28
Anesthetic Machine ClosedLoop Adaptive Control of Depth of Hypnosis Kousha Talebian UBC ECEM | BC Children’s Hospital PART

Anesthetic Machine

Embed Size (px)

DESCRIPTION

Anesthetic machine is used to aid anesthesiologist to put a patient into a state of anesthetic – hypnotic and sedative. The main component of the machine is the Central Processing Unit (CPU) that performs the calculation of how much drug is required to achieve the state. The two areas that require profound knowledge are the PK/PD model describing the patient, and the control algorithm used. There is a large variability amongst patients and that is an important issue regarding the robustness of the controller. This report will describe the PK/PD model in depth. It will describe the theory of control structure. It will conclude by using these subjects to describe the methods used to control depth of anesthetic.

Citation preview

Page 1: Anesthetic Machine

                                       

Anesthetic  Machine  Closed-­‐Loop  Adaptive  Control  of  Depth  of  Hypnosis  

         

Kousha  Talebian  UBC  ECEM  |  BC  Children’s  Hospital  PART  

       

 

Page 2: Anesthetic Machine

  2  

Table  of  Contents  

List  of  Figures  ..............................................................................................................................................  3  List  of  Abbreviation  ..................................................................................................................................  4  1.   Introduction  ........................................................................................................................................  5  1.   PK/PD  Model  .......................................................................................................................................  6  2.   Control  System  ...................................................................................................................................  8  2.1.   Open-­‐Loop  Control  ..................................................................................................................  9  2.2.   Closed-­‐Loop  Control  .............................................................................................................  10  2.3.   Adaptive  Control  ....................................................................................................................  10  

3.   Pharmacology  &  Physiology  of  Anesthetic  Drugs  ............................................................  12  3.1.   Basics  of  Drugs  ........................................................................................................................  12  3.2.   Receptors  ..................................................................................................................................  14  3.3.   Surface  Receptors  ..................................................................................................................  15  3.3.1.   G-­‐protein  coupled  ..............................................................................................................  15  3.3.2.   Ligand-­‐gated  ion  channel  ...............................................................................................  15  3.3.3.   Enzyme-­‐linked  ....................................................................................................................  16  3.4.   Intercellular  Receptors  .......................................................................................................  16  

4.   Current  Measuring  Indices  .........................................................................................................  18  5.   Anesthetic  Machine  .......................................................................................................................  18  5.1.   Heart  Rate  Monitor  ...............................................................................................................  19  5.2.   Respiratory  Monitor  .............................................................................................................  20  5.3.   Measuring  Node  .....................................................................................................................  20  5.4.   CPU  ...............................................................................................................................................  21  5.5.   Intravenous  Injection  ...........................................................................................................  21  5.6.   Volatile  Distribution  .............................................................................................................  21  

6.   Target-­‐Controlled  Induction  .....................................................................................................  23  7.   Closed-­‐Loop  Adaptive  Control  .................................................................................................  24  7.1.   Current  Technology  ..............................................................................................................  24  7.2.   Adaptive  Control  ....................................................................................................................  24  7.3.   Further  Works  ........................................................................................................................  26  

8.   Conclusion  .........................................................................................................................................  27  Bibliography  ..............................................................................................................................................  28  

Page 3: Anesthetic Machine

  3  

List  of  Figures  

Figure  1:  PK/PD  compartment  model.  .............................................................................................  7  Figure  2:  Settling  time,  rise  time  and  overshoot  ..........................................................................  9  Figure  3:  Open-­‐loop  control  system  ..................................................................................................  9  Figure  4:  A  closed-­‐loop  control  structure  ....................................................................................  10  Figure  5:  General  MRAC  control  structure  ..................................................................................  11  Figure  6:  The  plasma  distribution  of  IV  drug  as  a  function  of  time  ..................................  12  Figure  7:  Alveolar  partial  pressure  of  an  inhaling  drug  .........................................................  13  Figure  8:  A  G-­‐protein  coupled  receptor  ........................................................................................  15  Figure  9:  A  ligand-­‐gated  coupled  receptor  ..................................................................................  16  Figure  10:  Enzyme-­‐coupled  receptor  ............................................................................................  16  Figure  11:  A  cytoplasm  receptor  ......................................................................................................  17  Figure  12:  A  BIS  Index  measuring  node  ........................................................................................  18  Figure  13:  An  inhaling  anesthetic  machine  .................................................................................  19  Figure  14:  A  single  heartbeat  ............................................................................................................  20  Figure  15:  A  TCI  IV  drug  injector  .....................................................................................................  21  Figure  16:  An  inhalable  administration  tube  ..............................................................................  22  Figure  17:  L1  adaptive  control  structure  ......................................................................................  25  Figure  18:  Acceptable  control  scenario  ........................................................................................  25  Figure  19:  Unacceptable  scenario  ...................................................................................................  26  

