29
184 APPENDIX 1 SPECIFICATION OF THE COMPONENTS USED IN THE EXPERIMENTAL SETUP AUTOMOBILE AIR CONDITIONING CALORIMETRIC TEST RIG 1. Compressor Open type - Belt driven – reciprocating. Make : Sanden Inc. Model : SD507 Lubricant : Mineral oil Displacement volume : 108cc Cooling Capacity : 1.5 TR Power supply (Clutch) : 12 V DC 2. Evaporator Plate Fin and Tube – Dry expansion type. Make : Unicala / Super king III Number of rows : 7 Material : Aluminum Tube outer diameter : 11.44 mm Thickness : 0.48 mm Length of the tube : 12.94 m Overall dimensions : 396 135 115 mm 3 . 3. Condenser Plate Fin and Tube – Air-cooled condenser.

APPENDIX 1 SPECIFICATION OF THE COMPONENTS USED …shodhganga.inflibnet.ac.in/bitstream/10603/27317/13/13_appendix.pdf · SPECIFICATION OF THE COMPONENTS USED IN THE EXPERIMENTAL

Embed Size (px)

Citation preview

184

APPENDIX 1

SPECIFICATION OF THE COMPONENTS USED IN THE

EXPERIMENTAL SETUP

AUTOMOBILE AIR CONDITIONING CALORIMETRIC TEST RIG

1. Compressor

Open type - Belt driven – reciprocating.

Make : Sanden Inc.

Model : SD507

Lubricant : Mineral oil

Displacement volume : 108cc

Cooling Capacity : 1.5 TR

Power supply (Clutch) : 12 V DC

2. Evaporator

Plate Fin and Tube – Dry expansion type.

Make : Unicala / Super king III

Number of rows : 7

Material : Aluminum

Tube outer diameter : 11.44 mm

Thickness : 0.48 mm

Length of the tube : 12.94 m

Overall dimensions : 396 135 115 mm3.

3. Condenser

Plate Fin and Tube – Air-cooled condenser.

185

Make : Showa / Unicla

Number of rows : 1

Material : Aluminum

Tube dimensions : 19.2 5 mm

Length of the tube : 6.44 m

Overall dimensions : 460 350 19.2 mm3

4. Expansion Device

Internally equalized TXV.

Make : Unicala

Cooling capacity : 1.5TR

5. Room Calorimetric ChamberInner dimensions : 2032 2032 1016 mm3

Material : Treated Plywood

Insulation : 5mm Thermorex

Circulation Fan : 40W, 1440 rpm

Heater load : 6000 W

6. Charging Kit

Make : Refco

Vacuum pump type : Two stage, reciprocating

Vacuum capacity : one mbar

Weighing balance : Electronic type, 0.1g accuracy

INSTRUMENTS USED

1. Mass Flow Meter:

Make : Micro motion

Model : F1700

Temperature range : -50 C to +125 C

186

Uncertainty range : 0.25%

Principle : Coriolis

Power supply : 85 to 265 V, AC

2. RTDs:

Type : Film Type, PT100

Accuracy : 0.15 C

Temperature range : -50 C to +200 C

3. Pressure Gauges:

Make : Proex

Least Count : 0.1 bar

Pressure range : 0 to 20 bar

Accuracy : 0.5% FSD

4. Pressure Transducer:

Make : CAREL – Italy

Range : 0 to 30 bar

Output : 4 to 20 mAmps, DC

Accuracy : 0.25%

5. Data logger:

Make : Agilent 34070A – Singapore

Scanning Frequency : 60 Channels per second

6. Watt meter:

Make : Nippen

Power Supply : 3 Phase, 415 V

Accuracy : 0.5%

187

APPENDIX 2

UNCERTAINTY ANALYSIS

The uncertainty in measurements is expressed in the following way.

and its uncertainty is expressed as

Zi Zi Zi (A2.1)

based on the standard deviation, the number of samples and the confidence

level. In a single experiment, the result R is a function of ‘n’ independent

variable and it may be represented by

1 2 3( , , ,......... )nR R Z Z Z Z (A2.2)

The combined uncertainty of is given by the mean square

method (Klien and McClintok 1953, Holman 2000).

