40
Anderson transitions and wave function multifractality Part II Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg http://www-tkm.physik.uni-karlsruhe.de/mirlin/

Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Anderson transitions and wave function multifractality

Part II

Alexander D. Mirlin

Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg

http://www-tkm.physik.uni-karlsruhe.de/∼mirlin/

Page 2: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Plan (tentative)

• Quantum interference, localization, and field theories of disordered systems

• diagrammatics; weak localization; mesoscopic fluctuations

• field theory: non-linear σ-model

• quasi-1D geometry: exact solution, localization

• RG, metal-insulator transition, criticality

•Wave function multifractality

• wave function statistics in disordered systems

• multifractality of critical wave functions

• properties of multifractality spectra: average vs typical, possible singu-larities, relations between exponents, surface/corner multifractality

• Systems and models

• Anderson transition in D dimensions

• Power-Law Random Banded Matrix model: 1D system with 1/r hopping

• mechanisms of criticality in 2D systems

• quantum Hall transitions in normal and superconducting systems

Evers, ADM, arXiv:0707.4378 “Anderson transitions”, Rev.Mod.Phys., in print

Page 3: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Wave function statistics

Fyodorov, ADM 92; . . . Review: ADM, Phys. Rep. 2000

distribution function P(|ψ2(r)|), correlation functions 〈|ψ2(r1)ψ2(r2)|〉 etc.

perturbative (diagrammatic) approach not sufficient

Field-theoretical method: σ-model Wegner 79, Efetov 82 (SUSY)

S[Q] ∝∫

ddr Str[−D(∇Q(r))2 − 2iωΛQ(r)] Q2(r) = 1

Q ∈ {sphere × hyperboloid} “dressed” by Grassmannian variables

σ-model contains all the diffuson-cooperon diagrammatics + much more (stronglocalization; Anderson transition & RG; non-perturbative effects)

• zero mode (Q = const) −→ RMT distribution P(|ψ2(r)|)ψ(r) – uncorrelated Gaussian random variables

• diffusive modes [ΠD(r1, r2)] −→ deviations from RMT,long-range spatial correlations

parameter g =D/L2

∆≡ Thouless energy

level spacing=

G

e2/hdimensionless conductance

g À 1: metal g ¿ 1: strong localization

quasi-1D: g = ξ/L, ξ – localization length

Page 4: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Experiment:

Wave function statistics in disordered microwave billiards

Kudrolli, Kidambi, Sridhar, PRL 95

Page 5: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Wave function statistics

Distribution P(t) of t = V |ψ2(r)|

Metallic samples (dimensionless conductance g À 1):

• Main body of the distribution:

P(t) = e−t[

1 +κ

2(2− 4t+ t2) + . . .

]

(U)

P(t) =e−t/2√

2πt

[

1 +κ

2

(

3

2− 3t+

t2

2

)

+ . . .

]

(O)

κ = ΠD(r, r) ∝ 1/g ¿ 1 (classical return probability)

• Asymptotic tail:

P(t) ∝

exp{− . . .√t} , quasi-1D

exp{− . . . lnd t} , d = 2, 3

Page 6: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Wave function statistics: numerical verification

numerics: Uski, Mehlig, Romer, Schreiber 01

quasi-1d, metallic regime, distribution of t = V |ψ2(r)|

“body”: 1/g corrections to RMT “tail” ∝ exp(− . . .√t)

Physics of the slowly decaying “tail”: anomalously localized states

Page 7: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Anomalously localized states: imaging

numerics: Uski, Mehlig, Schreiber ’02

spatial structure

of an anomalously localized state (ALS):

〈|ψ(r)|2δ(V|ψ(0)|2 − t)〉

with t atypically large

ADM ’97

ALS determine asymptotic behavior of distributions of various quantities

(wave function amplitude, local and global density of states, relaxation time,. . . )

Altshuler, Kravtsov, Lerner, Fyodorov, ADM, Muzykantskii, Khmelnitskii,Falko, Efetov. . .