Page 4: Anesthetic Machine

  4  

List  of  Abbreviation  

BCCH       BC  Children’s  Hospital  BIS         Bispectral  BPM       Beats  per  Minute  CPU       Central  Processing  Unit  DOH       Depth  of  Hypnosis  ECG       Electrocardiography  EEG       Electroencephalography  HRM       Heart  Rate  Monitor  IV       Intravenous  MIMO       Multi-­‐Input  Multi-­‐Output  MIAC       Model  Identification  Adaptive  Control  MRAC       Model  Reference  Adaptive  Control  SISO       Single-­‐Input  Single-­‐Output  TCI       Target-­‐Controlled  Induction  Pa       Artillery  Partial  Pressure  PA       Alveolar  Partial  Pressure  Pbr       Brain  Partial  Pressure  PD       Pharmacodynamics  PID       Proportional  Integral  Differential  PK       Pharmacokinetics    

Page 5: Anesthetic Machine

  5  

1. Introduction  Anesthetic  machine   is   used   to   aid   anesthesiologist   to   put   a   patient   into   a   state   of  

anesthetic   –   hypnotic   and   sedative.   The   main   component   of   the   machine   is   the  

Central   Processing  Unit   (CPU)   that   performs   the   calculation   of   how  much   drug   is  

required   to  achieve   the  state.  The   two  areas   that  require  profound  knowledge  are  

the  PK/PD  model  describing  the  patient,  and  the  control  algorithm  used.  There  is  a  

large   variability   amongst   patients   and   that   is   an   important   issue   regarding   the  

robustness  of  the  controller.    

 

This   report  will  describe   the  PK/PD  model   in  depth.   It  will  describe   the   theory  of  

control  structure.   It  will  conclude  by  using   these  subjects   to  describe   the  methods  

used  to  control  depth  of  anesthetic.  

 

 

 

Page 6: Anesthetic Machine

  6  

1. PK/PD  Model  

Pharmacokinetic/Pharmacodynamics   modeling   is   a   technique   that   combines   the  

two  classical  pharmacological  studies  into  one.  It  integrates  the  two  models  into  one  

mathematical   model   that   can   successfully   be   used   to   predict   the   time   course   of  

concentration  of  an  administrated  drug  and  the  pharmacological  effects  (Stoelting  &  

Hillier,  2006).    

 

Pharmacokinetics   (PK)   is   concerned  with  what   the  body  does   to  an  administrated  

drug.   It   is   the   quantitative   study   of   the   absorption,   distribution,   metabolism   and  

excretion  of  the  injected/inhaled  drug.  PK  will  determine  the  concentration  of  drug  

at  anytime  and  its  effect.    

 

Pharmacodynamics  (PD)  is  concerned  with  what  the  drug  does  to  the  body.  It  is  the  

study   of   the   intrinsic   sensitivity   or   responsiveness   of   receptors   to   a   drug   and   the  

mechanisms   by   which   these   effects   occur.   The   structure-­‐sensitive   of   the   drug   is  

explored   in   this   model.   The   responsiveness   of   the   receptors   to   the   drug   is  

determined   by   measuring   the   plasma   concentration   required   to   evoke   a  

pharmacological  effect.    