122 2 2

1 21 2

......... nn

R R RR Z Z ZZ Z Z

(A2.3)

Further, if the result function takes the form of a product of the

respective primary variables, the uncertainty is expressed as (Holman 2000)

12 22 2 2

31 2

1 2 3

......... n

n

Z ZR Z ZR Z Z Z Z

(A2.4)

188

The actual COP of the system was normally calculated from the

equations presented below:

actac

com

QCOPW

(A2.5)

act he hlQ Q Q (A2.6)

( ) ( , )hl p CIAT EIATQ mc T T f V T (A2.7)

,( , , , , , , , )he he md eo cni eo cni EIAT EIAVQ f Q T T P P T T N (A2.8)

,( , , , , , , , )c md s d s d CIAT CIAVWc f W T T P P T T N (A2.9)

12 2 2 2 2

hl

hl

Q L He T tQ L He T t

(A2.10)

12 2 2 2 2 2

,

,

22 2

he md ei eo ei eo

he md ei eo ei eohe

heEIAVEIAT

EIAT EIAV

Q T T P PQ T T P PQ

Q TT NT T N

(A2.11)

122 2

,,

act actact hl he m

hl he m

Q QQ Q QQ Q

(A2.12)

189

12 2 2 2 2 2

,

,

2 2 2

c md S d S d

c md S d S d

CIAT CIAV

CIAT CIAV

W T T P PW T T P PWc

Wc T T NT T N

(A2.13)

12 2 2

act act c

act act c

COP Q WCOP Q W

(A2.14)

UNCERTAINTY ANALYSIS CALCULATION

The following typical values are considered for uncertainty calculation:

TCIAT = 38 0.15 C TEIAT = 27 0.15 C Teo = 5.86 0.15 C

Td = 81 0.15 C Peo = 2.00 0.05 bar Pd = 15.5 0.05bar

Qhe = 2831 14W Wc = 1292 6 W Qhl = 45 W

COPact = 2.63 N = 1500 rpm

Substituting the values in equation A2.10

Qhl/Qhl = 1.1% = 45 0.5 W

Substituting the values in equation A2.11

Qhe/Qhe = 2.9% = 2831 84 W

Substituting the values in equation A2.12

Qact/Qact = 3.16 % = 2876 91 W

190

Substituting the values in equation A2.13

Wc/Wc = 3.1% = 1144 36 W

Substituting the values in equation A2.14

COP = 4% = 2.19 0.09

In the considered typical operating conditions, the uncertainty in COP is

found to be 2.19 0.09.

191

192

193

194

195

196

197

198

199

APPENDIX 4

Temperature – Time plot during Heat infiltration

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000Time (s)

Figure A4.1 Variation in cabin temperature with respect to time

Table A4.1 Temperature-time variation during heat infiltration

Temperature C

Time s

18 0.0 19 2.5 20 17.9 21 40.2 22 66.5 23 96.6 24 129.225 166.426 211.527 273.628 365.029 500.030 725.031 1070.0 32 1580.0 33 2390.0 34 3635.0

200

201

REFERENCES

1. Agarwal R.S. and Iyer R.S. (2004), ‘Practical considerations when switching over to HFC134a and HC from CFC12’, Air-conditioning and Refrigeration Journal, pp.43-54.

2. Agarwal R.S., Ramaswamy N.I. and Srivastava V.K. (1995), ‘Transport properties of ternary near-azeotropic mixtures’, International Journal of Refrigeration, Vol.18, No.2, pp.132-138.

3. Anand G., Mahajan M. and Jain N. (2004), ‘Automobile air-conditioning module’, SAE Transactions, Paper No. 2004-01-1509, p.169.

