R) e una K-derivazione.

Lemma 4.29. Per ogni R-modulo M e ogni K-derivazione D : R → M esiste un unico omomorfismo di R-moduli

φ : ΩK(R)→M tale che D = φ d.

Dimostrazione. Definiamo φ : F → M ponendo φ(∑xi[yi]) =

∑xiD(yi). Abbiamo cosı un omomorfismo di

R-moduli. E evidente che ogni elemento di N ha come immagine l’elemento nullo, pertanto φ induce un omomorfismo φ

di F/N in M . E immediato verificare che D = φ d.

Consideriamo adesso situazioni meno generali, legate alle curve algebriche e ai loro campi di funzioni.

Sia R = K[x1, . . . , xn]. Da

d(F (x1, . . . , xn)) =

n∑i=1

∂F

∂Xi(x1, . . . , xn)dxi

segue subito che ΩK(R) e generato come R-modulo dai differenziali dx1, . . . , dxn.

Nel caso in cui L = K(x1, . . . , xn), campo dei quozienti di K[x1, . . . , xn], si ha

d(F (x1, . . . , xn)/G(x1, . . . , xn)) =GdF − FdG

G2,

e quindi di nuovo ΩK(L) e generato come L-spazio dai differenziali dx1, . . . , dxn.

Proposizione 4.30. Sia L = K(X ). Allora ΩK(L) e non nullo. In particolare,

1. Per ogni x ∈ K(X ) \K tale che K(X ) : K(x) e separabile si ha dx 6= 0.

2. Per ogni t ∈ K(X ) parametro locale si ha dt 6= 0.

Dimostrazione.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 63

1. Dall’Esempio 4.27 sappiamo che esiste una derivazione D : L→ L con D(x) = 1. Dal Lemma 4.29 esiste esiste

un omomorfismo di L-moduli φ : ΩK(L)→ L tale che D = φ d. Pertanto 1 = D(x) = φ(dx) e quindi dx 6= 0.

2. Dall’Esempio 4.28 sappiamo che esiste una derivazione D : L → K((T )) con D(t) = 1. Dal Lemma 4.29 esiste

esiste un omomorfismo di L-moduli φ : ΩK(L) → K((T )) tale che D = φ d. Pertanto 1 = D(t) = φ(dt) e

quindi dt 6= 0.

Proposizione 4.31. Sia L = K(X ). Allora ΩK(L) e uno spazio vettoriale di dimensione 1 su L.

Dimostrazione. Che la dimensione di ΩK(L) sia almeno uno segue dalla Proposizione 4.30. Proviamo allora che

tale dimensione e minore o uguale di 1.

Nel Capitolo 1 abbiamo visto che esistono sempre x, y ∈ K(X ), con K(X ) = K(x, y) e con K(X ) : K(x) separabile. La

discussione che precede la Proposizione 4.30 ci assicura inoltre che dx e dy generano ΩK(L) su L. Sia H(X,Y ) ∈ K[X,Y ]

polinomio tale che H(x, y) = 0. Si puo assumere che H(x,X) coincida con il polinomio minimo di y su K(x), moltiplicato

per un opportuno elemento di K[x] al fine di non far comparire la x in nessun denominatore. Dalla separabilita di y segue

allora ∂H/∂Y (x, y) 6= 0.

D’altro canto da d(H(x, y)) = 0 segue

0 =∂H

∂X(x, y)dx+

∂H

∂Y(x, y)dy,

da cui

dy = −∂H∂X (x, y)∂H∂Y (x, y)

dx.

Dalle Proposizioni precedenti segue allora che se x e un elemento separante o un parametro locale, allora per ogni

α ∈ K(X ) esiste un unico v ∈ K(X ) tale che dα = vdx. Diremo che v e la derivata di α rispetto a x, e scriveremo

v = dα/dx.

Di particolare interesse sono le derivate fatte rispetto a parametri locali.

Proposizione 4.32. Sia t un parametro locale di K(X ), e sia φt : K(X ) → K((T )) l’omomorfismo di campi associato.

Allora per ogni α ∈ K(X ) si ha

φt

(dα

dt

)= D′(φt(α)),

dove D′ indica la K-derivazione standard in K((T )) (come da Esempio 4.26).

Dimostrazione.

- Sia D = D′ φt come da Esempio 4.27.

- Sia φ : ΩK(K(X ))→ K((T )) come da Lemma 4.29 l’omomorfismo di K(X )-spazi tale che D = φ d.

- Sia v = dα/dt.

Da dα = vdt segue ovviamente φ(dα) = φ(vdt). Dato che φ e omomorfismo di K(X )-spazi, si ha φ(vdt) = φt(v)φ(dt)

(attenzione! ricordiamo che K((T )) e visto come K(X )-spazio mediante l’identificazione indotta da φt). Quindi

φ(dα) = φt(v)φ(dt).

Ma allora

D(α) = φt(v)D(t).

Dato che D(t) = 1, ricordando che D = D′ φt e che v = dα/dt, la dimostrazione e conclusa.

Corollario 4.33. Sia O un DVR di K(X ), e sia t un parametro locale in O. Allora

α ∈ O ⇒ dα

dt∈ O.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 64

Dimostrazione. Dato che α ∈ O, si ha che φt(α) ∈ K[[T ]], e quindi anche D′(φt(α)) ∈ K[[T ]]. Dalla Proposizione

4.32 segue quindi che φt(dαdt

)= D′(φt(α)) ∈ K[[T ]], e pertanto dα

dt ∈ O.

Concludiamo la sezione osservando che un parametro locale e necessariamente separante.

Proposizione 4.34. Ogni parametro locale t e separante in K(X ).

Dimostrazione. Sia y ∈ K(X ) \K(t). Sia g(Y ) ∈ K(t)[Y ] il polinomio minimo di y su K(t). Si scriva

g(Y ) = Y n +an−1(t)

bn−1(t)Y n−1 + . . .+

a1(t)

b1(t)Y +

a0(t)

b0(t), con ai(t), bi(t) ∈ K[t], (ai(t), bi(t)) = 1.

Moltiplicando per il minimo comune multiplo h(t) dei denominatori possiamo scrivere

h(t)g(Y ) = h(t)Y n + cn−1(t)Y n−1 + . . .+ c1(t)Y + c0(t), con ci(t) ∈ K[t].

Sia g(Y ) = h(t)g(Y ) ∈ K(t)[Y ]. Naturalmente g(Y ) e irriducibile su K(t) ed inoltre g′(Y ) ≡ 0 se e solo se g′(Y ) ≡ 0.

Denotiamo con F (X,Y ) ∈ K[X,Y ] il polinomio definito da

F (X,Y ) = h(X)g(Y ) = h(X)Y n + cn−1(X)Y n−1 + . . .+ c1(X)Y + c0(X).

1. F e irriducibile. Chiaramente F (t, y) = 0. Se fosse F (X,Y ) = U(X,Y )V (X,Y ) si avrebbe allora U(t, y) = 0

oppure V (t, y) = 0. Assumiamo senza restrizioni U(t, y) = 0. Allora il grado di U in Y e n, perche n e il grado

del polinomio minimo di y su K(t). Cio implica che il grado di Y in V e 0, ovvero V (X,Y ) = V (X). Ma per

costruzione non esistono polinomi in X che siano fattori di tutti gli addendi di F (X,Y ).

2. ∂F/∂Y (t, Y ) ≡ 0 se e solo se g′(Y ) ≡ 0. Si ha chiaramente che ∂F/∂Y (t, Y ) = g′(Y ). Abbiamo gia osservato

che g′(X) ≡ 0 se e solo se g′(X) ≡ 0, da cui l’asserto.

3. y e separabile su K(t) se e solo se ∂F/∂Y (t, Y ) ≡ 0. In generale un elemento e separabile se e solo se la derivata

del suo polinomio minimo non e identicamente nulla. L’asserto quindi segue da 2.

4. Conclusione. Si ha

0 = d(F (t, y)) = ∂F/∂X(t, y)dt+ ∂F/∂Y (t, y)dy

Se y non fosse separabile, allora si avrebbe 0 = ∂F/∂X(t, y)dt. Dato che dt 6= 0, si avrebbe allora ∂F/∂X(t, y) =

0. Ma ∂F/∂X(t, y) = ∂F/∂Y (t, y) = 0 implicherebbe che ogni punto della curva irriducibile di equazione

F (X,Y ) = 0 sarebbe singolare, una contraddizione.

4.1. Divisori canonici. Denotiamo d’ora in avanti per comodita con Ω e non con ΩK(K(X )) il modulo dei dif-

ferenziali di K(X ) su K. Per ω ∈ Ω, ω 6= 0, e per un DVR P di K(X ) definiamo l’ordine di ω in P , ordP (ω), come segue:

si scelga un parametro locale t in P , si scriva ω = αdt con α ∈ K(X ) e si ponga ordP (ω) = ordP (α).

Per controllare che sia una buona definizione supponiamo che t′ sia un altro parametro locale in P , e che αdt = βdt′. Sia

dt′ = vdt. Dal Corollario 4.33 si ha che ordP (v) ≥ 0. Allora ordP (α) = ordP (βv) ≥ ordP (β). Analogamente si dimostra

che ordP (β) ≤ ordP (α).

Esercizio 25. Si dimostri che dati ω ∈ Ω, ω 6= 0, e γ ∈ K(X ) si ha

ordP (γω) = ordP (γ) + ordP (ω).

Dato ω = dx, e possibile calcolare ordP (ω) utilizzando la Proposizione 4.32. Si consideri la serie di potenze G(T ) = φt(x).

Allora dx/dt ha come immagine mediante φt la serie di potenze derivata D′(G(T )) = G′(T ). Pertanto φt(dx/dt) =

G′(T ), e quindi ordP (dx) = ord(G′(T )). Dato che ordP (x) = ord(G(T )) potrebbe sembrare che se ordP (x) > 0 allora

ordP (dx) = ordP (x) − 1. Ma questo non sempre e vero in caratteristica positiva p > 0: si pensi ad esempio al caso

G(T ) = T p + T p+1.

Lemma 4.35. Sia ω ∈ Ω, ω 6= 0. Allora ordP (ω) = 0 tranne che per al piu un numero finito di DVR di K(X ).

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 65

Dimostrazione. Senza restrizione supponiamo che X sia piana e diversa dalla retta X0 = 0. Sia f(X,Y ) = 0

un’equazione di X . Supponiamo senza restrizione che X + 〈f〉 6= 0 sia separante in K(x, y). Scriviamo x = X + 〈f〉 e

y = Y + 〈f〉.

Osserviamo che sono finiti i DVR di K(X ) centrati nei punti di X

- che sono singolari,

- che appartengono alla retta X0 = 0,

- che sono semplici affini e hanno tangente verticale (questo perche i punti semplici affini con tangente verticale

soddisfano ∂f/∂Y (X,Y ) = 0, e ∂f/∂Y (X,Y ) non puo essere identicamente nulla essendo x separante).

Pertanto possiamo limitarci a considerare i DVR di tipo K[X ]Q, con Q punto semplice e affine di X con tangente non

verticale.

Sia ω = γdx. Osserviamo che se Q = (a, b), allora t = x− a e un parametro locale in Q. Pertanto

dx = dx− da = d(x− a) = dt

e quindi dx/dt = 1 e ordK[X ]Q(dx) = 0. Da cui segue ordK[X ]Q(ω) = ordK[X ]Q(γ), e quindi l’asserto dato che γ ha un

numero finito di zeri e di poli.

Dato ω ∈ Ω, ω 6= 0, si definisce div(ω) come div(ω) =∑P∈P ordP (ω)P.

Definizione 4.36. Sia ω ∈ Ω, ω 6= 0. Allora

W = div(ω) =∑P∈P

ordP (ω)P

si dice divisore canonico di K(X ).

Proposizione 4.37. Due divisori canonici differiscono per un divisore principale.

Dimostrazione. Siano ω, ω′ ∈ Ω, ω, ω′ 6= 0. Sia W = div(ω), W ′ = div(ω′). Siccome ω e una base di Ω su K(X ) si

ha ω′ = γω, con γ ∈ K(X ). Da cui

W ′ = (γ) +W.

Proposizione 4.38. Un divisore che differisce da un divisore canonico per un divisore principale e canonico.

Dimostrazione. La dimostrazione e lasciata come esercizio.

Assumiamo adesso che la curva X sia piana e non singolare. Supponiamo che X sia diversa dalla retta X0 = 0. Sia

f(X,Y ) = 0, con deg(f) = d ≥ 3, un’equazione di X . Supponiamo senza restrizione che X + 〈f〉 6= 0 sia separante in

K(x, y), e che i punti di X sulla retta X0 = 0 siano d punti distinti P1, . . . , Pd. Scriviamo x = X + 〈f〉 e y = Y + 〈f〉.

Proposizione 4.39. Sia X piana e non singolare di ordine d, e siano P1, . . . , Pd come sopra. Allora il divisore

W = (d− 3)(P1 + P2 + . . .+ Pd).

e un divisore canonico.

Dimostrazione. Supponiamo senza restrizione che (0 : 0 : 1) non sia punto di X . Si ponga

fx =∂f

∂X(x, y), fy =

∂f

∂Y(x, y).

Sia ω = dx. Mostreremo che

div(ω) = div(fy) + W .