 

The  combined  PK/PD  Model  can  be  used  to  determine  the  full  life  cycle  of  the  drug  

and  the  patient.  The  model  is  simplified  by  considering  the  body  to  be  composed  of  

different   compartments.   Known   as   “Compartment   Model”   (Stoelting   &   Hillier,  

2006),   each   compartment   represents   a   theoretical   space   that   compromises   of  

different   organs   and   functionalities.   The   more   complicated   the   model,   the   more  

compartments  there  are.    

Page 7: Anesthetic Machine

  7  

 Figure  1:  PK/PD  compartment  model.  

There   are   many   methods   used   for   determining   PK/PD   models;   however,   all   are  

empirical.  Each  compartment  is  separated,  and  the  effect  of  age,  sex,  height,  weight,  

and  etc.  are  tested  on  a  large  sample  (Prinzlin,  Campbell,  &  Sutcliffe).  This  will  allow  

an  empirical  formula  to  be  postulated;  the  variability  is  also  modeled.    

 

Some  model  methods  include:  Schuttler,  Schnider,  Short,  Marsh,  Peadfusor,  Kataria  

(Knibbe,  Della  Pasqua,  &  Danhof).  Schuttler  is  usually  used  as  a  default  one.    

Page 8: Anesthetic Machine

  8  

2. Control  System  

A   control   system   is   a   device/algorithm   that   is   used   to   manage,   regulate   and  

maintain   another   system.  The  CPU   controls   the   administrated  drug   to   control   the  

anesthetic  state.  The  controlled  system  is  the  patient.    

 

Control   systems   are   broken   down   to   either   non-­‐adaptive,   or   adaptive.   The   non-­‐

adaptive   system   can   be   open-­‐loop   or   close-­‐loop.   Current   anesthetic  machines   are  

open-­‐loop.  The  ECEM  team  at  UBC  has  designed  a  closed-­‐loop  control  machine,  and  

is  working  on  the  prototype  of  the  adaptive  version.    

 

There  are  three  important  control  engineering  performance  matrices.  Settling  time  

denotes   the   time   it   takes   for   the   output   to   settle  within   5%  of   the   set-­‐point.   Rise  

time  denotes  the  time  it  takes  the  output  to  initially  reach  to  10%  of  the  set-­‐point.  

Overshoot  is  the  maximum  deviation  from  the  set-­‐point  after  the  rise  time  (Astrom  

&  Murray,   Feedback   Systems  An   Introduction   for   Scientists   and  Engineers,   2008).  

Figure  below  shows  these  matrices  graphically.  

Page 9: Anesthetic Machine

  9  

 Figure  2:  Settling  time,  rise  time  and  overshoot  

2.1. Open-­‐Loop  Control  

An  open-­‐loop  control  system  is  achieved  by  attaching  a  controller  to  the  system  -­‐  

without   providing   any   feedback.   Such   a   structure   lacks   steady-­‐state   error  

correction,  and  is  only  applicable  if  the  system’s  model  is  known.      

 Figure  3:  Open-­‐loop  control  system  

Controller   works   by   inverting   the   system.   Defining   the   system   as   M,   the  

controller  is  then  of  the  form  Mc-­‐1.  Defining  the  desired  state  as  r,  the  output  as  y,  

result  in:  

y(t) = r(t)×C ×M = r(t)×Mc−1 ×M = r(t)  

Page 10: Anesthetic Machine

  10  

If   Mc-­‐1   and   M   don’t   match   up,   the   output   would   not   directly   follow   r(t).   This  

control  loop  cannot  cancel  out  added  noise.  Most  importantly,  inverting  a  system  

is   a   risky   task;   the   zeros  of  M  will   become   the  poles   and   the   system  will   have  

singularities.  This  will  cause  instability  and  large  unrealistic  controller  actuator  

(while  Mc-­‐1  and  M  cancel  out,  the  control  output  or  the  drug  flow,  is  r(t)*  Mc-­‐1  and  

this  could  take  very  large  values).    

2.2. Closed-­‐Loop  Control  

Closed-­‐loop  control  fixes  the  issues  with  the  above  algorithm  by  closing  the  loop  

and   providing   feedback.   Such   a   system   can   determine   the   current   state   of   the  

system,   and   the   error   of   control.   It   can   eliminate   noise,   and   will   not   require  

inverting   the   system.   The   most   implemented   closed-­‐loop   controller   is   a   PID  

(Proportional  Integral  Differential)  and  is  very  robust.    