4. Arici O., Yang S., Huang D. and Oker E. (1999), ‘Computer Model for Automobile Climate Control System Simulation and Application’, International Journal of Applied Thermodynamics, Vol.2, No.2, pp.59-68.

5. Arrieta E.M. (1993), ‘Concerns and effects of misapplication and mixing of lubricants on the performance and durability of an automotive A/C compressors’, SAE Transactions, Paper No. 932908.

6. ASHRAE Handbook - Fundamentals (1997), ASHRAE INC., Atlanta, GA.

7. ASHRAE Handbook – HVAC Applications (1999), ASHRAE INC., Atlanta, GA.

8. Baker J.A., Ghodbane M. and Hill W.R. (2003), ‘R152a refrigeration system for mobile air-conditioning’, SAE Transactions, Paper No. 2003-01-0731, pp.837-841.

9. Baker J.A., Ghodbane M. and Hill W.R. (2003), ‘R152a refrigeration system for mobile air-conditioning’, SAE Transactions, Pap.No. 2003-01-0731. pp.837-841.

10. Bansal P.K. and Purkayastha B. (1998), ‘An –NTU model for alternate refrigerants’, International Journal of Refrigeration, Vol.21, No.5, pp.381-397.

202

11. Bansal P.K., Dutto T. and Hivet B. (1992), ‘Performance evaluation of environmentally benign refrigerants in heat pumps 1: A simulation study’, International Journal of Refrigeration, Vol.15, No.6, pp.340-348.

12. Bansal P.K., Dutto T. and Hivet B. (1992), ‘Performance evaluation of environmentally benign refrigerants in heat pumps 2: An experimental study with HFC134a’, International journal of Refrigeration, Vol.15, No.6, pp.340-348.

13. Barley M.H., Morrison J.D. and O’Donnel A. (1997), ‘Vapour-liquid equilibrium data for binary mixtures of some new Refrigerants’, Fluid Phase Equilibria, Vol.140, pp.183-206.

14. Bhatti M.S. (1999), ‘Enhancements of R134a automotive air-conditioning system’, SAE Transactions, Paper No.1999-01-0870, pp.1632-1657.

15. Brown J.S., Motta S.F.Y. and Domanski P.A. (2002), ‘Comparative analysis of an automotive air-conditioning systems operating with CO2 and R134a’, International Journal of Refrigeration, Vol.25, pp.19-32.

16. Brown W.L. (1993), ‘Polyalkylene glycol refrigeration lubricants –Current status and retrofit applications’, SAE Transactions, Paper No. 932904, pp.2350-2358.

17. Camporese R., Bigolaro G. and Bobbo S. (1997), ‘Experimental evaluation of refrigerant mixtures as substitutes for CFC12 and R502’, International Journal of Refrigeration, Vol.20, No.1, pp.22-31.

18. Carpenter N.E. (1992), ‘Retrofitting HFC134a into existing CFC12 systems’, International Journal of Refrigeration, Vol.15, No.6, pp.332-339.

19. Castro F., Tinaut F.V. and Ali A.A.R. (1993), ‘Automotive evaporator and condenser modeling’, SAE, 931121.

20. Chang Y.J. and Wang C.C. (1997), ‘A generalized heat transfer correlation for louver fin geometry’, International Journal of Heat Mass Transfer, Vol.40, No.3, pp.533-544.

21. Charles E.G., Guntly L.A. and Costello N.F. (1988), ‘Compact air cooled air-conditioning condenser’, SAE Transactions, Paper No. 880445, pp. 4.471-4.478.

203

22. Chaube A. and Agarwal R.S. (1998), ‘Mixture of HFC-134a and HC-600a A promising substitute to CFC-12’, IIF-IIR Commissions, pp. 182-190.

23. Chen L.T. (1991), ‘Two-dimensional fin efficiency with combined heat and mass transfer between water-wetted fin surface and moving moist air stream’, International Journal of Heat and Fluid Flow, Vol.12, No.1, pp.71-76.