- Sia P un punto affine con tangente non verticale. In tal caso abbiamo provato nella dimostrazione del Lemma

4.35 che ordP (ω) = 0. Inoltre e evidente che P non e ne zero ne polo di fy, e che il peso di P in W e zero.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 66

- Sia P = (a, b) un punto affine con tangente verticale. Dato che il peso di P in W e zero, dobbiamo mostrare

che ordP (dx) = ordP (fy). Da f(x, y) = 0 segue fxdx + fydy = 0, da cui dx = −(fy/fx)dy. Naturalmente la

tangente in P non e orizzontale, per cui t = y−b e parametro locale in P , ed inoltre P non e zero di fx. Pertanto

ordP (dx) = ordP (−fy)− ordP (fx) + ordP (dy/dt) = ordP (fy).

- Sia P = Pi per qualche i. La funzione t = 1/x = X0 + 〈f∗〉/X1 + 〈f∗〉 e un parametro locale in Pi dato che

Pi 6= (0 : 0 : 1). Da d(1/x) = (x)−2(−dx) segue dx/dt = −x2, e quindi ordPi(dx) = −2. Occorre quindi

dimostrare che

ordPify = −d+ 1.

Sia f = f0 + . . .+ fd, con fi omogeneo di grado d. Allora

∂f/∂Y = ∂f1/∂Y + . . .+ ∂fd/∂Y.

L’espressione omogenea di fy allora e

Xd−10 ∂f1/∂Y (X1, X2) + . . .+ ∂fd/∂Y (X1, X2) + 〈f∗〉

Xd−10 + 〈f∗〉

.

Dato che X0 = 0 non e tangente a X in Pi, per provare l’asserto basta dimostrare che la curva di equazione

Xd−10 ∂f1/∂Y (X1, X2) + . . .+ ∂fd/∂Y (X1, X2) = 0

non passa per Pi, o equivalentemente che la curva ∂fd/∂Y (X1, X2) = 0 non passa per Pi. Se cosı fosse, i polinomi

omogenei in due indeterminate fd e ∂fd/∂Y avrebbero un fattore di primo grado in comune. Ma dal Teorema

di Eulero seguirebbe che tale fattore e comune anche a ∂fd/∂X. Da cui si puo dedurre che fd ha almeno un

fattore di primo grado di molteplicita maggiore di 1 (la dimostrazione e lasciata allo studente per esercizio). Ma

questo e in contraddizione col fatto X0 = 0 incontra X in d punti distinti.

La dimostrazione e pertanto conclusa.

Corollario 4.40. Sia X piana e non singolare di grado d ≥ 3. Allora il grado di un divisore canonico e 2g−2 ed inoltre

`(W ) ≥ g.

Dimostrazione. Dalla Proposizione 4.39 segue che il grado di un divisore canonico e

d(d− 3) = 2

((d− 1)(d− 2)

2

)− 2 = 2g − 2.

Sia D il divisore canonico D = (d− 3)(P1 + P2 + . . .+ Pd). Nell’Esempio 3.44 si e dimostrato che `(D) ≥ (d−1)(d−2)2 , da

cui l’asserto.

In realta il Corollario precedente vale per una curva qualsiasi. Riportiamo questo fondamentale risultato senza

dimostrazione.

Teorema 4.41. Sia X curva di genere g. Il grado di un divisore canonico e 2g − 2 ed inoltre `(W ) ≥ g.

Nota 5. Nel caso in cui K = C e X sia piana e non singolare e possibile dare un’interpretazione piu concreta di Ω. Per

ogni punto P di X , sia VP lo spazio vettoriale di dimensione 1 su K corrispondente alla retta tangente TP (X ). Possiamo

considerare allora l’insieme

E :=⋃

S⊂X , S finito

∏P∈X\S

V ∗P

,

dove V ∗P indica lo spazio duale di VP (lo spazio delle forme lineari VP → K).

Per ogni δ in E sia δP la forma lineare di V ∗P corrispondente (quando esiste). Sia E l’insieme ottenuto da E identificando

due elementi δ1 e δ2 per cui (δ1)P = (δ2)P per tutti tranne al piu un numero finito di punti di X .

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 67

La prima osservazione e che ogni α ∈ K(X ) individua un elemento di E. Se S e l’insieme dei poli di α, allora per ogni

P ∈ X \ S e definita dαP : VP → K come segue. Senza restrizione sia P = (a, b) affine, e sia λX + µY = 0 lo spazio VP .

Sia α = F (x, y)/G(x, y) con G(a, b) 6= 0; allora si ponga

dα =G(x, y)(FX(x, y)dx+ FY (x, y)dy)− F (x, y)(GX(x, y)dx+GY (x, y)dy)

G(x, y)2

e, per ogni (U, V ) ∈ VP ,

dαP (U, V ) =G(a, b)(FX(a, b)U + FY (a, b)V )− F (a, b)(GX(a, b)U +GY (a, b)V )

G(a, b)2.

Un elemento di tipo βdα, con α, β ∈ K(X ), individua un elemento di E in modo naturale ponendo

(βdα)P (U, V ) = β(P ) · dαP (U, V )

per ogni P che non sia polo ne di β ne di α.

Un elemento di E si dice 1-forma differenziale razionale se e equivalente a un elemento di E della forma βdα. Si puo

dimostrare che i differenziali razionali sono in corrispondenza biiettiva con gli elementi di Ω. Una 1-forma differenziale

razionale e detta regolare se e definita in ogni punto P ∈ X . Le 1-forme regolari costituiscono uno spazio vettoriale su K

isomorfo allo spazio L(W ), essendo W un divisore canonico. Infatti, se W = (dα), risulta βdα regolare se e solo se per

ogni P si ha ordP (βdα) ≥ 0 e quindi se e solo se β ∈ L(W ).

Pertanto il genere di una curva puo essere interpretato come la dimensione dello spazio delle 1-forme differenziali definite

su tutti i punti della curva. E anche interssante notare che mentre non esistono funzioni razionali definite ovunque (a

parte le costanti), esistono 1-forme differenziali razionali definite ovunque e formano uno spazio vettoriale di dimensione

g su K.

Riportiamo infine, ancora una volta senza dimostrazione, il seguente risultato relativo alle curve piane con sole singolarita

ordinarie.

Teorema 4.42. Sia X piana. Siano P1, . . . , Pr i suoi punti singolari. Se ogni Pi e ordinario, allora

g =(d− 1)(d− 2)

2−

r∑i=1

ri(ri − 1)

2.

dove ri indica la molteplicita di Pi.

4.2. Esempi di calcolo del genere di curve singolari. In questa sezione vedremo alcuni esempi relativi al calcolo

del grado di un divisore canonico per curve piane singolari. Supponiamo X : f(X,Y ) = 0 con x = X + 〈f〉 separante, e

consideriamo ω = dx. I DVR O per cui x− a e un parametro locale per qualche a ∈ K sono tali che ordOdx = 0. Dalla

dimostrazione della Proposizione 4.39 siamo in grado di calcolare ordOdx per DVR centrati in punti affini non singolari:

se la tangente e non verticale ordOdx = 0, altrimenti ordOdx = ordO(fy).

Esempio 4.43. Sia char(K) = 0. Sia X : Y m−Xq −X, con q primo e m divisore proprio di q+ 1. Si lascia allo studente

la verifica che X e irriducibile. Si vede facilmente che i punti affini sono tutti non singolari. Quelli con tangente verticale

sono i punti Pa di coordinate affini (a, 0) con aq + a = 0, per i quali la tangente e X − a = 0. Tali punti sono in numero

di q. Un parametro locale per Pa e quindi y = Y + 〈f〉. Dato che fy = mym−1 si ha ordPadx = m− 1.

Veniamo adesso ai punti all’infinito. Esiste un unico punto Q∞ della curva sulla retta X0 = 0, vale a dire Q∞ = (0 : 0 : 1).

Si vede facilmente che Q∞ e un punto singolare di molteplicita q−m. C’e una sola tangente principale, vale a dire X0 = 0.

Il primo problema e scoprire quanti DVR sono centrati in Q∞. Sia O un DVR centrato in Q∞ per cui vOx < 0. Un tale

DVR esiste altrimenti x non avrebbe poli. Allora

ordO(ym) = ordO(xq + x),

e quindi per le proprieta delle valutazioni

m · ordO(y) = q · ordO(x).

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 68

Dato che q e primo e non divide m, si ha che q divide ordO(y). E evidente che [K(x, y) : K(y)] ≤ q, pertanto y ha al

massimo q poli contati con molteplicita. Ne segue

ordO(y) = −q

e quindi

ordO(x) = −m.Se esistesse un ulteriore DVR centrato in Q∞ non sarebbe polo ne di x ne di y, ma in questo caso sarebbe centrato in un

punto affine. Pertanto O e l’unico DVR centrato in Q∞.

Calcoliamo ordO(dx). Dato che la caratteristica e 0 si ha allora che ordO(x) = −m implica ordO(dx) = −m− 1.

Pertanto deg(dx) = −m− 1 + q(m− 1), e quindi

g =(q − 1)(m− 1)

2.

Esercizio 26. Si svolga l’esercizio precedente in caratteristica arbitaria. Quando continua a valere che il genere della

curva e (q − 1)(m− 1)/2?

Esempio 4.44. Sia char(K) 6= 2 e sia h ≥ 4 un intero. Sia X : f(X,Y ) = 0 con

f(X,Y ) = Y 2 − g(X), con g(X) =

h∏i=1

(X − αi),

dove αi 6= αj per 1 ≤ i ≤ j ≤ h. Si lascia allo studente la verifica che X e irriducibile.

Dato che le radici di g sono distinte, i punti affini di X sono tutti semplici. Quelli a tangente verticale sono i punti

Pαi = (αi, 0). In tali punti fy = 2y e quindi ordPαidx = 1.

L’unico punto all’infinito di X e Q∞ = (0 : 0 : 1). E un punto singolare di molteplicita h − 2, e la sua unica tangente

principale e X0 = 0.

- Se h e dispari, si puo dimostrare come nell’esempio precedente che esiste un unico DVR O centrato in Q∞ per

il quale ordOy = −h, ordOx = −2. Pertanto 2g − 2 = h− 3 e g = (h− 1)/2.

- Sia h pari. Sia O1 DVR centrato in Q∞ per cui ordO1 x < 0. da cui

2 · ordO1y = h · ordO1

x,

da cui

ordO1y =

h

2· ordO1

x

e quindi h/2 divide ordO1y Si presentano due casi: (a) ordO1

y multiplo proprio di h/2, (b) ordO1y = −h/2.

Il caso (a) in realta non puo verificarsi: dato che y ha h poli si avrebbe ordO1 y = −h e ordO1 x = −2; ma

allora, analogamente al caso h dispari, si avrebbe g = (h− 1)/2; cio e impossibile perche (h− 1)/2 non e intero.

Nel caso (b) ordO1y = −h/2 e ordO1

x = −1. Questo dimostra che deve esserci un altro polo di x e di y.

Tale DVR non puo che essere centrato in Q∞, e pertanto esiste O2 con ordO2y = −h/2 e ordO2

x = −1. Si ha

ordO1dx = −2, ordO2dx = −2

e quindi

2g − 2 = h− 4⇒ g =h− 2

2.

Proposizione 4.45. Per ogni intero positivo g, esiste una curva algebrica proiettiva di genere g.

Dimostrazione. Dimostreremo l’asserto solo per p 6= 2. Sia h = 2g+ 1. Dall’Esempio 4.44, ogni curva di equazione

Y 2 =

h∏i=1

(X − ai), ai ∈ K, ai 6= j se i 6= j

ha genere g.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 69

Esempio 4.46. Sia char(K) 6= 2, 3, e sia X : −X2 − X4 + Y 6 = 0. I punti singolari affini sono tutti semplici tranne

P0 = (0, 0), che e un punto doppio. Abbiamo mostrato nell’Esempio 3.18 che i DVR di K(X ) centrati in (0, 0) sono

almeno due, diciamo O1, O2. Naturalmente sia O1 che O2 sono zeri di entrambe le funzioni razionali x e y. Pertanto

2 · ordOi x = 6 · ordOi y,

e quindi

ordOi x = 3 · ordOi y,Quindi 3 | ordOi x, ma non e possibile che ordOi x ≥ 6 altrimenti x avrebbe 12 zeri. Pertanto

ordOi(x) = 3, ordOi(y) = 1

e dato che p 6= 3 si ha ordOidx = 2. Evidentemente non possono essevi altri DVR centrati in P0.

I punti semplici con tangente verticale sono P1 = (1, 0) e P2 = (−1, 0). Si ha fy = 6y5, e quindi in questi punti si ha

ordPidx = 5.

Restano da esaminare i DVR centrati nei punti all’infinito. L’unico punto all’infinito e R∞ = (0 : 1 : 0). E un punto

singolare doppio con un’unica tangente principale, X0 = 0. Sia O un DVR centrato in R∞ che sia polo di x. Allora

4 · ordOx = 6 · ordOi y,

e quindi

2 · ordOx = 3 · ordOi y.Due sono le possibilita: (a) O e l’unico DVR centrato in R∞ (b) Esistono almeno due DVR centrati in R∞. Esaminiamo

le due possibilita separatamente.

(a) In tal caso ordOx = −6 e ordOdx = −7. Si avrebbe allora

2g − 2 = 2 · 2 + 2 · 5− 7

il che implicherebbe g non intero, una contraddizione.

(b) In tal caso ordOx = −3 e quindi

2g − 2 = 2 · 2 + 2 · 5 + 2 · (−4),

da cui

g = 4.

Esercizio 27. Lo studente provi a svolgere l’esercizio precedente per p = 3. Si osservi subito che dx = 0.

4.3. Curve iperellittiche. Una curva X si dice iperellittica se ha genere g maggiore di 1 ed inoltre

(14) esiste α ∈ K(X ) con deg((α)∞) = 2.