Page 8: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Wave function statistics: numerical verification. 2D.

numerics: Uski, Mehlig, Romer, Schreiber ’01

“body” of the distribution:

(1/g) ln(L/l) corrections

“tail” ∝ exp(− . . . ln2 t)

Falko, Efetov ’95

−→ precursors of Anderson criticality

Page 9: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractality at the Anderson transition

Pq =∫

ddr|ψ(r)|2q inverse participation ratio

〈Pq〉 ∼

L0 insulatorL−τq criticalL−d(q−1) metal

τq = d(q − 1) + ∆q ≡ Dq(q − 1) multifractality

normal anomalous ∆0 = ∆1 = 0

Wave function correlations at criticality:

L2d〈|ψ2(r)ψ2(r′)|〉 ∼ (|r− r′|/L)−η , η = −∆2

Ld(q1+q2)〈|ψ2q1(r1)ψ2q2(r2)|〉 ∼ L−∆q1−∆q2(|r1 − r2|/L)∆q1+q2−∆q1−∆q2

many-points correlators 〈|ψ2q1(r1)ψ2q2(r2) . . . ψ

2qn(rn)|〉 — analogously

different eigenfunctions:L2d〈|ψ2

i (r)ψ2j(r′)|〉

L2d〈ψi(r)ψ∗j (r)ψ∗i (r′)ψj(r′)〉

}

∼(|r− r′|

)−η

ω = εi − εj Lω ∼ (ρω)−1/d ρ – DoS |r− r′| < Lω

Page 10: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractality and the field theory

∆q – scaling dimensions of operators O(q) ∼ (QΛ)q

d = 2 + ε: ∆q = −q(q − 1)ε+ O(ε4) Wegner ’80

• Infinitely many operators with negative scaling dimensions

• ∆1 = 0 ←→ 〈Q〉 = Λ naive order parameter uncritical

Transition described by an order parameter function F (Q)

Zirnbauer 86, Efetov 87

←→ distribution of local Green functions and wave function amplitudes

ADM, Fyodorov ’91

Page 11: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Singularity spectrum

d α0α

d

0

f(α)

metalliccritical

α− α+

|ψ|2 large |ψ|

2 small

τq −→ Legendre transformation

τq = qα− f(α) , q = f ′(α) , α = τ ′q

−→ singularity spectrum f(α)

P(|ψ2|) ∼ 1

|ψ2|L−d+f(− ln |ψ2|

lnL ) wave function statistics

To verify: calculate moments 〈Pq〉 and use saddle-point method

〈Pq〉 = Ld〈|ψ2q|〉 ∼∫

dαL−qα+f(α) , α = − ln |ψ2|/ lnL

Lf(α) – measure of the set of points where |ψ|2 ∼ L−α

• τq – non-decreasing, convex (τ ′q ≥ 0, τ ′′q ≤ 0 ), with τ0 = −d, τ1 = 0

• f(α) – convex (f ′′(α) ≤ 0), defined on α ≥ 0, maximum f(α0) = d.

Statistical ensemble −→ f(α) may become negative

Page 12: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractal wave functions at the Quantum Hall transition

Page 13: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Role of ensemble averaging: Average vs typical spectra

P typq = exp〈lnPq〉 ∼ L−τ

typq ,

τ typq =

qα− , q < q−τq , q− < q < q+

qα+ , q > q+

Singularity spectrum f typ(α) is defined on [α+, α−], where it is equal to f(α).

IPR distribution:

P(Pq/Ptypq ) is scale-invariant at criticality

Power-law tail at large Pq/Ptypq :

P(Pq/Ptypq ) ∝ (Pq/P

typq )−1−xq

tail exponent xq

= 1 , q = q±> 1 , q− < q < q+

< 1 , otherwise

xqτtypq = τqxq

−7 −6 −5 −4 −3ln P2

10−2

10−1

100

Dis

trib

utio

n (ln

P2)

256512102420484096

Page 14: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Dimensionality dependence of multifractality

RG in 2 + ε dimensions, 4 loops, orthogonal and unitary symmetry classes

Wegner ’87

∆(O)q = q(1− q)ε+

ζ(3)

4q(q − 1)(q2 − q + 1)ε4 + O(ε5)