24. Chen Q. (1999), ‘Simulation of a vapour-compression refrigeration cycles using hfc134a and cfc12’, Int. Comm. Heat Mass Transfer, Vol.26, No.4, pp.513-521.

25. Cleland A. (1986), ‘Computer subroutines for rapid evaluation of refrigerant thermodynamic properties’, International Journal of Refrigeration, Vol.9, pp.346-351.

26. Cleland A.C. (1994), ‘Polynomial curve-fits for refrigerant thermodynamic properties: extension to include R134a’, International Journal of Refrigeration, Vol.17, pp.245-249.

27. Colbourne D. and Ritter T.J. (2000), ‘Compatibility of non metallic materials with hydrocarbon refrigerants and lubricants mixture’, IIF –IIR Commissions Conference, USA.

28. Colbourne D. and Suen K.O. (2000), ‘Assessment of performance of hydrocarbon refrigerans’, IIF – IIR Commissions Conference, USA.

29. Colmery S.H., Dekieva T.W. and Jarrell C.L. (1994), ‘Studies on the condition of vehicle air-conditioning systems - Two years after retrofitting HFC134a’, SAE Transactions, Paper No. 940599, pp.721-726.

30. Connon H.A. (1984), ‘A generalized computer program for analysis of mixture refrigeration cycles’, Vol.7, No.3, pp.167-172.

31. Corberfin J.M. and Melon M.G. (1998), ‘Modelling of plate finned tube evaporators and condensers working with R134A’, International Journal of Refrigeration, Vol.21, No.4, pp.273-284.

32. Cotcde M.R. and Suter P. (1992), ‘A mathematical simulation model for thermostatic expansion valves’, Heat Recovery Systems and CHP, Vol.12, No.3, pp.271-282.

204

33. Cullimore B.A. and Hendricks T.J. (2001), ‘Design and Transient Simulation of Vehicle Air-conditioning Systems’, SAE 2001-01-1692.

34. Dekieva and Colmery (1993), ‘Fleet trials with vehicles retrofitted to HFC134a refrigerant and ester lubricants – Two years on the road’, SAE Transactions, Paper No.932905, pp.2359-2365.

35. Devotta S. (1995), ‘Alternative heat pump working fluids to CFCs’, Heat Recovery Systems and CHP, Vol.15, No.3, pp.273-279.

36. Devotta S. and Rao Pendyala V. (1993), ‘Prediction of volumetric and thermodynamic properties of refrigerants: a simplified procedure’, International Journal of Refrigeration, Vol.17, pp.94-100.

37. Devotta S. and Gopichand S. (1991), ‘Comparative assessment of HFC134a and some refrigerants as alternatives to CFC12’, International Journal of Refrigeration, Vol.15, No.2, pp.112-118.

38. Didion D.A. and Bivens D.B. (1990), ‘Role of refrigerant mixtures as alternatives to CFCs’, International Journal of Refrigeration, Vol.13, pp.163-175.

39. Ding G.L. (2007), ‘Recent developments in simulation Techniques for vapor-compression refrigeration systems’, International Journal of Refrigeration, Vol.30, pp.1119-1133.

40. Dmitriyev V.I. and Pisarenko V.E. (1984), ‘Determination of optimum refrigerant charge for domestic refrigerator units’, International Journal of Refrigeration, Vol.7, No.3, pp.178-179.

41. Domanski P.A. and McLinden M.O. (1992), ‘A simplified cycle simulation model for the performance rating of refrigerants and refrigerant mixtures’, International Journal of Refrigeration, Vol.15 No.2, pp.81-88.

42. Dung N., Rohatgi T., Hendera D.R. (2000), ‘Effect of desiccant on the stability of automotive air conditioning system’, ASHRAE Transactions, Pap.No. 2000-01-091, pp.1558-1564.

43. Dwiggins B.H. (2002), ‘Automotive air conditioning’, Cengage learning.

44. Eckels S.J. and Pate M.B. (1991), ‘An experimental comparison of evaporation and condensation heat transfer coefficients for HFC-134a and CFC-12’, International Journal of Refrigeration, Vol.14, pp.70- 77.