Esercizio 28. Si dimostri che ogni curva di genere 0 o 1 soddisfa la proprieta (14).

Esercizio 29. Si dimostri la curva dell’Esempio 4.44 e iperellittica per ogni h ≥ 4.

Proposizione 4.47. Ogni curva X di genere g = 2 e iperellittica.

Dimostrazione. Sia W un divisore canonico di X . Dato che `(W ) ≥ 2, esiste un divisore W ′ equivalente a W

ed effettivo. Sappiamo dunque che anche W ′ e canonico, e quindi `(W ′) ≥ 2. Pertanto in L(W ′) esiste una funzione

razionale non costante, diciamo α. Risulta quindi

(α) +W ′ ≥ 0,

e in particolare

deg (−(α)∞ +W ′) ≥ 0.

Essendo deg(W ′) = 2g − 2 = 2, si ha deg((α)∞) ∈ 0, 1, 2. Si noti che deg((α)∞) 6= 0, essendo α non costante. Inoltre

se fosse deg((α)∞) = 1, allora X avrebbe genere 0. Per cui deg((α)∞) = 2.

4. DERIVAZIONI, DIFFERENZIALI, DIVISORI CANONICI 70

Nel caso di caratteristica diversa da 2 daremo la seguente classificazione delle curve iperellittiche (e quindi delle curve di

genere g = 2).

Proposizione 4.48. Sia char(K) 6= 2. Allora ogni curva iperellittica di genere g e birazionalmente equivalente ad una

curva piana di equazione

Y 2 =

2g+1∏i=1

(X − ai), ai ∈ K, ai 6= j se i 6= j.

Dimostrazione. Sia x come da proprieta (14). Dato che deg((x)∞) = 2, risulta [K(X ) : K(x)] = 2. Dato che

char(K) 6= 2, l’estensione K(X ) : K(x) e separabile e pertanto - in virtu del Teorema dell’Elemento Primitivo - esiste

y0 ∈ K(X ) con K(X ) = K(x, y0).

Dato che il polinomio minimo di y0 su K(x) e 2, y0 soddisfa una relazione di tipo

y20 +

b1(x)

b2(x)y0 +

b3(x)

b4(x)= 0, con bi(x) ∈ K[x].

Eliminando i denominatori si ottiene

c0(x)y20 + c1(x)y0 + c2(x) = 0, per qualche ci(x) ∈ K[x].

Si ponga y1 = c0(x)y0 e si osservi che K(X ) = K(x, y0) = K(x, y1). Inoltre

y21 + c1(x)y1 + c0(x)c2(x) = 0.

Ora si definisca y2 = y1 + 12c1(x). Si osservi che K(X ) = K(x, y1) = K(x, y2), ed inoltre

y22 + h(x) = 0, con h(x) ∈ K[x].

Si scriva h(x) = a∏sj=1(x − uj)rj con a ∈ K∗, rj ∈ Z>0, uj ∈ K, uj 6= uj′ per j 6= j′. Allora e evidente che h(x) puo

essere scritto come

h(x) = ag(x)2h∏i=1

(x− ai).

Si ponga y3 = y2/g(x) e si osservi che K(X ) = K(x, y2) = K(x, y3). Inoltre

y23 + a

h∏i=1

(x− ai) = 0.

Finalmente, si consideri e ∈ K con e2 = −a e si ponga y = ey3. Ovviamente vale K(X ) = K(x, y3) = K(x, y). Inoltre

y2 =

h∏i=1

(x− ai).

Il fatto che h appartenga a 2g + 1, 2g + 2 segue dall’Esercizio 4.44.

Se h = 2g + 2, e necessario operare un’ulteriore trasformazione, ponendo

x′ =1

x− a1, y′ = yx′

g+1.

Allora facilmente si ha K(X ) = K(x′, y′), ed inoltre

y′2

= y2x′2g+2

=

2g+2∏i=2

x′(x− ai)

Tenendo conto che x = 1x′ + a1 si ha allora

y′2

=

2g+2∏i=2

(1 + (a1 − ai)x′).

5. TEOREMA DI RIEMANN-ROCH 71

5. Teorema di Riemann-Roch

Il Teorema di Riemann-Roch e uno dei teoremi piu famosi della Geometria Algebrica.

Teorema 4.49 (Teorema di Riemann-Roch). Dato un divisore D di una curva algebrica X ,

`(D) = deg(D) + 1− g + `(W −D)

dove W e un qualsiasi divisore canonico.

Calcolare `(W − D) in generale non e facile. Se pero il grado di D e sufficientemente grande, tale intero risulta essere

uguale a zero

Corollario 4.50. Per ogni divisore D tale che deg(D) ≥ 2g − 1, si ha

`(D) = deg(D) + 1− g

Dimostrazione. Dal Teorema di Riemann-Roch segue `(D) = deg(D) + 1− g + `(W −D), essendo W un divisore

canonico. Siccome deg(D) ≥ 2g− 1 e deg(W ) = 2g− 2, abbiamo che deg(W −D) < 0. Da (2) del Lemma 3.40 segue che

`(W −D) = 0, da cui l’asserto.

Lemma 4.51. Sia D tale che deg(D) = 0. Allora `(D) ≤ 1.

Dimostrazione. L’asserto segue dalla Proposizione 3.42.

Esempio 4.52. Sia q una potenza di un primo, e sia X : F = 0, F = X2, K = Fq. Conserviamo la notazione usata

nell’Esempio 1.38. Per un intero k, 1 ≤ k ≤ q, sia D = (k − 1)P∞. Proveremo che L(D) coincide con lo spazio vettoriale

V =

f(X0, X1) + 〈F 〉Xk−1

0 + 〈F 〉| f(X0, X1) ∈ Fq[X0, X1], omogeneo, deg(f) = k − 1

.

Mostriamo innanzitutto che V ⊆ L(D). Per una funzione f ∈ V si scriva

f = (a0Xk−10 + a1X1X

k−20 + . . .+ ak−1X

k−11 ) + 〈F 〉/Xk−1

0 + 〈F 〉.

Allora f = a0f0 + a1f1 + . . .+ ak−1fk−1, dove fi = (X1/X0)i. Siccome per il Corollario 1.31 f−11 e un parametro locale

in P∞, la Proposizione 1.36 implica ordP∞(f) = −i0, essendo

i0 = max0 ≤ i ≤ k − 1 | i 6= 0 .

Tenendo conto del fatto che f e definita in ogni punto di X diverso da P∞, si ha che (f)∞ = −i0P∞, e pertanto f ∈ L(D).

Per provare l’asserto ora e sufficiente mostrare che dim(V ) = `(D). Chiaramente dim(V ) = k. Siccome il genere di X e

uguale a 0, per il Corollario 4.50 si che anche `(D) e uguale a k.

Esempio 4.53. Sia X come nell’esempio 4.52. Siano P1 = (1 : a1 : 0), . . . , Pn = (1 : an : 0) punti distinti di X . Per n

elementi non nulli v1, v2, . . . , vn di Fq, sia U ∈ Fq[X] tale che deg(U) ≤ n − 1 e U(ai) = vi per ogni i, 1 ≤ i ≤ n. Si

scriva U = u0 + u1X + . . .+ un−1Xn−1; sia u la funzione razionale su X definita da u = (u0X

n−10 + u1X1X

n−20 + . . .+

un−1Xn−11 )/Xn−1

0 . Ora si consideri lo spazio L(D) con D = (k − 1)P∞ − (u). Affermiamo che l’insieme

uf0, uf1, . . . , ufk−1,

con fi = (X1/X0)i, costituisce una base di L(D). Dall’ Esempio 4.52 sappiamo che (fi) = iP0 − iP∞. Pertanto

(ufi) +D = (u) + (fi) + ((k − 1)P∞ − (u)) = iP0 + (k − 1− i)P∞ ≥ 0

cioe ufi ∈ L(D) per ogni i, 0 ≤ i ≤ k − 1. Si lascia come esercizio dimostrare che le funzioni ufi sono linearmente

indipendenti. Per il Corollario 4.50, la dimensione di L(D) e uguale a k, e pertanto l’asserto e dimostrato.

CAPITOLO 5

Ricoprimenti

1. L’uguaglianza fondamentale

Sia φ : X → Y una mappa razionale non costante, e sia φ∗ : K(Y) → K(X ) il suo pull-back. Sia O un DVR di K(X ) e

sia O′ il DVR di K(Y) tale che φ∗(O′) = O∩φ∗(K(Y)). Ricordiamo che O′ e l’unico DVR di K(X ) tale che φ∗(O′) ⊆ O.

In questo capitolo, quando φ e chiara dal contesto, scriveremo talvolta O | O′ in luogo di φ∗(O′) ⊆ O. Diremo in tal caso

che O′ e coperto da O.

Ricordiamo che se O = K[X ]P e O′ = K[Y]Q, con P e Q punti semplici, allora questa condizione e equivalente a φ(P ) = Q.

Ricordiamo inoltre che e gia stato dimostrato che φ∗(MO′) ⊆MO.

Lemma 5.1. Esiste un intero eO ≥ 1 tale che per ogni α ∈ K(Y) si ha

ordO(φ∗(α)) = eO · ordO′(α).

Dimostrazione. Si osservi che se u ∈ K(Y) e tale che ordO′(u) = 0, allora φ∗(u), φ∗(u)−1 ∈ O, e quindi anche

ordO(φ∗(u)) = 0. Adesso scegliamo un parametro locale t′ per O′ e poniamo eO = ordO(φ∗(t′)). Si ha allora eO ≥ 1 dato

che φ∗(MO′) ⊆MO. Sia quindi α = u(t′)r. Si ha

φ∗(α) = φ∗(u) · φ∗(t′)r,

da cui facilmente l’asserto.

Definizione 5.2. L’intero eO e detto indice di ramificazione di O su O′. Diremo che O|O′ e ramificata (o che O e di

ramificazione) se eO > 1.

Dimostriamo ora che una mappa razionale non costante fra curve non singolari e sempre suriettiva.

Proposizione 5.3. Per ogni DVR O′ di K(Y) esiste almeno uno e comunque un numero finito di DVR O di K(X ) tali

che φ∗(O′) ⊂ O.

Dimostrazione. Scegliamo α ∈ K(Y) tale che O′ sia l’unico zero di α; cio e senz’altro possibile (lo studente provi

a dimostrarlo ragionando con il semigruppo di Weierstrass).

Dimostreremo che i DVR di K(X ) che ricoprono O′ sono tutti e soli gli zeri di φ∗(α). L’asserto ne segue facilmente.

Se φ∗(O′) ⊆ O, allora chiaramente ordO(φ∗(α)) > 0. Viceversa, sia ordO(φ∗(α)) > 0, e sia O′′ il DVR coperto da O.

Allora ordO′′(α) > 0, e quindi O = O′′.

Teorema 5.4 (Uguaglianza fondamentale). Sia n = [K(X ) : φ∗(K(Y))]. Sia O′ un DVR di K(Y), e siano O1, . . . , Omi DVR di K(X ) con Oi | O′. Allora

n =

m∑i=1

eOi .

Dimostrazione. Scegliamo α ∈ K(Y) tale che O′ sia l’unico zero di α. Allora, dalla dimostrazione precedente,

O1, . . . , Om sono tutti e soli gli zeri di φ∗(α).

Calcoliamo [K(X ) : φ∗(K(α))] in due modi diversi. Da un lato

[K(X ) : φ∗(K(α))] = [K(X ) : φ∗(K(Y))][φ∗(K(Y)) : φ∗(K(α)))] = nv

72

2. IL TEOREMA DI HURWITZ 73

essendo v = ordO′(α). Dall’altro [K(X ) : φ∗(K(α))] = [K(X ) : K(φ∗(α)] =∑O zero di φ∗(α) ordO(φ∗(α)) =

∑mi=1(eOiv) =

(∑mi=1 eOi) v.

2. Il teorema di Hurwitz

Sia φ : X → Y una mappa razionale non costante separabile, e sia φ∗ : K(Y) → K(X ) il suo pull-back. Sia O un

DVR di K(X ) e sia O′ il DVR di K(Y) tale che φ∗(O′) ⊆ O. Ricordiamo che se O = K[X ]P e O′ = K[Y]Q, con P e Q

punti semplici, allora questa condizione e equivalente a φ(P ) = Q. Ricordiamo inoltre che φ∗(O′) = O ∩ φ∗(K(Y)), e che

φ∗(MO′) ⊆MO.

Lemma 5.5. Per ogni α, x ∈ K(Y) con dx 6= 0 si ha:

dα = udx in ΩK(K(Y))⇒ d(φ∗(α)) = φ∗(u)dφ∗(x) in ΩK(K(X )).

Dimostrazione. Esistono due K-derivazioni definite su φ∗(K(Y)): una, diciamo d1, a valori in ΩK(K(X )), indotta

dalla restrizione di d : K(X ) → Ω(K(X )); l’altra, diciamo d, a valori in ΩK(φ∗(K(Y))), indotta in modo naturale da

d : K(Y) → ΩK(K(Y)). Osserviamo in particolare che se dα = udx in ΩK(K(Y)), allora d(φ∗(α)) = φ∗(u)d(φ∗(x)) in

ΩK(φ∗(K(Y))).

Per il Lemma 4.29, esiste η omomorfismo di φ∗(K(Y))-spazi vettoriali, η : Ω(φ∗(K(Y)))→ ΩK(K(X )), tale che d1 = η d.

Sia d1(φ∗(α)) = vd1(φ∗(x)) in ΩK(K(X )), e dα = udx in K(Y). Allora d(φ∗(α)) = φ∗(u)d(φ∗(x)) in Ω(φ∗(K(Y))).