 

The  closed-­‐loop  control  is  an  active  area  of  research.  For  more  information,  refer  

to   (Astrom   &   Murray,   Feedback   Systems   An   Introduction   for   Scientists   and  

Engineers,  2008).  

 Figure  4:  A  closed-­‐loop  control  structure  

2.3. Adaptive  Control  

Even   the  best-­‐tuned  PID  controller  has   limited  controllability  on  a   system  that  

has  high  variability  (such  as  PK/PD  Model).  Adaptive  control  is  a  new  branch  of  

control  algorithms  that  is  designed  to  be  adaptive  –the  controller  changes  as  the  

system  changes.  It  is  used  for  systems  where  the  parameters  vary  considerably.  

A   PID   controller,   for   instance,   is   continuously   updated   online   to   provide   best  

possible  controller  for  the  system  currently  in  process.    

Page 11: Anesthetic Machine

  11  

 

Adaptive   control   is   broken   down   to   either   Model   Reference   Adaptive   Control  

(MRAC),   or   Model   Identification   Adaptive   Control   (MIAC)   (Astrom   &  

Witternmark,   1994).   In   MRAC,   a   model   (such   as   PK/PD)   is   defined.   The  

controller’s  action  is  then  to  force  the  system  to  follow  the  model.  In  MIAC,  the  

system  is  identified,  and  the  controller  is  altered  to  match  the  system.  Both  cases  

run   online,   and   are   continuously   updated   and   approach   steady   state.  MRAC   is  

described  below.  

 

   Figure  5:  General  MRAC  control  structure  

The  control  architecture  is  shown  above  –   it  contains  the  Plant  (Patient  PK/PD  

Model),   Reference   Model   (a   fixed   PK/PD   model   that   has   ideal   behavior),  

Adjustment   Mechanics,   and   the   Controller.   This   architecture   is   able   to  

successfully   cancel  out   the  Plant,   and  cause   the  Plant   to   follow   the  Reference’s  

output  –  this  is  without  inverting  the  system.    

 

The   main   disadvantage   of   the   MRAC   algorithm   is   the   trade   off   between  

robustness  and  the  speed  of  adaption.   Increasing  the  adaptation  gain   increases  

the   adaptation   –   this   is   required   for   stability   reasons.  However,   high   gain   also  

increases  the  noise,  which  can  cause  instability.      

Page 12: Anesthetic Machine

  12  

3. Pharmacology  &  Physiology  of  Anesthetic  Drugs  

3.1. Basics  of  Drugs  

Drugs  are  categorized  as  either  intravenous  (IV),  or  inhalable.  IV  drug  is  injected  

into   the   blood   stream   directly,   and   causes   a   change   in   plasma   concentration,  

which  can  be  used  as  a  measuring  index.  The  drug  from  the  blood  enters  tissues  

through  concentration  gradient.  

 Figure  6:  The  plasma  distribution  of  IV  drug  as  a  function  of  time  

Inhalable  drug  enters  the  capillary  blood  artery  through  the  alveolar.  Just  as  any  

other  gas,  the  exchange  takes  place  due  to  partial  pressure  gradient  between  the  

two   gases   in   the   alveolar   and   the   capillary   blood.   Denoting   the   arterial   blood  

partial   pressure   as  Pa,   and   the   alveolar  partial   pressure   as  PA,   the   exchange  of  

gases   occurs   until  Pa ⇔ PA .   The  blood   acts   as   a   reservoir   of   drug.   This   drug   is  

distributed  in  the  body  and  is  absorbed  in  tissues.  The  tissue  and  the  blood  will  

exchange   drug   to   equilibrate   the   partial   pressures.   In   the   case   of   hypnotic,  

Page 13: Anesthetic Machine

  13  

denoting  Pbr  as  the  partial  pressure  of  drug  in  the  brain,  this  means  PA ⇔ Pbr .  A  

simple  equality  describes  these  partial  pressures:  

Pa ⇔ PA ⇔ Pbr  

This   equality   allows   a   convenient   method   of   measuring   the   anesthetic   drug;  

knowing   one   of   the   partial   pressures  will   identify   the   other   partial   pressures.  