205

45. Farzad M and O'Neal D.L. (1991), ‘System performance characteristics of an air conditioner over a range of charging conditions’, International Journal of Refrigeration, Vol.14, pp.321-328.

46. -Cascales J.R., Vera- -Salvador et al. (2007) Assessment of boiling heat transfer correlation in the modeling of fin and tube heat exchangers’, International Journal of Refrigeration, Vol.30, pp.1004-1017.

47. Gaveau C.D. (1998), ‘Test bench for measuring the energy consumption of automotive air-conditioning systems’, SAE Transactions, Paper No.98, pp.600-607.

48. Ghodbane M. (1999), ‘An Investigation of R152a and hydrocarbon refrigerants in mobile air-conditioning’, SAE Transactions, Paper No. 1999-01-0874.

49. Goings L.F. (1974), ‘Automotive air conditioning’, American Technical Society Chicago.

50. Hambraeus K.(1991), ‘Heat transfer coefficient during two-phase flow boiling of HFC-134a’, International Journal of Refrigeration’, Vol.14, pp.357-362.

51. Heinzeimann E and Ussyk M.S. (1991), ‘Hermetic refrigerating compressors and CFC substitution’, International Journal of Refrigeration, Vol.14, pp.10-15.

52. Henrik Ax., Jingu N. and Komatu S. (1993), ‘The development of a retrofitting procedure for CFC12 automotive A/C systems to HFC134a and PAG lubricant’, SAE Transactions, Paper No. 932906, pp.2366-2375.

53. Higuchi K. and Hayano M. (1982), ‘Dynamic characteristics of thermostatic expansion valves’, International Journal of Refrigeration, Vol.5, No.4, pp.216-220.

54. Hirata T., Aral H. and Arahira K. (1993), ‘Automotive air-conditioning system using HFC-134a comparison of refrigeration cycle characteristics of CFC-12 and HFC-134a’.

55. Holman J.P. (2000), ‘Experimental methods for Engineers’, 7th

Edition, McGraw Hill, New York.

206

56. Hosoz M. and Direk M. (2006), ‘Performance evaluation of an integrated automotive air-conditioning and heat pump system’, Energy Conversion and Management, Vol.47, pp.545-559.

57. Huzayyin A.S., Nada S.A. and Elattar H.F. (2007), ‘Air-side performance of a wavy-finned-tube direct expansion cooling and dehumidifying air coil’, International Journal of Refrigeration International Journal of Refrigeration, Vol.30, pp.230-244.

58. Indian Standards (1999), ‘Automotive Vehicles – Air-conditioning systems thermal performance – Method of measurement’, Indian Standard – 14618:1999.

59. Jabardo J.M.S, Mamani W.G. and Ianella M.R. (2002), ‘Modeling and experimental evaluation of an automotive air-conditioning system with a variable capacity compressor’, International Journal of Refrigeration, Vol.25, pp.1157-1172.

60. James R.W. and Missenden J.F. (1992), ‘The use of propane in domestic refrigerators’, International Journal of Refrigeration, Vol. 15, No. 2, pp. 95-99.

61. Janssen M. and Engels F. (1995), ‘The use of HFC-134a with mineral oil in hermetic cooling equipment’, REGENT report.

62. Jin G.Y., Cai W.J and Wang Y.W. (2006), ‘A simple dynamic model of cooling coil unit’, Energy Conversion and Management, Vol.47, pp.2659-2672.

63. Joudi K.A., Sattar K.A. and Aljanabi K. (2003), ‘Experimental and computer performance study of an automotive air-conditioning system with alternative refrigerants’, Vol.44, pp.2959-2976.

64. Judge J and Radermacher R. (1997), ‘A heat exchanger model for mixtures and pure refrigerant cycle simulations’, International Journal of Refrigeration, Vol.20, No.4, pp.244-255.