Applicando η se ne deduce

η(d(φ∗(α))) = η(φ∗(u)d(φ∗(x))) = φ∗(u)η(d(φ∗(x))),

e quindi

d1(φ∗(α)) = φ∗(u)d1(φ∗(x)).

Corollario 5.6. Sia φ : X → Y separabile. Se α ∈ K(Y) e tale che dα 6= 0 in ΩK(K(Y)), allora dφ∗(α) 6= 0 in

ΩK(K(X )).

Dimostrazione. Sia x separante in K(Y). Allora φ∗(x) e separante in K(X ); infatti l’estensione K(X ) : K(φ∗(x))

e ottenibile come composizione delle estensioni separabili K(X ) : φ∗(K(Y)) e φ∗(K(Y)) : φ∗(K(x)). Pertanto dφ∗(x) 6= 0.

Allora dα = udx con u 6= 0. Dal Lemma 5.5 allora segue che d(φ∗(α)) = φ∗(u)d(φ∗(x)) in ΩK(K(X )). Visto che φ∗(u) e

dφ∗(x) 6= 0 sono entrambi non nulli, ne segue d(φ∗(α)) 6= 0.

Teorema 5.7 (Teorema di Hurwitz). Siano X e Y due curve algebriche proiettive. Sia g il genere di X e g′ il genere di

Y. Sia φ : X → Y una mappa razionale non costante separabile di grado n. Allora

2g − 2 = n(2g′ − 2) +Diff,

dove Diff =∑O∈P ordO

dφ∗(t′)dt , essendo t (resp t′) parametro locale in O (resp. O′).

Dimostrazione. Sia x separante per K(Y) (e quindi φ∗(x) e separante per K(X )). Allora

2g − 2 =∑O∈P

ordOd(φ∗(x)) =∑O∈P

ordO(d(φ∗(x))/dtO) =∑O∈P

ordO

(d(φ∗(x))

d(φ∗(tO′))

d(φ∗(tO′))

dtO

),

con tO (resp tO′) parametro locale in K(X ) (resp. K(Y)) di O (resp. O′). Osserviamo che d(φ∗(tO′)) 6= 0 perche dtO′ 6= 0

(Corollario 5.6).

Quindi

2g − 2 =∑O∈P

ordO

(d(φ∗(x))

d(φ∗(tO′))

)+∑O∈P

ordO

(d(φ∗(tO′))

dtO

)=∑O∈P

ordO

(d(φ∗(x))

d(φ∗(tO′))

)+Diff.

Analizziamo la prima sommatoria. Indicando con P′ l’insieme dei DVR di K(Y), si ottiene:∑O∈P

ordO

(d(φ∗(x))

d(φ∗(tO′))

)=∑O′∈P′

∑O∈P,O|O′

ordO

(d(φ∗(x))

d(φ∗(tO′))

).

2. IL TEOREMA DI HURWITZ 74

Dal Lemma 5.5 segue ched(φ∗(x))

d(φ∗(tO′))

e il pull-back di dx/dtO′ . Ne segue∑O∈P

ordO

(d(φ∗(x))

d(φ∗(tO′))

)=∑O′∈P′

∑O∈P,O|O′

ordO′

(dx

dtO′

)eO = n · deg(div(dx)) = n(2g′ − 2).

In caratteristica 0, o in generale nel caso in cui la caratteristica p non divide nessun indice di ramificazione eO, esiste un

espressione molto semplice per l’intero Diff .

Proposizione 5.8. Sia t (resp t′) parametro locale in O (resp. O′). Allora

ordOdφ∗(t′)

dt≥ eO − 1.

Inoltre se char(K) = 0 o se p non divide eO si ha

ordOdφ∗(t′)

dt= eO − 1.

Dimostrazione. Per definizione eO e l’ordine di φ∗(t′) in O. Pertanto la serie di potenze G(T ) = φt(φ∗(t′)) e di

tipo

G(T ) = aT eO + . . . , a 6= 0.

La derivata di G(T ) e

G′(T ) = eOaTeO−1 + . . .

Dalla discussione che precede il Lemma 4.35 si ha che ordOdφ∗(t′)dt = ordG′(T ), da cui l’asserto.

Corollario 5.9. Se char(K) = 0, o se p non divide nessun indice di ramificazione eO, allora

2g − 2 = n(2g′ − 2) +∑O∈P

(eO − 1).

Corollario 5.10. Sia φ : X → Y mappa razionale non costante e separabile. Sia n = [K(X ) : φ∗(K(Y))]. Allora per

tutti i DVR O′ di K(Y), tranne al piu un numero finito di eccezioni, si ha

#O DVR di K(X ) | O|O′ = n.

Dimostrazione. Dal Teorema di Hurwitz segue che eO > 1 solo per un numero finito di O. L’asserto quindi segue

dall’uguaglianza fondamentale.

2.1. Esempi.

Esempio 5.11. Siano n,m primi tra loro ed entrambi non multipli della caratteristica di K. Consideriamo la curva

Y : Xn + Y m + 1 = 0

e calcoliamone il genere utilizzando il teorema di Hurwitz. Supponiamo senza restrizione n ≥ m (in caso contrario si

scambino X e Y ). Inoltre escludiamo il caso n = m perche in tal caso Y e non singolare e il suo genere e gia noto. Sia

X : Xmn + Y mn + 1 = 0.

Dato che la caratteristica di K non divide mn si ha che X e una curva non singolare, e pertanto il suo genere e

g = (mn− 1)(mn− 2)/2.

Consideriamo la mappa razionale

φ : X → Y, φ = (1 : xm : yn).

Indichiamo con x e y le funzioni coordinate affini di K(Y) (chiamarle come di consueto x e y genererebbe ambiguita con

le funzioni omologhe di K(X )). Allora φ∗(x) = xm, φ∗(y) = yn.

2. IL TEOREMA DI HURWITZ 75

Calcoliamo il grado di φ. Considerata la catena di sottocampi

φ∗(K(Y)) = K(xm, yn) ⊆ K(xm, yn)(x) ⊆ K(xm, yn)(x)(y) = K(X )

si vede subito che il grado di φ e minore o uguale di mn.

D’altro canto, fissato P = (a, b) punto di X con ab 6= 0, fissate η e ξ radici primitive rispettivamente n-me e m-me

dell’unita in K, l’insieme di punti

EP = ((ηn)ia, (ξm)jb) | 1 ≤ i ≤ m, 1 ≤ j ≤ n

ha cardinalita mn, e costituito da punti (semplici) di X , aventi tutti la stessa immagine (am, bn). Pertanto il grado di φ

e uguale a mn.

Cerchiamo i punti di ramificazione di φ. Dal fatto che quando ab 6= 0 i punti di EP sono deg(φ) punti di X aventi la

stessa immagine di P , segue che gli unici punti di ramificazione possono essere i punti affini P = (a, b) con a = 0 o b = 0,

o i punti all’infinito.

Esaminiamo i diversi casi separatamente

• P = (0, b). Allora b 6= 0, altrimenti il punto non apparterrebbe alla curva X . Si ha φ(P ) = P ′ = (0, bn), punto

semplice di Y con x parametro locale. Allora

m = ordP (xm) = ordP (φ∗(x)) = eP · ordP ′(x) = eP .

• P = (a, 0). Allora a 6= 0, altrimenti il punto non apparterrebbe alla curva X . Si ha φ(P ) = P ′ = (an, 0), punto

semplice di Y con y parametro locale. Allora

n = ordP (yn) = ordP (φ∗(y)) = eP · ordP ′(y) = eP .

• P punto all’infinito. Esistono mn punti all’infinito Q1, . . . , Qmn, di coordinate Qmn = (0 : µiλ : 1), i =

1, . . . ,mn, con µ radice primitiva (mn)-ma dell’unita in K e con λ ∈ K con λmn + 1 = 0. Si ha ordQi(x) =

ordQi(y) = −1. Pertanto, scrivendo

φ = (1/(yn) : (xm)/(yn) : 1)

deduciamo che φ(Qi) = (0 : 0 : 1). Si dimostri per esercizio che esiste un unico DVR R di K(Y) centrato in

(0 : 0 : 1), e che per tale R valgono ordR(x) = −m, ordR(y) = −n. Pertanto l’indice di ramificazione deve

necessariamente essere 1.

Pertanto

2

((nm− 1)(mn− 2)

n

)− 2 = mn(2g′ − 2) +mn(m− 1) +mn(n− 1),

e quindi, dividendo tutto per mn,

mn− 3 = 2g′ − 2 +m+ n− 2

e pertanto

g′ =mn+ 1−m− n

2.

Esercizio 30. Si calcoli il genere della curva Y dell’esempio precedente senza utilizzare il Teorema di Hurwitz.

Esempio 5.12. Sia X come nell’esempio 3.18. Sia Y : −X2 +X4 + Y 3 = 0 e sia

φ : X → Y, φ = (1 : x : y2).

Calcoliamo il genere g′ di Y utilizzando il Teorema di Hurwitz.

Mostriamo che il grado di φ e 2. Si ha φ∗(K(Y)) = K(c, y2) e quindi K(X ) = φ∗(K(Y))(y). Dato che y e radice di

X2 − y2 ∈ φ∗(K(Y))[X] si ha subito che il grado e al massimo 2.

Indichiamo con x e y le funzioni coordinate affini di K(Y) (chiamarle come di consueto x e y genererebbe ambiguita con

le funzioni omologhe di K(X )). Allora φ∗(x) = x, φ∗(y) = y2. Se il grado della mappa razionale fosse minore di 2, allora

il polinomio X2 − y sarebbe riducibile, e quindi y sarebbe un quadrato in K(Y). Cio non e possibile, e questo lo si puo

vedere considerando, per esempio, che V = (1 : 0) e un punto semplice di Y con tangente X = 1, e quindi ordV (y) = 1.

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 76

Cerchiamo di individuare i DVR di ramificazione di φ. Un punto affine semplice P = (a, b) e tale che φ(a, b) = φ(a,−b).Pertanto se b 6= 0 P non puo essere di ramificazione. I punti affini semplici con b = 0 sono due: P1 = (1, 0) e P2 = (−1, 0).

Le loro immagini mediante φ sono rispettivamente P ′1 = (1, 0) e P ′2 = (−1, 0), punti semplici di Y. Si ha ordP ′i (y) =

ordPi(y) = 1. Pertanto

2 = ordPi(y2) = ordPi(φ

∗(y)) = ePiordP ′i (y) = ePi .

Quindi P1 e P2 sono punti/DVR di ramificazione con indice di ramificazione 2.

Gli altri unici possibili DVR di ramificazione sono quelli centrati in punti singolari o all’infinito. Abbiamo nell’Esempio

4.46 che questi DVR sono precisamente 4: due - diciamo O1 e O2 - centrati in (0, 0), e due - diciamo R1 e R2 - centrati

in R∞ = (0 : 1 : 0). Abbiamo anche visto che

ordOi(x) = 3, ordOi(y) = 1, ordRi(x) = −3, ordRi(y) = −2.

Siano O′i (resp. Ri) i DVR di K(Y) con Oi|O′i (risp. Ri | R′i). quindi

3 = ordOi(x) = ordOi(φ∗(x)) = eOiordO′i(x),

2 = ordOi(y2) = ordOi(φ

∗(y)) = eOiordO′i(y),

−3 = ordRi(x) = ordRi(φ∗(x)) = eRiordR′i(x),

−4 = ordRi(y2) = ordRi(φ

∗(y)) = eRiordR′i(y).

Naturalmente dall’uguaglianza fondamentale segue che eO ∈ 1, 2. La prima e la terza uguaglianza implicano che eOi e

eRi non possono essere pari. Pertanto non esistono DVR di ramificazione per φ oltre a P1 e P2.

Da cui

2g − 2 = 2(2g′ − 2) + 2(2− 1)⇒ g′ = 2.

Esercizio 31. Si dimostri che se p 6= 2, 3 allora il genere di Y : −X2 + X4 + Y 3 = 0 e 2, senza utilizzare il Teorema di

Hurwitz.

Esempio 5.13. Sia X come nell’esempio 3.18. Ricalcoliamo il genere di X utilizzando il Teorema di Hurwitz. Sia

Y : −X +X2 + Y 3 = 0. E una curva piana non singolare di grado 3, quindi il suo genere e g′ = 1. Consideriamo

φ : X → Y, φ = (1 : x2 : y2).

Indichiamo con x e y le funzioni coordinate affini di K(Y) (chiamarle come di consueto x e y genererebbe ambiguita con

le funzioni omologhe di K(X )). Allora φ∗(x) = x2, φ∗(y) = y2.

Si dimostri per esercizio che il grado di φ e uguale a 4.

I punti di ramificazione semplici affini sono i punti P = (a, b) con a = 0 o con b = 0, diversi da (0, 0). Vale a dire i punti

(1, 0) e (−1, 0), che hanno la stessa immagine (1, 0). Si dimostri per esercizio che l’indice di ramificazione in questi due

punti e 2.

I due DVR di X centrati in (0, 0), diciamo O1 e O2, sono gli unici DVR le cui immagini sono centrate nel punto semplice

(0, 0) di Y. Si dimostri per esercizio che l’indice di ramificazione in questi due DVR e 2.

I due DVR di X centrati in (0 : 1 : 0), diciamo R1 e R2, sono gli unici DVR le cui immagini sono centrate nel punto

semplice (0 : 1 : 0) di Y. Si dimostri per esercizio che l’indice di ramificazione in questi due DVR e 2.