∆(U)q = q(1− q)(ε/2)1/2 − 3

8q2(q − 1)2ζ(3)ε2 + O(ε5/2)

ε¿ 1 −→ weak multifractality

−→ keep leading (one-loop) term −→ parabolic approximation

τq ' d(q − 1)− γq(q − 1), ∆q ' γq(1− q) , γ ¿ 1

f(α) ' d− (α− α0)2

4(α0 − d); α0 = d+ γ

γ = ε (orthogonal); γ = (ε/2)1/2 (unitary)

q± = ±(d/γ)1/2

Page 15: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Dimensionality dependence of multifractality: IPR distribution

Mildenberger, Evers, ADM ’02

−8 −6 −4 −2ln P2

0

0.2

0.4

0.6

0.8

Dis

trib

utio

n(ln

P2)

−5 −3 −1ln P2

a) b)

0 1 2 3q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

σ q(∞

)

10 100L

0.1

1

5

σ q(L)

65432.521.50.5

IPR distribution in 3D and 4D

3D: L = 8, 11, 16, 22, 32, 44, 64, 80

4D: L = 8, 10, 12, 14, 16

variance σq of distribution P(lnPq)

2 + ε with ε = 0.2, 1 (analytics),

3D, 4D (numerics)

one-loop results in d = 2 + ε:

σq = 8π2aε2q2(q − 1)2 , |q| ¿ q+, a ' 0.00387 (periodic b.c.)

σq ' x−1q = q/q+ , q > q+

Page 16: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Dimensionality dependence of multifractality spectra

0 1 2 3q

0

1

2

3

4D

q

~

0 1 2 3 4 5 6 7α

0

1

2

3

4

−1

f(α)

0 1 2 3 4 5α

0

1

2

3

−1

f(

α)

~

~

Analytics (2 + ε, one-loop) and numerics

τq = (q − 1)d− q(q − 1)ε+ O(ε4)

f(α) = d− (d+ ε− α)2/4ε+ O(ε4)

d = 4 (full)d = 3 (dashed)d = 2 + ε, ε = 0.2 (dotted)d = 2 + ε, ε = 0.01 (dot-dashed)

Inset: d = 3 (dashed)vs. d = 2 + ε, ε = 1 (full)

Mildenberger, Evers, ADM ’02

Page 17: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Singularities in multifractal spectra: Termination and freezing

0 1 2 3α-4

-3

-2

-1

0

1

2

f(α)

(a)

0 1 2 3q

-2

-1

0

1

2

τ q

0 1 2 3α

(b)

0 1 2 3q

0 1 2 3α

(c)

0 1 2 3q

(a) no singularities (b) termination (c) freezing

Page 18: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Relations between multifractal exponents

Non-linear σ-model

−→ distribution of local Green function GR(r, r)/π〈ρ〉 = u− iρ

P (u, ρ) =1

2πρP0

(

(u2 + ρ2 + 1)/2ρ)

−→ symmetry of LDOS distribution: Pρ(ρ) = ρ−3Pρ(ρ−1)

ADM, Fyodorov ’94 (β = 2)

Recently:

more complete derivation (β = 1, 2, 4) via relation to a scattering problem:

system with a channel attached at a point r

S-matrix S = (1− iK)/(1 + iK) K = 12V †GR(r, r)V = u− iρ

distribution P (S) invariant with respect to the phase θ of S =√reiθ.

Fyodorov, Savin, Sommers ’04-05

Page 19: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Relations between multifractal exponents (cont’d)

ADM, Fyodorov, Mildenberger, Evers ’06

LDOS distribution in σ-model + universality

−→ exact symmetry of the multifractal spectrum:

∆q = ∆1−q f(2d− α) = f(α) + d− α

Consequence: assuming no singularities in f(α) spectrum,

its support is bounded by the interval [0, 2d]

−3 −2 −1 0 1 2 3 4q

−3

−2

−1

0

∆ q, ∆

1−q

b=4

b=1

b=0.3b=0.1

0 0.5 1 1.5 2α

−1.5

−1

−0.5

0

0.5

1

f(α)

b=4b=

1

b=0.