Measuring  PA  is  the  simplest  and  is  used  as  an  index  for  depth  of  anesthesia.  It  is  

important   to   keep   in  mind   that   the  drug   is   distributed  due   to  partial   pressure  

and  not  absolute  volume  of  drug.  

 Figure  7:  Alveolar  partial  pressure  of  an  inhaling  drug  

Solubility,   degree   of   hydrophilic   or   lipophilic,   concentration/partial   pressure  

gradient,  cardiac  output  and  other  factors  contribute  to  the  speed  and  strength  

of  anesthetic.    

 

The   lower   its   solubility   in   blood,   the   faster   the   anesthetic   acts.   This   seems  

unintuitive.  Solubility  defines  how  much  a  drug  can  be  dissolved  in  blood  before  

equilibrium   is   reached.   If   solubility   is   low,   then   equilibrium   is   reached   faster,  

and  the  drug  enters  the  tissues  faster.  Solubility  is  analogous  to  heat  capacitance.  

Page 14: Anesthetic Machine

  14  

The  higher  the  heat  capacitance,  the  longer  it  takes  for  a  material  to  heat  up,  just  

as   the   higher   the   solubility,   the   longer   it   takes   for   the   drug   to   show   its  

pharmacological  effect.    

 

Cardiac  output  corresponds  to  the  volume  of  blood  present  in  the  alveoli  artery.  

The   higher   the   output,   the   higher   the   amount   of   drug   required   bringing   the  

partial  pressure  of  the  blood  to  equilibrium  with  the  alveolar  pressure.  In  other  

words,  high  cardiac  output  will  delay  the  pharmacological  effect.    

3.2. Receptors  

The   pharmacological   effect   of   a   drug   is   contributed   to   the   drug-­‐receptor  

interaction.   This   interaction   alters   the   functionality   or   conformity   of   a   specific  

cellular   component   that   results   in   number   of   steps   that   eventually   lead   to   the  

pharmacological  effect.    

 

Receptors  are  classified  based  on  their  physical  locations:  surface  receptors  are  

found   on   the   cell   membrane,   while   intercellular   receptors   are   found   in   the  

cytoplasm.   If   a   drug   is   hydrophilic,   then   it   can   only   interact   with   the   surface  

receptors.  These  receptors  will  carry  the  neurotransmitter  signal  into  the  cell.  If  

the   cell   is   lipophilic,   then   the   drug  may   cross   the   cell  membrane,   and   interact  

with   the   receptors   inside   the   cytoplasm.  This   complex  acts  as   ligand-­‐regulated  

transcription   factor   to  modulate   gene   expression   by   binding   to   the   regulatory  

DNA  sequence.        

 

The   activity   of   a   drug   is   categorized   by   its   ability   to   activate   receptors.   A   full  

agonist  will  fully  activate  the  receptor.  A  partial  agonist  can  only  activate  some  of  

the  receptors  it  attaches  to.  An  antagonist  cannot  activate  the  receptor  and  will  

prevent  other  agonists  from  activating  the  receptor.    

Page 15: Anesthetic Machine

  15  

3.3. Surface  Receptors  

There  are   three   types  of  surface  receptors:  G-­‐protein  coupled,   ligand-­‐gated   ion  

channel,  and  enzyme-­‐linked.    

3.3.1. G-­‐protein  coupled  

In   a   G-­‐protein   coupled   receptor,   an   exogenously   administrated   drug   is  

recognized   by   the   receptor.   This   receptor-­‐ligand   interaction   induces  

conformation   change,   enabling   the   receptor   to   activate   a   specific  G-­‐protein  

inside  the  cell.  Hydrolysis  of  guanine  triphosphate  to  guanosine  diphosphate  

provides  energy  for  the  activated  G-­‐protein  to  interact  with  effector  molecule  

to  mediate   the   final   cascade   of   steps   that  will   lead   to   the   pharmacological  

response.    