Pertanto

2g − 2 = 4(2 · 1− 1) + 6(2− 1)⇒ g = 4.

3. Automorfismi di una curva e ricoprimenti di Galois - Curve Quoziente

Proposizione 5.14. Sia M : L un’estensione finita e separabile, e sia

Γ(M,L) = σ : M →M | σ automorfismo, σ(l) = l per ogni l ∈ L.

Allora

|Γ(M,L)| ≤ [M : L].

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 77

Dimostrazione. Sia α tale che M = L(α). Tale α esiste per il Teorema dell’elemento primitivo. Sia f il polinomio

minimo di α su L, e sia n il suo grado. Chiaramente [M : L] = n. E facile vedere che ogni automorfismo di M = L(α)

che fissa L elemento per elemento deve mandare α in una radice di f , ed inoltre l’immagine di α determina l’immagine di

ogni elemento di L(α). Pertanto il numero di tali automorfismi e al massimo il numero di radici di f in M , e cioe n.

Un’estensione di campi finita e separabile M : L si dice di Galois se |Γ(M,L)| = [M : L].

Nota 6. Questa non e la definizione standard per un’estensione di Galois. Normalmente un’estensione di campi si dice

di Galois se e finita, separabile e normale. Si puo dimostrare che le due definizioni sono equivalenti (per estensioni finite

e separabili).

Sia φ : X → Y una mappa razionale non costante, e sia φ∗ : K(Y) → K(X ) il suo pull-back. Per semplicita scriveremo

Γ(X ,Y) in luogo di Γ(K(X ), φ∗(K(Y))), ovvero

Γ(X ,Y) = σ : K(X )→ K(X ) | σ autom. con σ(α) = α ∀ α ∈ φ∗(K(Y)).

Definizione 5.15. La mappa razionale φ e detta di Galois se l’estensione di campi K(X ) : φ∗(K(Y)) e di Galois, ovvero

se e separabile e se il gruppo Γ(X ,Y) ha cardinalita pari al grado di φ. In tal caso Y viene detta curva quoziente di Xrispetto al gruppo Γ(X ,Y) di automorfismi di K(X ).

Proviamo ora che ogni gruppo finito di automorfismi di K(X ) e Γ(X ,Y) per qualche φ : X → Y di Galois.

Teorema 5.16. Sia G un gruppo finito di K-automorfismi di K(X ). Sia

L = α ∈ K(X ) | σ(α) = α per ogni σ ∈ G.

Allora l’estensione K(X ) : L e di Galois e Γ(K(X ), L) = G.

Dimostrazione.

1. L’estensione K(X ) : L e finita e separabile. Questo seguira dal fatto che ogni elemento di K(X ) e algebrico

su L e che il suo polinomio minimo e separabile (lo studente rifletta sul perche in questo contesto estensione

algebrica implica estensione finita).

Sia quindi η ∈ K(X ) \ L. Sia σ1, . . . , σr un insieme di elementi di G, contenente l’identita, tale che

σ1(η), . . . , σr(η) sono distinti, massimale rispetto all’inclusione.

Si osservi che se σ ∈ G, allora σσ1(η), . . . , σσr(η) e semplicemente una permutazione di σ1(η), . . . , σr(η),

dato che il secondo insieme e massimale.

Sia

f(X) =

r∏i=1

(X − σi(η)).

Dato che i coefficienti di un polinomio monico sono polinomi simmetrici nelle sue radici, si ha che ogni coefficiente

di f e fissato da ogni σ ∈ G, e pertanto f ha coefficienti in L. Dato che f(η) = 0 questo prova che η e algebrico

su L. Inoltre, il polinomio minimo di η su L divide f , e pertanto e separabile.

2. |G| ≥ [K(X ) : L]. Dal punto 1. segue che per ogni η ∈ K(X ) si ha [L(η) : L] ≤ |G|. Dato che K(X ) : L e finita

e separabile, l’asserto segue dal Teorema dell’elemento primitivo.

3. Conclusione. G e chiaramente sottogruppo di Γ(K(X ), L), e dalla Proposizione 5.14 segue

|G| ≤ |Γ(K(X ), L)| ≤ [K(X ) : L].

Dal punto 2. segue allora

|Γ(K(X , L))| = [K(X ) : L].

Ovviamente si ha anche G = Γ(K(X ), L).

Corollario 5.17. I ricoprimenti di Galois di X , e quindi le curve quoziente di X , sono in biiezione con i sottogruppi

finiti di automorfismi di K(X ).

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 78

Dato un gruppo finito G di automorfismi di K(X ), la curva quoziente di X rispetto al ricoprimento di Galois indotto da

G sara denotata con X/G.

Il seguente lemma vale anche per mappe razionali non di Galois.

Lemma 5.18. Siano O DVR di K(X ) e O′ DVR di K(Y) con O|O′, e sia σ ∈ Γ(X ,Y). Allora

1. σ(O) e DVR di K(X );

2. ordσ(O)(y) = ordO(σ−1(y));

3. σ(O) | O′;4. eσ(O) = eO.

Dimostrazione.

1. Banale.

2. Segue facilmente dal fatto che σ e automorfismo, e che le valutazioni in un DVR dipendono esclusivamente dalle

proprieta algebriche di K(X ). In dettaglio: se t e parametro locale in O, allora σ(t) e parametro locale in σ(O), e se u e

invertibile in O allora σ(u) e invertibile in σ(O). Ovviamente da σ−1(y) = tmu segue y = σ(t)mσ(u), da cui l’asserto.

3. Naturalmente σ(φ∗(O′)) = φ∗(O′) perche σ fissa tutti gli elementi di φ∗(K(X )). Pertanto φ∗(O′) = σ(φ∗(O′)) ⊆σ(O).

4. Sia t′ un parametro locale di O′. Allora

eσ(O) = ordσ(O)(φ∗(t′)) = ordO(σ−1(φ∗(t′))) = ordO(φ∗(t′))) = eO.

Vediamo un lemma preparatorio al Teorema chiave 5.20.

Lemma 5.19. Sia K(X ) : φ∗(K(Y)) un’estensione di Galois. Allora

φ∗(K(Y)) = α ∈ K(X ) | σ(α) = α per ogni σ ∈ Γ(X ,Y).

Dimostrazione. Si vede facilmente che

L = α ∈ K(X ) | σ(α) = α per ogni σ ∈ Γ(X ,Y)

e un campo, che ovviamente contiene φ∗(K(Y)).

Pertanto ogni automorfismo di K(X ) che fissa L elemento per elemento in realta appartiene a Γ(X ,Y). In altri termini

Γ(K(X ), L) ⊆ Γ(X ,Y). D’altro canto, semplicemente per definizione di L, si ha che ogni elemento di Γ(X ,Y) fissa tutti

gli elementi di L, e pertanto

Γ(K(X ), L) = Γ(X ,Y).

Dalla Proposizione 5.14 si ha che n = |Γ(X ,Y)| = [K(X ) : φ∗(K(Y))] e minore o uguale di [K(X ) : L], e quindi L non

puo che coincidere con φ∗(K(Y)).

Teorema 5.20. Sia φ : X → Y di Galois. Sian O′ DVR di K(Y) o O1 e O2 tali che O1 | O′ e O2 | O′. Allora esiste

σ ∈ Γ(X ,Y) con O2 = σ(O1).

Dimostrazione. Assumiamo che l’asserto sia falso, e cioe che σ(O1) 6= O2 per ogni σ ∈ Γ(X ,Y). Dal Teorema di

Indipendenza possiamo scegliere z ∈ K(X ) tale che ordO2(z) > 0 e ordO(z) = 0 per ogni O | O′, O 6= O2. Sia

α =∏

σ∈Γ(X ,Y)

σ(z).

Si ha quindi

ordO1(α) =∑

σ∈Γ(X ,Y)

ordO1(σ(z)) =∑

σ∈Γ(X ,Y)

ordσ−1(O1)(z) = 0,

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 79

dato che σ−1(O1) | O′ ma σ−1(O1) 6= O2. Ovviamente, per calcoli analoghi,

ordO2(α) > 0.

Il punto cruciale e che α = φ∗(β), con β ∈ K(Y). Infatti, per definizione α e fissato da ogni elemento di Γ(X ,Y), e quindi

appartiene a φ∗(K(Y)) dal Lemma 5.19. Pertanto si deve avere sia

0 = ordO1(α) = ordO1

(φ∗(β)) = eO1· ordO′(β)⇒ ordO′(β) = 0,

che

0 < ordO2(α) = ordO2

(φ∗(β)) = eO2· ordO′(β)⇒ ordO′(β) > 0.

Le due conclusioni sono evidentemente in contraddizione.

Corollario 5.21. Sia φ : X → Y di Galois e di grado n, e sia O DVR di K(X ). Allora eO coincide con la cardinalita

dello stabilizzatore di O in Γ(X ,Y).

Dimostrazione. Si indichi con Γ(X ,Y)O lo stabilizzatore di O in Γ(X ,Y). Sia O′ il DVR di K(Y) tale che O | O′.Osserviamo che dal Teorema 5.20 l’insieme E = O ∈ P : O | O′ e precisamente l’orbita di O sotto l’azione di Γ(X ,Y).

Per il teorema dell’indice dello stabilizzatore si ha allora che

|E| = |Γ(X ,Y)|/|Γ(X , cY )O| = n/|Γ(X , cY )O|.

Ma dall’uguaglianza fondamentale si ha che

n =∑O∈E

eO

e quindi, dal Lemma 5.18(4),

n = |E|eO,da cui l’asserto.

Si indichi con Γ(X ,Y)O lo stabilizzatore di O in Γ(X ,Y). Dal Corollario 5.21, nel caso in cui p non divida |Γ(X ,Y)|,il genere della curva quoziente Y e completamente determinato dall’azione del gruppo |Γ(X ,Y)| sui DVR di K(X ).

Applicando i Corollari 5.9 e 5.21 si ha infatti che se p non divide la cardinalita di Γ(X ,Y)O per nessun O ∈ P, allora

(15) 2g − 2 = |Γ(X ,Y)|(2g′ − 2) +∑O∈P

(|Γ(X ,Y)O| − 1).

Si noti che, grazie a questa formula, e possibile in teoria calcolare il genere di una curva quoziente senza nemmeno

conoscerne un’equazione: tutto dipende dal gruppo e dalla sua azione su X .

Esercizio 32. Si dimostri che tutte le mappe razionali considerate negli esempi della Sezione 2.1 sono di Galois. Se ne

calcoli il gruppo Γ(X ,Y). Si ricalcoli quindi il genere delle curve quozienti utilizzando la formula (15).

Il caso in cui p divida |Γ(X ,Y)| sara trattato nella prossima sezione.

3.1. Formula del Differente di Hilbert. Nel caso di mappe razionali di Galois esiste una formula (la cui di-

mostrazione esula dagli scopi del corso) che consente il calcolo dell’intero Diff anche nel caso in cui la caratteristica

divida qualche indice di ramificazione.

Sia quindi φ : X → Y di Galois, e sia G = Γ(X ,Y).

Definizione 5.22. Sia O|O′. Sia t parametro locale in O. Allora, per ogni intero i ≥ 0 si definisce l’i-mo gruppo di

ramificazione di O|O′ il gruppo

Gi(O|O′) = σ ∈ G | ordO(σ(t)− t) ≥ i+ 1.

Si puo dimostrare che la definizione non dipende dalla scelta di t.

Teorema 5.23 (Teorema del Differente di Hilbert). Sia φ : X → Y una mappa razionale di Galois con G = Γ(X ,Y). Sia

O|O′, t parametro locale in O, t′ parametro locale in O′. Allora

ordOdφ∗(t′)

dt=

∞∑i=0

(| Gi(O | O′) | −1) .

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 80

3.2. Esempi. Sia K di caratteristica p > 0, sia q = ph, e sia X : Xq+1 − Y q − Y = 0, curva non singolare. Allora le

seguenti trasformazioni σa,b,c sono K-automorfismi di K(X ) = K(x, y):

σa,b,c(x) = ax+ b, σa,b,c(y) = aq+1y + bx+ c, dove aq2−1 = 1, bq

2

= b, cq + c = bq+1.

Per provarlo basta osservare che σa,b,c e il pull-back della mappa birazionale φa,b,c : X → X definita da

φa,b,c = (1 : ax+ b : aq+1y + bx+ c).

Sia

L = σa,b,c | aq2−1 = 1, bq

2

= b, cq + c = bq+1,

e sia

H = σ1,b,c | bq2

= b, cq + c = bq+1.

Si puo dimostrare che |H| = q3 e che pertanto |G| = (q2 − 1)q3. Dato che |H| e una potenza della caratteristica p, a

nessun sottogruppo di H e possibile applicare (15). Occorre pertanto utilizzare la formula del differente di Hilbert.

Osserviamo che ogni elemento di H diverso dall’identita agisce con orbite “lunghe” sui punti affini di X , mentre fissa

l’unico punto all’infinito P∞ = (0 : 0 : 1). A tale scopo e necessario calcolare per ogni elemento σ di H

ordP∞(σ(t)− t),

essendo t un parametro locale in P∞. Dato che ordP∞(x) = −q e ordP∞(y) = −q − 1 (lo si dimostri per esercizio), una

possibile scelta per t e t = x/y. Allora

σ1,b,c(x/y)− (x/y) =x+ b

y + bx+ c− x

y=by − bx2 − cxy(y + bx+ c)

Quindi

b 6= 0⇒ σ1,b,c(x/y)− (x/y) = −2q − (−2q − 2) = 2,

e

b = 0, c 6= 0⇒ σ1,0,c(x/y)− (x/y) = −q − (2q − 2) = q + 2.