3

b=0.1

Page 20: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Relations between multifractal exponents (cont’d):

Anderson transition in symplectic class in 2D

Mildenberger, Evers ’07

Symmetry of the spectrum: ∆q = ∆1−q

Non-parabolicity of the spectrum

δ(q) ≡ ∆q

q(1− q)6= const

Conformal invariance

2D ↔ quasi-1D strip

Λc = 1/πδ0

δ0 ' 0.172 , Λc ' 1.844

−→ πδ0Λc = 0.999± 0.003

Related work:

Obuse, Subramaniam, Furusaki, Gruzberg, Ludwig ’07

Page 21: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Relations between multifractal exponents (cont’d)

Wigner delay time: tW = ∂θ(E)/∂E

Relation between wave function (Py) and delay time (PW ) distribution

in the σ-model:

PW (tW ) = t−3W Py(t−1

W ) tW = tW∆/2π

Ossipov, Fyodorov ’05

+ universality

−→ exact relation between multifractal exponents

for closed (wave functions, τq) and open (delay times, γq) systems

γq = τ1+q

ADM, Fyodorov, Mildenberger, Evers ’06

Page 22: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Surface multifractality

Subramaniam, Gruzberg, Ludwig, Evers, Mildenberger, ADM ’06

Critical fluctuations of wave functions at surface: new set of exponents

Ld−1〈|ψ(r)|2q〉 ∼ L−τ sq τ s

q = d(q − 1) + qµ+ 1 + ∆sq

Weak multifractality (2 + ε or 2D): γ = (βπg)−1¿ 1

τ bq = 2(q − 1) + γq(1− q)

τ sq = 2(q − 1) + 1 + 2γq(1− q)

fb(α) = 2− (α− 2− γ)2/4γ

f s(α) = 1− (α− 2− 2γ)2/8γ

Studied numerically for a variety of crit-ical systems: PRBM, IQHE, SQHE, 2Dsymplectic

1.5 2 2.5α−1

0

1

2

f(α)

α+

s α+

b α−

b α−

s

−20 −10 0 10 20q−4

−2

0

2

τ q−2(

q−1)

q−bs q+

bs

bulk

surface

bulk

surface

Page 23: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Corner multifractality

Obuse, Subramaniam, Furusaki, Gruzberg, Ludwig ’07

Conformal invariance −→

∆θq =

π

θ∆sq

fθ(αθq) =

π

θ[fs(α

sq)− 1] ,

αθq − 2 =π

θ[αsq − 2]

Page 24: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Power-law random banded matrix model (PRBM)

Anderson transition: dimensionality dependence:

d = 2 + ε: weak disorder/coupling dÀ 1: strong disorder/coupling

Evolution from weak to strong coupling – ?

PRBM ADM, Fyodorov, Dittes, Quezada, Seligman ’96

N ×N random matrix H = H† 〈|Hij|2〉 =1

1 + |i− j|2/b2

←→ 1D model with 1/r long range hopping 0 < b <∞ parameter

Critical for any b −→ family of critical theories!

bÀ 1 analogous to d = 2 + ε b¿ 1 analogous to dÀ 1 (?)

Analytics: bÀ 1: σ-model RG

b¿ 1: real space RG

Numerics: efficient in a broad range of bEvers, ADM ’01

Page 25: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Weak multifractality, bÀ 1

supermatrix σ-model

S[Q] =πρβ

4Str

[

πρ∑

rr′Jrr′Q(r)Q(r′)− iω

r

Q(r)Λ

]

.