65. Jung D., Park B. and Lee H. (1999), ‘Evaluation of supplementary / retrofit refrigerants for automobile air-conditioners charged with CFC12’, International Journal of Refrigeration, Vol.22, pp.558-568.

66. Jung D.S. and Radermacher R. (1991), ‘Performance simulation of single-evaporator domestic refrigerators charged with pure and mixed refrigerants’, International Journal of Refrigeration, Vol.14, pp.223-232.

207

67. Kaynakh O. and Horaz I. (2003), ‘An experimental analysis of automotive air-conditioning system’, International Comm. of Heat and Mass Transfer, Vol.30, pp.273-284.

68. Kays and Crawford (1993), ‘Convective Heat and Mass Transfer’, McGraw Hill.

69. Kays W.M. and London A.L. (1964), ‘Compact heat exchangers’, 2nd

Edition, McGraw Hill, SF.

70. Kern J. and Wallner R. (1988), ‘Impact of the Montreal Protocol on automotive air-conditioning’, International Journal of Refrigeration, Vol.11, pp.203-210.

71. Kiatsiriroat T. and Euakitt T. (1997), ‘Performance analyses of an automobile air-conditioning system with R22/R124/R152A Refrigerant’, Applied Thermal Engineering, Vol.17, No.11, pp.1085-1097.

72. Koury R.N.N., Machado L. and Ismail K.A.R. (2001), ‘Numerical simulation of a variable speed refrigeration system’, International Journal of Refrigeration, Vol.24, pp.192-200.

73. Kruse H. (1981), ‘The advantages of non-azeotropic refrigerant mixtures for heat pump application’, International Journal of Refrigeration, Vol.4, No.3, pp.119-124.

74. Kuppan T. (2000), ‘Heat exchanger design handbook’, Marcel Dekker Inc, New York.

75. Lee G.H. and Yoo J.Y. (2000), ‘Performance analysis and simulation of automobile air-conditioning systems’, International Journal of Refrigeration, Vol.23, pp.243-254.

76. Lei Z. and Zaheeruddin M. (2005), ‘Dynamic simulation and analysis of a water chiller refrigeration system’, Applied Thermal Engineering, Vol.25, pp.2258-2271.

77. Liang M.Y.X., Chan and Shiming D. (2008), ‘Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air-conditioning units’, Applied Energy, Vol.85, pp.1198-1207.

208

78. Liang S.Y., Liu M., Wong T.N. and Nathan G.K. (1999), ‘Analytical study of evaporator coil in humid environment’, Applied Thermal Engineering, Vol.19, pp.1129-1145.

79. Liang X., ChanM.Y., Shiming D. and Xiangguo X. (2009), ‘Dehumidification effects in the superheated region (SPR) of a direct expansion (DX) air cooling coil’, Energy Conversion and Management, Vol.50, pp.3063-3070.

80. Lorentzen G. and Pettersen J. (1993), ‘A new, efficient and environmentally benign system for car air-conditioning’, Vol.12, pp.1-12.

81. Lou Z.D. (2005), ‘A dynamic model of automotive air-conditioning systems’, SAE Transactions, Paper No.2005-01-1884.

82. Mani K. and Selladurai V. (2008), ‘Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a’, International Journal of Thermal Sciences, Vol.47, pp.1490-1495.

83. McLinden M.O. and Radermacher R. (1987), ‘Methods for comparing the performance of pure and mixed refrigerants in the vapor compression cycle’, International Journal of Refrigeration, Vol.10, pp.318-325.

84. McQuiston and Parker (2001), ‘Heating, Ventilation and Air-conditioning’, Fifth edition.

85. Mirth D.R. and Ramadhyan S. (1993), ‘Prediction of cooling-coil performance under condensing conditions’, International Journal of Heat and Fluid Flow, Vol.14, No.4, pp.391-400.

86. Miyara A., Koyama S. and Fujii T. (1992), ‘Consideration of the performance of a vapor-compression heat-pump cycle using non-azeotropic refrigerant mixtures’, International Journal of Refrigeration, Vol.15, pp.35-40.