Dato G sottogruppo di H, si ponga G = σ1,b,c ∈ G | b = 0. Allora

G0(P∞|P ′∞) = G

G1(P∞|P ′∞) = G

G2(P∞|P ′∞) = G

...

Gq+1(P∞|P ′∞) = G

Gq+2(P∞|P ′∞) = id...

Se |G| = pw e |G| = pv+w, allora

q2 − q − 2 = 2g − 2 = pv+w(2g′ − 2) + 2 · (pv+w − 1) + q · (pw − 1),

e pertanto il genere g′ della curva quoziente di X rispetto a G e

g′ =q2 − qpw

2pv+w.

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 81

3.3. Il Gruppo degli Automorfismi di una curva: la limitazione di Hurwitz. Lo scopo di questa sezione e

dimostrare il seguente risultato, che dimostra come il genere di una curva abbia influenza sul suo gruppo di automorfismi.

Teorema 5.24. Sia G un gruppo finito di automorfismi di una curva di genere g ≥ 2. Se char(K) = 0, o se p =

char(K) > 0 non divide |G|, allora

|G| ≤ 84(g − 1).

Dimostrazione. Sia g′ il genere della curva quoziente X/G. Dal Teorema di Hurwitz per ricoprimenti di Galois

sappiamo che

2g − 2 = |G|(2g′ − 2) +∑O∈P

(|G0| − 1) ,

dove GO denota lo stabilizzatore di O in G. Possiamo anche scrivere

2g − 2 = |G|(2g′ − 2) +∑

E orbita sotto G

∑O∈E

(|G0| − 1) .

Quindi

2g − 2 = |G|(2g′ − 2) +∑

E orbita sotto G

∑O∈E

(|G|/|E| − 1) = |G|(2g′ − 2) +∑

E orbita sotto G

(|G| − |E|),

e pertanto

2g − 2 = |G|

(2g′ − 2 +

∑E orbita sotto G

(1− |E||G|

)).

Siano E1, . . . , Er le orbite di DVR sotto l’azione di G che hanno cardinalita minore di |G|. Denotiamo

di =

(1− |Ei||G|

).

Pertanto

2g − 2 = |G|

(2g′ − 2 +

r∑i=1

di

).

(Se non esistono orbite corte, si intenda ovviamente∑ri=1 di = 0).

Visto che |Ei| divide propriamente |G|, si ha che di ≥ 1/2. In generale di assume valori di tipo (s − 1)/s per qualche

s ≥ 1 divisore di |G|.

1. Se g′ ≥ 2, allora chiaramente |G| ≤ g − 1.

2. Se g′ = 1, allora 2g − 2 = |G|∑ri=1 di. Essendo g ≥ 2 necessariamente

∑ri=1 di > 0 e quindi

∑ri=1 di >

12 .

Pertanto |G| ≤ 4(g − 1).

3. Se g′ = 0, allora

2g − 2 = |G|

(−2 +

r∑i=1

di

).

Occorre quindi che∑ri=1 di > 2, e quindi, essendo di < 2, necessariamente r > 2.

- r ≥ 5. Allora∑ri=1 di ≥ 5/2 e pertanto |G| ≤ 4(g − 1).

- r = 4. Deve aversi di > 1/2 per qualche i. Cio implica di ≥ 2/3, e quindi∑ri=1 di ≥ 13/6. Da cui

|G| ≤ 12(g − 1).

- r = 3. Ordiniamo gli indici in modo tale che d1 ≤ d2 ≤ d3. Se d1 = 2/3 allora d3 ≥ 3/4. Ne segue∑ri=1 di ≥ 25/12 e quindi |G| ≤ 24(g − 1). Se d1 ≥ 3/4, allora

∑ri=1 di ≥ 9/4 e quindi |G| ≤ 16(g − 1). Se

d1 = 1/2 e d2 ≥ 3/4, allora necessariamente e d3 ≥ 4/5; ragionando come sopra |G| ≤ 40(g − 1). Infine

supponiamo che d1 = 1/2 e d2 = 2/3. Allora necessariamente d3 ≥ 6/7 e |G| ≤ 84(g − 1).

Dalla dimostrazione appena conclusa si deduce che, nelle ipotesi del Teorema 5.24, si ha |G| = 84(g − 1) precisamente

quando G agisce con 3 sole orbite corte, di lunghezza |G|/2, |G|/3 e |G|/7.

3. AUTOMORFISMI DI UNA CURVA E RICOPRIMENTI DI GALOIS - CURVE QUOZIENTE 82

Esempio 5.25. La quartica di Klein: sia K = C e sia X : X3 + Y +XY 3 = 0. Si vede facilmente che X e non singolare

e pertanto ha genere g = 3. Si puo dimostrare che il suo gruppo di automorfismi ha cardinalita 168 = 84(g − 1).

Nota 7. E stato dimostrato che esistono infinite curve X definite su K = C per cui |Aut(X )| = 84(g − 1). Tuttavia la

quartica di Klein e una delle sole due curve per le quali sono note equazioni.

Esempio 5.26. Sia X come nella Sezione 3.2. La curva X ha genere g = q(q − 1)/2 ed un gruppo di automorfismi di

cardinalita q3(q2 − 1) > 84(g − 1) per q sufficientemente grande. Questo prova che il Teorema 5.24 puo non valere in

caratteristica positiva.

CAPITOLO 6

Curve in dimensione superiore

1. Serie lineari

Siano X una curva algebrica proiettiva non singolare definita su un campo K algebricamente chiuso ed E un divisore su

X . Si ponga

|E| := D ∈ Div(X ) : D ≥ 0, D ∼ E ,ovvero

|E| = E + div(f) : f ∈ L(E) \ 0 .Dato che per ogni f, h ∈ K(X )∗, div(f) = div(h) se e solo se esiste a ∈ K ∗ tale che f = ah, possiamo considerare

l’applicazione E + div(f) 7−→ [f ] ∈ P(L(E)); si vede facilmente che tale applicazione e biiettiva, e pertanto scriveremo

|E| ∼= P(L(E)).

Definizione 6.1. Una serie lineare D su X e un insieme di divisori

D := E + div(f) : f ∈ D′ \ 0,

dove E e un divisore su X e D′ e un sottospazio vettoriale su K di L(E). La serie lineare D si dice completa se D = |E|.Definiamo inoltre il grado e la dimensione di D rispettivamente gli interi d := deg (D) = deg (E) e r := dim (D) =

dimK (D′)− 1.

D’ora in avanti con grd indicheremo una serie lineare su X di grado d e dimensione r, e in accordo con le notazioni precedenti

scriveremo D ∼= P(D′). Inoltre una serie lineare D1∼= P(D′1) ⊆ |E1| si dice sottoserie di D ⊆ |E| se L(E1) ⊆ L(E) e

D′1 ⊆ D′.

Ricordiamo che un morfismo φ : X → Pr (K) si dice non degenere se φ (X ) * H per ogni iperpiano H di Pr (K). In altri

termini, φ = (f0 : . . . : fr) e non degenere se e solo se f0, . . . , fr sono linearmente indipendenti.

Procediamo adesso alla costruzione di un morfismo non degenere associato ad una serie lineare D.

Definizione 6.2. Siano P ∈ X e i ∈ Z≥0. Poniamo

Di(P ) := D ∈ D : D ≥ iP .

Banalmente risulta Di(P ) ⊇ Di+1(P ) e Di(P ) = ∅ se i > d. Inoltre valgono i seguenti risultati di facile dimostrazione.

Lemma 6.3. (1) Di(P ) e una serie lineare con D′i := D′ ∩ L(E − iP );

(2) Di(P ) e una sottoserie di D;

(3) dim(Di(P )) ≤ dim(Di+1(P )) + 1.

Definizione 6.4. Sia P ∈ X . Posto

b(P ) := min vP (D) : D ∈ D ,sia B il divisore

B :=∑P∈X

b(P )P .

Ogni punto P ∈ Supp(B) si dice punto fisso di D. Inoltre, se B = 0, D si dice senza punti fissi.

Osserviamo che per definizione di serie lineare, D e senza punti fissi se e solo se per ogni P ∈ X esiste f ∈ D′ \ 0tale che vP (E + div(f)) = 0. Nel caso in cui B abbia dei punti fissi, essendo D′ ⊆ L(E − B) consideriamo DB :=

D −B : D ∈ D ⊆ |E −B|. Chiaramente DB e una serie lineare grd−deg(B) senza punti fissi.

83

1. SERIE LINEARI 84

Lemma 6.5. Sia D ∼= P(D′) ⊆ |E| una serie lineare con D′ = 〈f0, . . . , fr〉. Allora E e univocamente determinato da D,

ovvero

vP (E) = b(P )−min vP (f0), . . . , vP (fr) .

Dimostrazione. Essendo D′ ⊆ L(E −B), vP (E)− b(P ) + vP (fi) ≥ 0 per ogni i e per ogni P , da cui si ha vP (E) ≥b(P )−min vP (f0), . . . , vP (fr). D’altra parte, dato che DB e senza punti fissi, per ogni P esiste (a0 : . . . : ar) ∈ Pr(K)

tale che vP (E −B + div(∑aifi)) = 0.

Costruiamo ora un morfismo associato alla serie lineare D.

Per ogni P ∈ X , si ha che D = Db(P )(P ) ) Db(P )+1(P ), da cui per il Lemma 6.3 otteniamo dim(Db(P )+1) = dim(D)− 1.

Risulta quindi ben definita la mappa

φD : X → D∗ ∼= P(D′)∗, P 7→ Db(P )+1.

Sia f0, . . . , fr una base su K di D′, t un parametro locale in P e f ∈ D′, f 6= 0. Allora vP (tvP (E)−b(P )f) ≥ 0, ed inoltre

E + div(f) ∈ Db(P )+1 ⇔ vP (tvP (E)−b(P )f) ≥ 1 ⇔ (tvP (E)−b(P )f)(P ) = 0.

Essendo f =∑i aifi, con (a0 : . . . : ar) ∈ Pr(K), abbiamo

Db(P )+1∼=

(a0 : . . . : ar) ∈ Pr(K) :

r∑i=0

ai(tvP (E)−b(P )fi)(P ) = 0

.

Le funzioni razionali f0, . . . , fr sono quindi le coordinate del morfismo φD. Si puo anche osservare che tali coordinate

sono indipendenti dalla scelta di φD o φDB .

A questo punto vediamo invece come a partire da un morfismo e possibile definire in modo naturale una serie lineare

associata ad esso.

Sia φ : X → Pr(K) un morfismo di coordinate omogenee f0, . . . , fr. Posto, per ogni P ∈ X ,

eP := −min vP (f0), . . . , vP (fr) ,

possiamo affermare che il divisore E =∑P∈X

ePP e ben definito e che fi ∈ L(E), per ogni i = 0, . . . , r. Ora basta

considerare il sottospazio D′ di L(E) generato da f0, . . . , fr e definire la seguente serie lineare

Df0,...,fr := E + div(f) : f ∈ D′ \ 0 ⊆ |E| ,

la quale, per definizione di E, risulta anche senza punti fissi.

Si puo anche facilmente osservare che tale serie lineare e indipendente dalla scelta delle coordinate omogenee di φ.

Possiamo dunque enunciare il seguente risultato.

Lemma 6.6. Sia φ = (f0 : . . . : fr) : X → Pr(K) un morfismo. Allora esiste una serie lineare Dφ ⊆ |E| senza punti fissi

associata ad esso, dove E e tale che vP (E) := −min vP (f0), . . . , vP (fr).

Inoltre, se φ e non degenere allora dim(Dφ) = r.

Vale quindi il seguente risultato.

Proposizione 6.7. Esiste una corrispondenza biunivoca tra l’insieme delle serie lineari senza punti fissi di dimensione

r e l’insieme delle classi di equivalenza dei morfismi non degeneri da X in Pr(K).

Dal punto di vista geometrico, se φ = (f0 : . . . : fr) e un morfismo non degenere su X , dal Lemma 6.6 si ha

Dφ =

E + div

(r∑i=0

aifi

): (a0 : . . . : ar) ∈ Pr(K)

.

2. DIVISORI, EQUIVALENZE BIRAZIONALI E IMMERSIONI 85

Dato che ogni r+ 1-upla non nulla (a0 : . . . : ar) definisce un iperpiano H in Pr(K) di equazione

r∑i=0

aiXi = 0, si definisce

in modo naturale il seguente divisore associato ad H:

φ∗(H) = E + div

(r∑i=0

aifi

)dimodoche

(16) Dφ = φ∗(H) : H iperpiano di Pr(K) ,

2. Divisori, equivalenze birazionali e immersioni

In questa sezione determineremo divisori E per i quali il morfismo φ|E| e un’equivalenza birazionale e φ|E|(X ) e una curva

non singolare.

E necessario premettere una ulteriore condizione equivalente di non singolarita per un punto di X , la cui dimostrazione

e omessa.

Proposizione 6.8. Sia P = (P0, . . . , Pr) un punto di X ⊆ Pr(K). Allora P e punto singolare di X se e solo se si verifica

una delle seguenti condizioni:

(a) P e centro di almeno due DVR distinti di K(X );

(b) P e centro di un solo DVR O di K(X ), ma per ogni iperpiano a0X0 + . . .+ arXr passante per O e per ogni i0con Pi0 6= 0 si ha

ordO

(r∑i=0

aiXi + I(X )

Xi0 + I(X )

)> 1

Esercizio 33. Si dimostri la condizione sufficiente: se vale una condizione fra (a) e (b), allora P e singolare.