In momentum (k) space and in the low-k limit:

S[Q] = β Str

[

−1

t

dk

2π|k|QkQ−k −

iπρω

4Q0Λ

]

DOS ρ(E) = (1/2π2b)(4πb− E2)1/2 , |E| < 2√πb

coupling constant 1/t = (π/4)(πρ)2b2 = (b/4)(1− E2/4πb)

−→ weak multifractality

τq ' (q − 1)(1− qt/8πβ) , q ¿ 8πβ/t

E = 0 , β = 1 −→ ∆q =1

2πbq(1− q)

Page 26: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractality in PRBM model: analytics vs numerics

0 0.5 1 1.5α

−1.5

−0.5

0.5

1.5

f(α)

b=4.0b=1b=0.25b=0.01parabola b=4.0parabola b=1.0f0(α*2b)/2b

10−2

10−1

100

101

b

0.0

0.2

0.4

0.6

0.8

1.0

D2

numerics: b = 4, 1, 0.25, 0.01

analytics: bÀ 1 (σ–model RG), b¿ 1 (real-space RG)

Page 27: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Scale-invariant IPR distribution

IPR variance

var(Pq)/〈Pq〉2 = q2(q − 1)2/24β2b2 , q ¿ q+(b) ≡ (2βπb)1/2

IPR distribution function for Pq/〈Pq〉 − 1¿ 1:

P(P ) = e−P−C exp(−e−P−C) , P =

[

Pq

〈Pq〉− 1

]

2πβb

q(q − 1)

C ' 0.5772 – Euler constant

Pq/〈Pq〉 − 1À 1: power-law tail

P(Pq) ∼ (Pq/〈Pq〉)−1−xq , xq = 2πβb/q2 , q2 < 2πβb

Page 28: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Scale-invariant IPR distribution (cont’d)

−7 −6 −5 −4 −3ln P2

10−2

10−1

100

Dis

trib

utio

n (ln

P2)

256512102420484096

−5 0 5 10 15P

10−3

10−2

10−1

100

101

P(P

)

10 10010

−6

10−5

10−4

10−3

~

~Distribution P(lnP2)for b = 1 and L =256, 512, 1024, 2048, 4096

Distribution P(Pq) at b = 4for q = 2 (◦), 4 (¤), and 6 (¦)Solid line — analytical resultfor q ¿ q+(b) = (8π)1/2 ' 5.

Inset: Power-law asymptotics of P(P4).

Power-law exponent: numerically x4 = 1.7,analytically (bÀ 1): x4 = π/2

Page 29: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Strong multifractality, b¿ 1

Real-space RG:

• start with diagonal part of H: localized states with energies Ei = Hii

• include into consideration Hij with |i− j| = 1

Most of them irrelevant, since |Hij| ∼ b¿ 1, while |Ei − Ej| ∼ 1

Only with a probability ∼ b is |Ei − Ej| ∼ b−→ two states strongly mixed (“resonance”) −→ two-level problem

Htwo−level =

(

Ei VV Ej

)

; V = Hij

New eigenfunctions and eigenenergies:

ψ(+) =

(

cos θsin θ

)

; ψ(−) =

(

− sin θcos θ

)

E± = (Ei + Ej)/2± |V |√

1 + τ 2

tan θ = −τ +√

1 + τ 2 and τ = (Ei − Ej)/2V

• include into consideration Hij with |i− j| = 2

• . . .

Page 30: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Strong multifractality, b¿ 1 (cont’d)

Evolution equation for IPR distribution (“kinetic eq.” in “time” t = ln r):

∂ ln rf(Pq, r) =

2b

π

∫ π/2

0

sin2 θ cos2 θ

× [−f(Pq, r) +

dP (1)q dP (2)

q f(P (1)q , r)f(P (2)

q , r)

× δ(Pq − P (1)q cos2q θ − P (2)

q sin2q θ)]

−→ evolution equation for 〈Pq〉: ∂〈Pq〉/∂ ln r = −2bT (q)〈Pq〉 with

T (q) =1

π

∫ π/2

0

sin2 θ cos2 θ(1− cos2q θ − sin2q θ) =

2√π

Γ(q − 1/2)

Γ(q − 1)

−→ multifractality 〈Pq〉 ∼ L−τq , τq = 2bT (q)

This is applicable for q>1/2

For q<1/2 resonance approximation breaks down; use ∆q = ∆1−q

Page 31: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Strong multifractality, b¿ 1 (cont’d)

T (q) asymptotics:

T (q) ' −1/[π(q − 1/2)] , q → 1/2 ;