 Figure  8:  A  G-­‐protein  coupled  receptor  

3.3.2. Ligand-­‐gated  ion  channel  

These   receptors   act   as   classical   ion   channels   (such   as   sodium,   calcium,  

potassium).   They   function   as   receptor-­‐ion   channel   complexes   in  which   the  

channel   is   an   integral   part   of   a   larger   and   more   complex   transmembrane  

protein.  Each   receptor   is   a  pentamer,   composed  of  5  homologous   subunits,  

each   with   four   transmembrane   segment   an   ex   extracellular   terminus   that  

Page 16: Anesthetic Machine

  16  

contains   residues   that   form   the   binding   site.   When   a   ligand   activates   the  

receptor,  the  channel  opens  and  allows  the  flow  of  ions  into  the  cell.  

 Figure  9:  A  ligand-­‐gated  coupled  receptor  

3.3.3. Enzyme-­‐linked    

The   enzyme-­‐linked   receptors   behave   similar   to   the   ligand-­‐gated   receptors.  

Once  activated,  they  release  an  enzyme  inside  the  cell.    

 Figure  10:  Enzyme-­‐coupled  receptor  

3.4. Intercellular  Receptors  

A  lipophilic  drug  can  cross  the  transmembrane  of  the  cell  and  interact  with  the  

cytoplasmic   receptors.   Hormones   and   steroids   are   examples   of   lipophilic  

Page 17: Anesthetic Machine

  17  

exogenous  neurotransmitter.  As  these  ligands  interact  inside  the  cell,  they  bind  

with   the  DNA  sequence  and  regulate   the  gene  of   the  cell,  and  can  have  genetic  

effects.    

 

 Figure  11:  A  cytoplasm  receptor  

Page 18: Anesthetic Machine

  18  

4. Current  Measuring  Indices  

For  the  IV  drugs,  plasma  concentration  is  used  as  the  measuring  index.  In  the  case  of  

inhaling  drugs,  PA   is  used.  While  these   indices  are   informative,   they  do  not  convey  

any  direct   information   regarding   the   state  of  hypnosis.   For   instance,   a  PA  value  of  

1.2%  for  isoflurane  does  not  translate  into  an  anesthetic  state.    

 

Using  electroencephalography  (EEG),  depth  of  hypnosis  (DOH)  can  be  measured.  A  

value   of   100   corresponds   to   fully   awake,   and   a   value   of   0   corresponds   to   a   dead  

state.  Bispectral  Index  (BIS)  and  the  subsequent  new  version  WAV  Index  are  two  of  

the   latest   indices   that  are  being  widely  recognized  and  used  to  measure  DOH.  The  

main  advantage  of  WAV  is  the  use  of  only  4  nodes  as  opposed  to  other  techniques  

for  measuring  EEG  as  well  as  the  direct  description  of  the  DOH.    

 Figure  12:  A  BIS  Index  measuring  node  

5. Anesthetic  Machine  

Any   anesthetic  machine   can  be   broken  down   to   the   same   components:  Heart   and  

Respiratory  monitors,  measuring   node,   CPU,   and   a   drug   delivery   instrument.   The  

difference   between  machines   is   either   algorithm   used   to   control   the   DOH   or   the  

measuring  index.  

 

Page 19: Anesthetic Machine

  19  

 Figure  13:  An  inhaling  anesthetic  machine  

5.1. Heart  Rate  Monitor  

A  heart  rate  monitor  (HRM)  measures  the  electrocardiography  (ECG)  activity  of  

the  heart  over  a  period  of  time.  A  heartbeat  has  three  intervals:  PR  Interval,  QRS  

Complex,  and  QT  Interval.  These  correspond  to  the  P,  Q,  R,  S  and  T  peaks.    

Page 20: Anesthetic Machine

  20  

 Figure  14:  A  single  heartbeat  

The   HRM   then   needs   to   properly  measure   these   intervals   and   these   peaks   to  

calculate  the  beats  per  minute  (BPM).  

5.2. Respiratory  Monitor  

A  respiratory  monitor   is  used   to  measure   the  breathing  pattern  of   the  patient.  