Assumiamo che E abbia la seguente proprieta:

(I) E e effettivo, e per ogni P punto di X , dimKL(E − P ) = dimKL(E)− 1.

Lemma 6.9. Se il divisore E soddisfa la proprieta (I), allora |E| e priva di punti fissi.

Dimostrazione. Basta osservare che per ogni P punto fisso di E si avrebbe dimKL(E − P ) = dimKL(E).

Assumiamo ora

(II) per ogni P1, P2 punti di X , dimKL(E − P1 − P2) = dimKL(E)− 2.

Lemma 6.10. Se il divisore E soddisfa le proprieta (I) e (II), allora φ|E| e un’equivalenza birazionale di X in φ|E|(X ).

Dimostrazione. Supponiamo che φ|E| non sia un’equivalenza birazionale. Allora per tutti i punti P di X , tranne

al piu un numero finito di eccezioni, esiste un punto Q di P , distinto da P , con φ|E|(P ) = φ|E|(Q). Scegliamo P e

Q in modo tale che non appartengano al supporto di E. Allora per ogni f ∈ L(E) per cui f(P ) = 0 si ha anche

f(Q) = 0, ovvero L(E − P ) = L(E − P −Q). Ma cio contraddice l’ipotesi, essendo dimKL(E − P ) = dimKL(E) − 1 e

dimKL(E − P ) = dimKL(E)− 2.

Lemma 6.11. Se il divisore E soddisfa le proprieta (I) e (II), allora φ|E|(X ) e una curva non singolare.

Dimostrazione. Sia P un punto singolare di φ|E|(X ). Sia L(E) = 〈1, f1, . . . , fr〉. Senza restrizione assumiamo che

P sia un punto affine di φ|E|(X ). Allora si presenta almeno una delle seguenti due situazioni:

• Esistono due DVR distinti di K(φ|E|(X )) centrati in P , diciamo O1 e O2, corrispondenti a due punti P1 e P2 di

X .

3. INVARIANTI HERMITIANI 86

• Esiste un DVR di K(φ|E|(X )) centrato in P , diciamo O1, corrispondente al punto P1 di X , con ordO1(a0 +

a1x1 + . . .+ arxr) ≥ 2 per ogni iperpiano a0X0 + . . .+ arXr = 0 di Pr(K) passante per P .

Sia f ∈ L(E), f = a0 + a1f1 + . . .+ arfr. Si noti che f e il pull-back di a0 + a1x1 + . . .+ arxr mediante φ|E|. Osserviamo

che ordP1(f) > 0 se e solo se ordO1

(a0 + a1x1 + . . . + arxr) > 0. Pertanto ordP1(f) > 0 implica che P appartiene

all’iperpiano a0X0 + . . .+ arXr = 0.

Quindi nel primo caso se ordP1(f) > 0, allora anche ordO2

(a0 + a1x1 + . . .+ arxr) > 0, e pertanto ordP2(f) > 0. In altri

termini, per ogni f ∈ L(E − P1) si ha che f si annulla anche in P2, e quindi L(E − P1) = L(E − P1 − P2)

Nel secondo caso ordP1(f) > 0 implica ordP1(f) ≥ 2, e quindi L(E − P1) = L(E − P1 − P1).-

3. Invarianti Hermitiani

Siano X una curva algebrica proiettiva definita su un campo K algebricamente chiuso, D ∼= P(D′) ⊆ |E| una serie lineare

grd su X e P un punto della curva.

Definizione 6.12. Un intero j non negativo si dice (D, P )-ordine (o P -invariante Hermitiano), se Dj(P ) ) Dj+1(P ).

Dal Lemma 6.3 deduciamo la seguente catena di inclusioni

(17) ∅ = Dd+1(P ) ⊆ Dd(P ) ⊆ . . . ⊆ D0(P ) = D.

Inoltre essendo dim(D) = r e dim(Dj(P )) ≤ dim(Dj+1(P )) + 1, in (17) ci sono r + 1 inclusioni propositionrie e quindi

per ogni punto P della curva esistono r + 1 (D, P )-ordini detti

jD0 (P ) < jD1 (P ) < . . . < jDr (P ).

Per semplificare la notazione d’ora in poi sottointenderemo la dipendenza dalla serie lineare fissata.

Diamo ora una caratterizzazione piu pratica degli invarianti Hermitiani. Sia ji un (D, P )-ordine. Allora per definizione

esiste un divisore D ∈ Dji(P )\Dji+1(P ), ovvero esiste f ∈ D′, tale che vP (E)+vP (f) ≥ ji e vP (E)+vP (f) < ji+1. Allora

necessariamente vP (E) + vP (f) = ji. Ora, dato che per ogni h ∈ D′ji(P ) = D′ ∩ L(E − ji(P )), si ha vP (E) + vP (h) ≥ ji,risulta

ji = minvP (E) + vP (f) : f ∈ D

ji(P ).

Dalla (17) notiamo che j0(P ) coincide con b(P ), quindi D e senza punti fissi se e solo se j0(P ) = 0 per ogni P ∈ X .

Inoltre essendo Di(P ) = ∅ per ogni i > d, si ha jr(P ) ≤ d.

Dalle considerazioni fatte e facile verificare le seguenti equivalenze.

(1) j e un invariante Hermitiano;

(2) ∃D ∈ D tale che vP (D) = j;

(3) ∃f ∈ D′ tale che vP (E) + vP (f) = j;

(4) ∃f ∈ D′ tale che f ∈ L(E − jP ) \ L(E − (j + 1)P );

(5) dimK(D′j(P )) = dimK(D′j+1(P )) + 1;

(6) dim(Dj(P )) = dim(Dj+1(P )) + 1.

Sia φ = (f0 : . . . : fr) un morfismo su X . Consideriamo la serie lineare associata Dφ. Allora j e un (Dφ, P )-ordine se e solo

se esiste (a0 : . . . : ar) ∈ Pr(K) tale che vP (E) + vP (∑i aifi) = j, ovvero se e solo se esiste un iperpiano H :

∑i aiXi = 0

tale che vP (φ∗(H)) = j. In altri termini, j e un (Dφ, P )-ordine se e solo se esiste un iperpiano in Pr(K) tale che la sua

molteplicita di intersezione con φ(X ) in φ(P ) e j.

4. SEQUENZA DEGLI ORDINI 87

4. Sequenza degli ordini

Iniziamo questa sezione introducendo brevemente il concetto di derivata alla Hasse, rimandando per i particolari a [?,

Chapter 2, Section 1]. Sia K un campo algebricamente chiuso di caratteristica p ≥ 0.

Definizione 6.13. Sia x un elemento trascendente sul campo K. Per i, j ∈ N0 si definisce l’i-esima derivata alla Hasse

su K [x] l’applicazione K-lineare Dix, definita

Dixx

j :=

(j

i

)xj−i.

Osserviamo che i! · Dixx

j coincide con la usuale derivazione i-esima. La scelta di lavorare con la derivata alla Hasse

piuttosto che con la derivata usuale dipende dal fatto che, se la caratteristica del campo e p > 0 e i ≥ p, allora la derivata

i-esima usuale di xi e nulla (mentre Dixx

i = 1).

Le propositionrieta fondamentali che questa applicazione soddisfa sono:

(H1) D0x = id;

(H2) Dix|K = 0 per i ≥ 1;

(H3) Dix(fg) =

i∑j=0

DjxfD

i−jx g , per f, g ∈ K [x];

(H4) Dix Dj

x =

(i+ j

i

)Di+jx .

Omettiamo la dimostrazione del fatto che la derivata alla Hasse si estende in modo naturale a K(x) e ad ogni estensione

finita e separabile di K(x). Ricordiamo inoltre che un elemento t di un campo di funzioni razionali K(X ) di una curva Xsi dice variabile separante o elemento separante se l’estensione K(X ) : K(t) e separabile. E facile vedere che un qualunque

parametro locale in un un punto non singolare di X e sempre un elemento separante.

Sia X una curva proiettiva definita su un campo algebricamente chiuso K di caratteristica p ≥ 0.

Definizione 6.14. Si dice wronskiano su X una funzione razionale di tipo

W `0,...,`rf0,...,fr;x := det

(D`ix fj

),

dove `0 < . . . < `r e una sequenza di interi non negativi, x e un elemento separante di K(X )|K e f0, . . . , fr ∈ K(X ).

Inoltre poniamo

A(f0, . . . , fr;x) :=

(m0, . . . ,mr) ∈ Nr+10 : m0 < . . . < mr;W

m0,...,mrf0,...,fr;x 6= 0

.

Sia D ∼= P(D′) ⊆ |E| una serie lineare grd su X . Sia P ∈ X , t un parametro locale in P , e

(18) j0 = j0(P ) < . . . < jr = jr(P )

i (D, P )-ordini. Allora per le osservazioni fatte nella sezione precedente possiamo affermare che per ogni ` = 0, . . . , r esiste

f` ∈ K(X ) tale che

(19) vP (tvP (E)f`) = j`.

Tali funzioni razionali giocano un ruolo molto importante poiche in realta, esse costituiscono una K-base per D′. Per

provarlo essendo dim(D′) = r + 1 e sufficiente dimostrare che sono linearmente indipendenti su K; ma se per assurdo

esistessero a0, . . . , ar ∈ K non tutti nulli tali che∑i aifi = 0, avremmo vP (

∑i aifi) = ∞, e quindi necessariamente

esisterebbero due indici i 6= j tali che vP (fi) = vP (fj), contro (18) e (19).

Definizione 6.15. La K-base di D′ descritta sopra e detta (D, P )-base (o (D, P )-base Hermitiana).

Sia allora f0, . . . , fr una (D, P )-base. Essendo D′ji(P ) = D′ ∩ L(E − jiP ) per ogni i = 0, . . . , r, si ha

D′

ji(P ) = 〈fi, . . . , fr〉 ,

4. SEQUENZA DEGLI ORDINI 88

ovvero

Dji(P ) =

E + div

(r∑`=i

a`f`

): (ai : . . . : ar) ∈ P r−i(K)

,

da cui

ji = min

vP

(r∑`=i

a`f`tvP (E)

): (ai : . . . : ar) ∈ P r−i(K)

.

Poniamo g` = tvP (E)f` per ogni ` = 0, . . . , r.

Lemma 6.16. Se m0 < . . . < mr e una sequenza di interi non negativi tali che det(

(j`mi

)) 6= 0 (mod p), allora

(m0, . . . ,mr) ∈ A(g0, . . . , gr; t). In particolare, (j0, . . . , jr) ∈ A(g0, . . . , gr; t).

Dimostrazione. Essendo vP (g`) = j` scriviamo la sua espansione lineare in P : g` =

∞∑s=j`

c`sts, con c`j` 6= 0. Posto

allora C =

r∏`=0

c`j` 6= 0 si ha

Wm0,...,mrg0,...,gr;t = det

∞∑s=j`

(s

mi

)c`s t

s−mi

= Ct−

∑imidet

∞∑s=j`

(s

mi

)c`sc`j`

ts

= Cdet(

(j`mi

))t

∑i(ji−mi) + . . . 6= 0,

da cui segue la tesi.

Fissato ` ∈ N0 consideriamo il vettore D`tφ := (D`

tg0, . . . , D`tgr); dato che ogni sua componente e definita in P possiamo

anche porre D`tφ(P ) := (D`

tg0(P ), . . . , D`tgr(P )). Allora dal Lemma 6.16 e dalla Definizione 6.14 otteniamo che

(20) (m0, . . . ,mr) ∈ A(g0, . . . , gr; t) ⇔ Dm0t φ, . . . ,Dmr

t φ sono K(X )-l.i..

Inoltre dalla dimostrazione del Lemma 6.16 deduciamo il seguente risultato.

Lemma 6.17. (1) Posto j−1 := 0, per i = 0, . . . , r

ji = mins > ji−1 :

(Dj0t φ)

(P ), . . . ,(Dji−1

t φ)

(P ), (Dstφ) (P ) sono l.i.

;

(2) Siano m0 < . . . < mr′ interi non negativi con r′ ≤ r, tali che i vettori (Dm0t φ) (P ), . . . ,

(Dmr′t φ

)(P ) sono

K-linearmente indipendenti. Allora ji ≤ mi per i = 0, . . . , r′.

Per la dimostrazione si rimanda a [?, Scholium 2.8].

Sapendo che A(g0, . . . , gr; t) e non vuoto definiamo E = (ε0, . . . , εr) come il minimo di questo insieme secondo l’ordine

lessicografico, e osserviamo che gli εi soddisfano le seguenti propositionrieta:

Lemma 6.18. (1) ε0 = 0;

(2) ε1 = 1 se p non divide deg(D)− deg(B);

(3) Per i = 0, . . . , r,

εi = mins > εi−1 : Dε0

t φ, . . . ,Dεi−1

t φ,Dstφ sono K(X )-l.i.

.

4. SEQUENZA DEGLI ORDINI 89

Dimostrazione. Proviamo solo (1) dato che (2) e (3) si dimostrano in modo analogo. Supponiamo per assurdo

ε0 6= 0, allora (0, ε1, . . . , εr) < E e quindi per la sua minimalita, (0, ε1, . . . , εr) /∈ A(g0, . . . , gr; t), da cui per la (20) si ha la

lineare dipendenza di D0tφ,D

ε1t φ, . . . ,D

εrt φ. Esistono allora h1, . . . , hr ∈ K(X ) non tutti nulli, tali che

D0tφ =

r∑j=1

hjDεjt φ.