87. Mohanraj M., Jayaraj S. and Muraleedharan C. (2009), ‘Environment friendly alternatives to halogenated refrigerants—A review’, International Journal of Greenhouse Gas Control, Vol.3, p.108.

88. Mohanraj M., Jayaraj S. and Muraleedharan C. (2009), ‘Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator’, International Journal of Thermal Sciences, Vol.48, pp.1036-1042.

209

89. Muiroy W.J., Domanski P.A. and Didion D.A. (1994), ‘Glide matching with binary and ternary zeotropic refrigerant mixtures, Part 1. An experimental study’, International Journal of Refrigeration, Vol.17, pp.220-225.

90. Muiroy W.J., Domanski P.A. and Didion D.A. (1994), ‘Glide matching with binary and ternary zeotropic refrigerant mixtures, Part 2. An computer simulation’, International Journal of Refrigeration, Vol.17, pp.220-225.

91. Na B.C., Chun K.J. and Han D.C. (1997), ‘A tribological study of refrigeration oils under HFC-134a environment’, Tribology International, Vol.30, No.9, pp.707-716.

92. NIST (1996), ‘National Institute of Standards and Technology –Thermodynamic property of refrigerant and refrigerant mixtures database’, REFPROP V7, Gaithersburg, MD20899.

93. Oliet C., Pe´rez-Segarra C.D., Danov S. and Oliva A. (2007), ‘Numerical simulation of dehumidifying fin-and-tube heat exchangers: Semi-analytical modelling and experimental comparison’, International Journal of Refrigeration, Vol.30, pp.1266-1277.

94. Paranjpey R. (2003), ‘Automobile air-conditioning systems special considerations’, Proc. ACRECONF, New Delhi, pp.10-12.

95. Petersson and Thorseil H. (1990), ‘Comparison of the refrigerants HFC 134a and CFC 12’, International Journal of Refrigeration, Vol.13, pp.176-180.

96. Pirompugd W., Wang C.C and Wongwises S. (2009), ‘A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions’, International Journal of Heat and Mass Transfer, Vol.52, pp.2370-2378.

97. Pirompugd W., Wang C.C. and Wongwises S. (2008), ‘Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions’, International Journal of Heat and Mass Transfer, Vol.51, pp.4002-4017.

98. Pirompugd W., Wang C.C. and Wongwises S. (2009), ‘A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions’, International Journal of Heat and Mass Transfer, Vol.52, pp.2370-2378.

210

99. Pirompugd W., Wang C.C. and Wongwises S. (2010), ‘Correlations for wet surface ratio of fin-and-tube heat exchangers’, International Journal of Heat and Mass Transfer, Vol.53, pp.568-573.

100. Pirompugd W., Wongwises S. and Wang C.C. (2006), ‘Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions’, International Journal of Heat and Mass Transfer, Vol.49, pp.132-143.

101. Preisegger E. and Henrici R. (1992), ‘Refrigerant 134a: The first step into a new age of refrigerants,’ International Journal of Refrigeration, Vol.15, No.6, pp.326-331.

102. Qi Z.G., Chen J.P. and Chen Z.J. (2007), ‘Experimental study of an auto-controlled automobile air-conditioning system with an externally-controlled variable displacement compressor’, Applied Thermal Engineering, Vol.27, pp.927-933.

103. Ratts E.B. and Steven Brown J. (2000), ‘An experimental analysis of cycling in an automotive air-conditioning system’, Applied Thermal Engineering, Vol.20, pp.1039-1058.

104. Rossi F.D., Mastrullo R. and Mazzei P. (1993), ‘Exergetic and thermodynamic comparison of R12 and. Rl34 a as vapor compression refrigeration working fluids’, International Journal of Refrigeration, Vol.16, No.3, pp.156-160.

105. Sekhar S.J. and Mohanlal D. (2005), ‘HFC134a/HC600a/HC290 mixture a retrofit for CFC12 systems’, International Journal of Refrigeration, Vol.28, pp.735-743.