This  usually  works  in  parallel  with  the  ventilator.    

5.3. Measuring  Node  

A  measuring   index   is   required   for   controllability.  Discussed   in  Section  4,   there  

are   multiple   different   indices   available   for   measuring.   The   alveolar   pressure  

measurement   is   implemented   in   the   ventilator.   The   plasma   concentration   is  

measured  by  calculating  the  amount  of  drug  injected  into  the  patient.  The  EEG,  

and  BIS  index  in  particular,  are  performed  by  attaching  nodes  on  the  head  of  the  

patient  and  measuring  the  EEG.  

Page 21: Anesthetic Machine

  21  

5.4. CPU  

The  CPU  runs  the  algorithm  that  determines  the  rate  of  flow,  and  the  amount  of  

injection  required.  A  control  algorithm,  either  closed-­‐loop  or  open-­‐loop   is  used  

for  this  purpose.    

5.5. Intravenous  Injection  

The  injection  is  performed  via  a  piston  that  is  attached  to  a  syringe  that  pushes  it  

in.    

 Figure  15:  A  TCI  IV  drug  injector  

   

5.6. Volatile  Distribution  

The  administration  of  the  volatile  drug  is  delivered  via  mask  or  tubes.    

Page 22: Anesthetic Machine

  22  

   Figure  16:  An  inhalable  administration  tube  

Page 23: Anesthetic Machine

  23  

6. Target-­‐Controlled  Induction  Target-­‐Controlled  Induction  (TCI)  is  the  latest  anesthetic  machine.  It  uses  an  open-­‐

loop   approach   and   relies   heavily   on   the   correctness   of   PK/PD   model.   Since   the  

algorithm   is  open-­‐loop,   it   is  not  possible   to  reach  zero  steady  state  error,  and  any  

slight   mismatch   between   the   patient   and   the   PK/PD  model   will   result   in   further  

errors.  The  system  is  usually  modified  with  a  small  feed-­‐forward  gain  (less  than  1),  

ensuring   that   the   algorithm   always   underperforms;   the   anesthesiologist   can  

manually  inject  a  bolus  if  required.  

 

 

 

 

Page 24: Anesthetic Machine

  24  

7. Closed-­‐Loop  Adaptive  Control  The  ECEM   team   from  UBC   in   collaboration  with   the  PART   team   from  BC  Children  

Hospital   (BCCH)   is  working  on   the  next  generation  of   the  anesthetic  machine.  The  

system  is  designed  to  be  adaptive.  Propofol  is  used  for  delivering  hypnotic  state,  and  

remifentanil   (remi)   is   used   for   bringing   sedative   state.   Currently,   only   propofol  

administration   is  being  studied.  The  remi   is  controlled  via  TCI.  The  PK/PD  models  

then  correspond  to  an  input  of  propofol,  with  an  output  that  denotes  WAV  index.    

7.1. Current  Technology  

iControl  is  a  closed-­‐loop  PID  controller  designed  and  in-­‐use  at  BCCH.  Of  a  large  

sample,  only  5   failed  to  control   the  patient.  Another  10  showed  oscillation,  but  

were   still   stable.   Another   13   were   non-­‐oscillatory   and   stable,   but   were   not  

acceptable.    

7.2. Adaptive  Control  

A   new   adaptive   algorithm,   known   as   L1   Adaptive   Control,   is   promising   to  

provide   fast   adaptation,  with   robustness   property   (Hovakimyan  &   Cao,   2010).  

By  introducing  a  filter  at  a  specific  location  in  the  MRAC  design,  they  declare  that  

adaptation  and  robustness  become  decoupled.  They  claim  this   is  possible  since  

the   filter   takes   out   high   frequency   components   (noise)   caused   by   high  

adaptation   gain.   In   theory,   the   adaptation   can   be   tuned   to   infinity.   Others,  

however,   are   attacking   this   theory   since   filter   adds   phase   lead   that   causes  

instability.    

 

The   predictor   model   has   a   rise   time   of   3   minutes,   with   settling   time   of   10  

minutes  and  overshoot  of  only  8BIS.    