Sia ora k0 ∈ 1, . . . , r tale che hk0 6= 0,

Dεk0t =

1

hk0

D0tφ−

∑j 6=k0

hjDεjt φ

.Allora, ⟨

Dε0t φ, . . . ,D

εk0t φ, . . . ,Dεr

t φ⟩

=⟨D0tφ,D

ε0t φ, . . . ,D

εk0−1

t φ,Dεk0+1

t φ, . . . ,Dεrt φ⟩,

ed essendo Dε0t φ, . . . ,D

εk0t φ, . . . ,Dεr

t φ linearmente indipendenti, anche D0tφ , D

ε0t φ , . . . ,D

εk0−1

t φ ,Dεk0+1

t φ, . . . ,Dεrt φ lo

sono; quindi per (20) si ha

(0, ε0, . . . , εk0−1, εk0+1, . . . , εr) ∈ A(g0, . . . , gr; t),

contro la minimalita di E .

Corollario 6.19. 1. Sia (m0, . . . ,mr) ∈ A(g0, . . . , gr; t). Allora per ogni i = 0, . . . , r, εi ≤ mi. In particolare,

εi ≤ ji.

2. Se 0 ≤ m0 < . . . < mr sono interi tali che det(

(jim`

)) 6= 0 (mod p), allora εi ≤ mi per ogni i = 0, . . . , r.

La propositionosizione che segue e di fondamentale importanza per definire la cosiddetta sequenza degli ordini. Infatti

permette di affermare che E dipende solo dalla serie lineare fissata.

Proposizione 6.20. (1) Se hi =∑j aijgj, con (aij) ∈Mr+1(K), allora

W ε0,...,εrh0,...,hr;t = det((aij))W

ε0,...,εrg0,...,gr;t ;

(2) Se f ∈ K(X ), allora

W ε0,...,εrfg0,...,fgr;t = fr+1W ε0,...,εr

g0,...,gr;t ;

(3) Sia x un elemento separante di K(X )|K. Allora

W ε0,...,εrg0,...,gr;x =

(D1xt)∑

i εiW ε0,...,εrg0,...,gr;t .

Dimostrazione. (1) La prima parte segue banalmente dal fatto che

Dε`t hi =

∑j

aijDε`t gj .

Osserviamo inoltre che questo risultato non dipende dalla minimalita di E .

(2) Consideriamo

W ε0,...,εrfg0,...,fgr;t = det

Dε0t (fg0) . . . Dε0

t (fgr)

Dε1t (fg0) . . . Dε1

t (fgr)... . . .

...

Dεrt (fg0) . . . Dεr

t (fgr)

Essendo ε0 = 0, la prima riga della matrice diventa

(fg0, . . . , fgr),

dalla quale e dunque possibile portare fuori f .

Inoltre per le regole di derivazione alla Hasse

Dε1t (fgj) =

ε1∑s=0

Dst f D

ε1−st gj = fDε1

t gj + . . . ,

5. DIVISORE DI RAMIFICAZIONE 90

dove la parte mancante e costituita da termini contenenti Dkt gj , con 0 ≤ k = ε1−s < ε1, quindi per la minimalita

di ε1, quei termini sono multipli delle componenti del vettore

(Dε0t g0, . . . , D

ε0t gr).

Pertanto sostituendo alla seconda riga della matrice, la seconda meno un opportuno multiplo della prima,

otteniamo

(fDε1t g0, . . . , fD

ε1t gr),

da cui possiamo portare fuori un altro f . Ragionando in questo modo per ogni riga della matrice otteniamo

l’asserto.

(3) Omettiamo questa dimostrazione dato che e del tutto analoga alla precedente.

Corollario 6.21. E = (ε0, . . . , εr) dipende solo dalla serie lineare D, ovvero e indipendente dalla scelta della base di D′e dal punto P .

Dimostrazione. Siano P,Q ∈ X e t, s parametri locali in P e Q rispettivamente. Siano inoltre f0, . . . , fr e

h0, . . . , hr due basi di D′, allora esiste A = (aij) ∈ Mr+1(K), invertibile tale che f` =∑j a`jhj , per ogni ` = 0, . . . , r.

Poniamo g` := tvP (E)f`, q` = svQ(E)h` . Sia µ = (µ0, . . . , µr) = minA(q0, . . . , qr; s). Allora per i primi due punti della

propositionosizione 6.20,

Wµ0,...,µrq0,...,qr;s = (svQ(E))r+1Wµ0,...,µr

h0,...,hr;s = (svQ(E))r+1det(A)Wµ0,...,µrf0,...,fr;s ;

A questo punto possiamo applicare anche il punto (3) della propositionosizione 6.20, perche, se per assurdo (µ0, . . . , µr)

non fosse il minimo di A(f0, . . . , fr; s), esisterebbe (η0, . . . , ηr) ∈ A(f0, . . . , fr; s) e (η0, . . . , ηr) < (µ0, . . . , µr), tale che,

per quanto detto sopra, procedendo a ritroso, (µ0, . . . , µr) ∈ A(q0, . . . , qr; s) contro la minimalita di (µ0, . . . , µr) per

A(q0, . . . , qr; s). Allora, riprendendo la catena di uguaglianze, si ha

= (svQ(E))r+1det(A)(D1st)

∑i µiWµ0,...,µr

f0,...,fr;t

= (svQ(E))r+1det(A)(D1st)

∑i µi(t−vP (E))r+1Wµ0,...,µr

g0,...,gr;t ,

dove si ragiona in maniera analoga nell’ultima uguaglianza. In conclusione quindi, risulta (µ0, . . . , µr) =

minA(g0, . . . , gr; t), perche se fosse per assurdo (µ0, . . . , µr) > (ε0, . . . , εr) ∈ A(g0, . . . , gr; t), dalle uguaglianze ot-

tenute avremmo (ε0, . . . , εr) ∈ A(q0, . . . , qr; s), contro l’ipotesi. Abbiamo cosı dimostrato l’indipendenza del minimo

di A(g0, . . . , gr; t) dalla base di D′ e dal punto P .

Definizione 6.22. E si chiama la sequenza degli ordini di D. Inoltre si dice sequenza degli ordini di un morfismo φ,

quella associata alla serie Dφ.

5. Divisore di ramificazione

Un’importante applicazione della propositionosizione 6.20 e del Corollario 6.21 e la seguente definizione.

Definizione 6.23. Si chiama divisore di ramificazione di D,

R = RD := div(W ε0,...,εrh0,...,hr;x) + (

r∑i=0

εi)div(dx) + (r + 1)E,

ove h0, . . . , hr e una qualunque base di D′, x una variabile separante di K(X )|K.

Inoltre il divisore di ramificazione di un morfismo φ e quello di Dφ.

Osserviamo che R dipende quindi solo da D.

Per capire come questo divisore si comporta localmente, basta applicare i risultati sopra citati: sia P ∈ X , t un parametro

locale in P , f0, . . . , fr una (D, P )-base, g` = tvP (E)f`. Consideriamo la matrice del cambiamento di base (aij) ∈Mr+1(K), tale che hi =

∑j aijfj . Allora

W ε0,...,εrh0,...,hr;x = det(aij)W

ε0,...,εrf0,...,fr;x = det(aij)t

−(r+1)vP (E)W ε0,...,εrg0,...,gr;x

5. DIVISORE DI RAMIFICAZIONE 91

= det(aij)t−(r+1)vP (E)(D1

xt)∑i εiW ε0,...,εr

g0,...,gr;t ,

ovvero,

(21) W ε0,...,εrh0,...,hr;x(D1

t x)∑i εit(r+1)vP (E) = det(aij)W

ε0,...,εrg0,...,gr;t .

Quindi per la (21),

vP (R) = vP (W ε0,...,εrg0,...,gr;t).

Inoltre essendo g` regolare in P per ogni ` = 0, . . . , r, si ha che R e un divisore effettivo.

Teorema 6.24. In questo contesto,

vP (R) ≥r∑i=0

(ji(P )− εi).

Inoltre vale l’uguaglianza se e solo se det(

(j`(P )

εi

)) 6= 0 (mod p).

Dimostrazione. Dalla dimostrazione del Lemma 6.16, possiamo scrivere l’espansione lineare in P :

W ε0,...,εrg0,...,gr;t = Cdet(

(j`(P )

εi

))t

∑i(ji−εi) + . . .,

con C ∈ K∗, e quindi otteniamo la tesi.

Corollario 6.25. vP (R) = 0 se e solo se ji(P ) = εi per ogni i = 0, . . . , r. In particolare, per tutti, tranne un numero

finito di punti P di X , gli (D, P )-ordini sono ε0, . . . , εr.

Definizione 6.26. P ∈ X si dice D-punto di Weierstrass se P ∈ Supp(R), ovvero se ji(P ) 6= εi per qualche i.

E dunque facile conoscere il numero dei D-punti di Weierstrass, che, contati con opportuna molteplicita, sono infatti pari

al grado di R:

deg(R) = (

r∑i=0

εi)(2g − 2) + (r + 1)d.

Definizione 6.27. La curva X si dice classica rispetto a D se gli D-ordini sono 0, 1, . . . , r. Inoltre, un morfismo φ e detto

classico se Dφ e classica.

Lemma 6.28. Se∏i>`

ji(P )−j`(P )i−` 6= 0 (mod p), allora

(1) D e classica;

(2) vP (R) =

r∑i=0

(ji(P )− i).

Dimostrazione. La dimostrazione, una volta osservato che

det(

(ji(P )

`

)) =

∏i>`

ji(P )− j`(P )

i− `,

e immediata conseguenza del Corollario 6.19 (2).

Corollario 6.29. Se p = 0 oppure p > d = deg(D), allora

(1) D e classica;

(2) per ogni P ∈ X , vP (R) =∑i(ji(P )− i).

Corollario 6.30. Sia ε un D-ordine e sia µ un intero tale che(ε

µ

)6= 0 (mod p).

Allora anche µ e un D-ordine.

In particolare se ε e un D-ordine minore di p allora anche gli interi 0, 1, . . . , ε− 1 lo sono.

6. L’IPERPIANO OSCULAETORE 92

Interpretiamo il Corollario 6.25 partendo da una serie lineare associata ad un morfismo φ. Come abbiamo gia osservato,

gli invarianti Hermitiani rappresentano la generica molteplicita di intersezione degli iperpiani con la curva immagine.

Quindi, questo risultato ci assicura che, fatta eccezione per un numero finito di punti, le molteplicita di intersezione con

φ(X ) al variare degli iperpiani sono costanti. In particolare, se X e classica, fissato un arbitrario punto P che non sia un

punto di Weierstrass, possiamo affermare che esiste un iperpiano che non incontra φ(X ) in φ(P ), ne esiste un altro che

incontra φ(X ) in quel punto con molteplicita 1, e cosı via.

6. L’iperpiano osculatore

Sia D ∼= P(D′) ⊆ |E| una serie lineare grd senza punti fissi. Allora, se f0, . . . , fr e una base di D′,

D = φ∗(H) : H iperpiano di Pr(K) ,

dove φ = (f0, . . . , fr), e dal Lemma 6.5,

vP (E) = −min vP (f0), . . . , vP (fr) .

Sia P ∈ X con (D, P )-ordini j0 < . . . < jr.

Definizione 6.31. Per i = 0, . . . , r, definiamo Li(P ) := Lf0,...,fri (P ) come l’intersezione di tutti gli iperpiani H in Pr(K)

tali che vP (φ∗(H)) ≥ ji+1. Li(P ) e detto l’i-esimo spazio osculatore in P, rispetto alla base f0, . . . , fr.

In particolare, L1(P ) e detto retta tangente in P, e Lr−1(P ) e detto iperpiano osculatore in P.

Banalmente risulta

L0(P ) ⊆ L1(P ) ⊆ . . . ⊆ Lr−1(P ).

Lemma 6.32. Lf0,...,fri (P ) e uno spazio i-dimensionale generato dai vettori (Dj0t φ

′)(P ), . . . (Dji

t φ′)(P ), dove t e un

parametro locale in P e φ′

= (tvP (E)f0 : . . . : tvP (E)fr).

Rimandiamo per la dimostrazione di questo Lemma a [?, Theorem 1.1] e [?, Lemma 2.24].

Corollario 6.33. L’iperpiano osculatore in P ha equazione

det

X0 . . . Xr

(Dj0t g0)(P ) . . . (Dj0

t gr)(P )... . . .

...

(Djr−1

t g0)(P ) . . . (Djr−1

t gr)(P )

= 0,

dove g` := tvP (E)f` per ogni ` = 0, . . . , r.

Bibliografia

[1] A. Cassa, Teoria elementare delle curve algebriche piane e delle superfici di Riemann compatte, Quaderni dell’Unione Matematica Italiana

25, 1984.

[2] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys 6, American Math. Soc., New

York, 1951.

[3] D. Cox, J. Little e D. O’Shea, Ideals, Varieties, and Algorithms - Second Edition, Springer, New Yor, 1997.

[4] W. Fulton, Algebraic Curves, an introduction to Algebraic Geometry, disponibile in http://www.math.lsa.umich.edu/∼wfulton/.

[5] J. Hirschfeld, G. Korchmaros e F. Torres, Algebraic Curves over a Finite Field, Princeton University Press, Priceton e Oxford, 2008.

[6] G. Orzech e M. Orzech, Plane algebraic curves, an Introduction via Valuations, Monographs and Textbooks in Pure and Applied

Mathematics 61, Dekker, New York, 1981.

[7] M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press, Cambridge, 1988.

[8] A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, 1968.

[9] H. Stichtenoth, Algebraic Function Fields and Codes, Graduate Texts in Mathematics 254, Second Edition, Springer, Berlin-Heidelberg,

2008

93