106. Sekhar S.J., Mohanlal D. and Renganarayanan S. (2004), ‘Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone-friendly HFC134a/HC refrigerant mixture’, International Journal of Thermal Sciences, Vol.43, pp.307-314.

107. Sekhar S.J., Senthilkumar K. and Mohanlal D. (2004), ‘Ozone friendly HFC134a / HC mixture compatible with mineral oil in refrigeration system improves energy efficiency of a walk in cooler’, Energy Conversion and Management, Vol.45, pp.1175-1186.

108. Shiming D. (2000), ‘A dynamic mathematical model of a direct expansion (DX) water-cooled air-conditioning plant’, Building and Environment, Vol.35, pp.303-613.

211

109. Singh V., Aute V. and Radermacher R. (2008), ‘Numerical approach for modeling air-to-refrigerant fin-and-tube heat exchanger with tube-to-tube heat transfer’, International Journal of Refrigeration, Vol.31, pp.1414-1425.

110. Smith A.M. and Granville P. (1994), ‘Retrofitting agricultural air-conditioning systems from CFC12 to HFC134a’, SAE International, Paper No. 941800, pp.306-311.

111. Stephan K. (1995), ‘Two-phase heat exchanger for new refrigerant and their mixtures’, International Journal of Refrigeration, Vol. 18, No. 3, pp. 198-209.

112. Struss R.A., Henkes J.P. and Gabbey L.W. (1990), ‘Performance comparison HFC-134a and CFC12 with various heat exchangers in automotive air-conditioning systems’, SAE Transactions. Paper No.900598, pp.881-889.

113. Theerakulpisut and Priprem S. (1998), ‘Modeling cooling coils’, Int. Comm. Heat Mass Transfer, Vol.25, No.1, pp.127-137.

114. Tian C., Liao Y. and Li X. (2006), ‘A mathematical model of variable displacement swash plate compressor for automotive air-conditioning system’, International Journal of Refrigeration, Vol.29, pp.270-280.

115. Trepp Ch., Savoie P. and Kraus W.E. (1991), ‘Investigation of the performance behaviour of a compression refrigerating unit with halogen refrigerant mixtures R22/R142b, R22/R114 and R22/R12’, International Journal of Refrigeration, Vol.15, pp.101-111.

116. Turaga M., Lin S. and Fazio P.P. (1988), ‘Performance of direct expansion plate finned tube coils for air cooling and dehumidification’, International Journal of Refrigeration, Vol.11, pp.78-86.

117. Tuztas M. (2002), ‘Mathematical model of finned tube heat exchangers for thermal simulation software of air conditioners’, International Comm. Heat and Mass Transfer, Vol.29, pp.547-556.

118. Vardhan A. and Dhar P.L. (1998), ‘A new procedure for performance prediction of air-conditioning coils’, International Journal of Refrigeration, Vol.21, No.1, pp.77-83.

212

119. Wang J. and Hihara E. (2003), ‘Prediction of air coil performance under partially wet and totally wet cooling conditions using equivalent dry-bulb temperature method’, International Journal of Refrigeration, Vol.26, pp.293-301.

120. Wang S, Gu J. and Dickson T (2005), ‘Vapor quality and performance of an automotive air-conditioning system’, Experimental Thermal and Fluid Science, Vol.30, pp.59-66.

121. Wang S.K. (2000), ‘Hand book of Air-conditioning and refrigeration’, McGraw Hill.

122. Wongwises S., Kamboon A. and Orachon B. (2006), ‘Experimental investigation of hydrocarbon mixtures to replace R134a in an automotive air-conditioning system’, Energy Conversion and Management, Vol.47, pp.1644-1659.

123. Yokoo S., Doi K. and Takano T. (1994), ‘Development of lubricant for retrofitting automotive air conditioners for use with HFC134a’, SAE Transactions, Paper No. 940594, pp.716-720.