 

Page 25: Anesthetic Machine

  25  

 Figure  17:  L1  adaptive  control  structure  

Below  are  two  examples  (input  propofol,  and  output  WAV  index)  controlling  the  

output  based  on  some  PK/PD  models  modeled  by  Dr.  Bernhard  MacLeod  at  UBC  

Pharmacology  Department.   The   system   is   able   to   control   one   of   the   examples,  

but   fails   to   reach   the   target   for   the   other.   Both   examples   are   stable.   No   noise  

placed  on  the  system.    

 Figure  18:  Acceptable  control  scenario  

 

Page 26: Anesthetic Machine

  26  

 Figure  19:  Unacceptable  scenario  

7.3. Further  Works  

There  are  emerging  evidences   that  L1  Adaptive  Control  cannot  achieve  what   it  

promises   and   under   certain   conditions,   it   will   underperform   (Ioannou,   Jafari,  

Rudd,   Annaswamy,   Ortega,   &   Narendra).   Ioannou1  et.   Al.   has   taken   a   strong  

stance  against  the  theory,  and  go  as  far  as  calling  it  a  “scam.”    

 

After   the   implementation   of   a   working   adaptive   control,   the   next   step   is   to  

design  a  two-­‐input  control  algorithm,  for  both  propofol  and  remi.  A  multi-­‐input  

multi-­‐output  (MIMO)  would  be  a  simple  expansion  of  single-­‐input  single-­‐output  

(SISO).    

                                                                                                               1  Ioannou  is  considered  as  one  of  the  fathers  of  modern  control  theory.  

Page 27: Anesthetic Machine

  27  

8. Conclusion  The   future  of   anesthetic  machines   lies   in   closed-­‐loop   control   and  adaptive   theory.  

Due  to  the  large  variability  in  patients,  the  adaptive  theory  is  the  only  option  for  a  

full  robustness  control  structure.  While  L1  Adaptive  Control  may  fail  to  hold  up  to  its  

promises  of  robustness  and   fast  adaptation,  adaptive  control  has  come  a   long  way  

since   its   formulation   in   the   1960s   and   will   definitely   provide   the   degree   of  

robustness  required  in  this  field.  

 

 

 

Page 28: Anesthetic Machine

  28  

Bibliography  

Astrom,  K.  J.,  &  Murray,  R.  M.  (2008).  Feedback  Systems  An  Introduction  for  Scientists  and  Engineers.  New  York:  Princeton  University  Press.    Astrom,  K.  J.,  &  Witternmark,  B.  (1994).  Adaptive  Control.  Upper  Saddle  River:  Prentice  Hall.    Hovakimyan,  N.,  &  Cao,  C.  (2010).  L1  Adaptive  Control  Theory  Gauranteed  Robustness  with  Fast  Adaptation.  Philadelphia:  SIAM.    Ioannou,  P.  A.,  Jafari,  S.,  Rudd,  L.,  Annaswamy,  A.  M.,  Ortega,  R.,  &  Narendra,  K.  S.  L1  Adaptive  Control:  Stability  and  Robustness  Properties  and  Misperceptions.      Ioannou,  P.,  &  Fidan,  B.  (2006).  Adaptive  Control  Tutorial.  Philadelphia:  Siams.    Keesman,  K.  J.  (2011).  System  Identification  An  Introduction.  New  York:  Springer.    Knibbe,  C.,  Della  Pasqua,  O.,  &  Danhof,  M.  Introduction  to  population  PKPD  modelling  in  paediatric  clinical  pharmocology.  Leiden/Amsterdam.    Prinzlin,  J.,  Campbell,  A.,  &  Sutcliffe,  N.    A  Comparison  of  Four  Pharmacokinetic/  Pharmacodynamic  Models  of  Propofol  TCI  in  an  Older  Population.  Department  of  Anaesthesia,  Golden  Jubilee  National  Hospital,  Clydebank.    Stoelting,  R.  K.,  &  Hillier,  C.  S.  (2006).  Pharmacology  &  Physiology  in  Anesthetic  Practice.  Philadelphia,  Pennsylvania,  USA:  Lippincott  Williams  &  Wilkins.