T (q) ' (2/√π)q1/2 , q À 1

Singularity spectrum:

f(α) = 2bF (A) ; A = α/2b , F (A)– Legendre transform of T (q)

F (A) asymptotics:F (A) ' −1/πA , A→ 0 ;

F (A) ' A/2 , A→∞

0 2 4 6 8q

-2

0

2

Tq

0 1 2 3 4A

-2

0

2

4

F(A

)

a)

0.0 0.5 1.0 1.5 2.0αq

-0.8

-0.4

0.0

0.4

0.8

f(α q)

0 5 10q0

1

2

τ qb)

0 0.5 1 1.5 2α

−0.5

0

0.5

1

f(α)

Page 32: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractality in PRBM model: analytics vs numerics

0 0.5 1 1.5α

−1.5

−0.5

0.5

1.5

f(α)

b=4.0b=1b=0.25b=0.01parabola b=4.0parabola b=1.0f0(α*2b)/2b

10−2

10−1

100

101

b

0.0

0.2

0.4

0.6

0.8

1.0

D2

numerics: b = 4, 1, 0.25, 0.01

analytics: bÀ 1 (σ–model RG), b¿ 1 (real-space RG)

Page 33: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Critical level statistics

Two-level correlation function:

R(c)2 (s) = 〈ρ〉−2〈ρ(E − ω/2)ρ(E + ω/2)〉 − 1 ; ρ(E) = V −1Tr δ(E − H)

s = ω/∆, ∆ = 1/〈ρ〉V – mean level spacing

Level number variance:

〈δN(E)2〉 =

∫ 〈N(E)〉

−〈N(E)〉ds(〈N(E)〉 − |s|)R(c)

2 (s)

Spectral compressibility χ : 〈δN 2〉 ' χ〈N〉

unitary symmetry (β = 2):

RMT: R(c)2 (s)=δ(s)− sin2(πs)/(πs)2, χ = 0

Poisson: R(c)2 (s)=δ(s), χ = 1

Criticality: intermediate scale-invariant statistics, 0 < χ < 1

Page 34: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Critical level statistics in PRBM ensemble

• bÀ 1 −→ σ-model −→

R(c)2 (s)=δ(s)−sin2(πs)

(πs)2

(πs/4b)2

sinh2(πs/4b)(β = 2) , χ ' 1/2πβb

• b¿ 1 −→ real-space RG −→R

(c)2 (s) = δ(s)− erfc(|s|/2

√πb) , χ ' 1− 4b , (β = 1)

R(c)2 (s) = δ(s)− exp(−s2/2πb2) , χ ' 1− π

√2 b , (β = 2)

0 0.2 0.4 0.6 0.8 1s

0

0.2

0.4

0.6

0.8

1

R2(s

)

a)

10−2

10−1

100

101

b

0.0

0.2

0.4

0.6

0.8

1.0

χ

Page 35: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Disordered electronic systems: Symmetry classification

Altland, Zirnbauer ’97

Conventional (Wigner-Dyson) classes

T spin rot. chiral p-h symbol

GOE + + − − AIGUE − +/− − − AGSE + − − − AII

Chiral classes

T spin rot. chiral p-h symbol

ChOE + + + − BDIChUE − +/− + − AIIIChSE + − + − CII

H =

(

0 tt† 0

)

Bogoliubov-de Gennes classes

T spin rot. chiral p-h symbol

+ + − + CI− + − + C+ − − + DIII− − − + D

H =

(

h ∆

−∆∗ −hT

)

Page 36: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Mechanisms of Anderson criticality in 2D

“Common wisdom”: all states are localized in 2D

In fact, in 9 out of 10 symmetry classes the system can escape localization!

−→ variety of critical points

Mechanisms of delocalization & criticality in 2D:

• broken spin-rotation invariance −→ antilocalization, metallic phase, MIT

classes AII, D, DIII

• topological term π2(M) = Z (quantum-Hall-type)

classes A, C, D : IQHE, SQHE, TQHE

• topological term π2(M) = Z2

classes AII, CII

• chiral classes: vanishing β-function, line of fixed points

classes AIII, BDI, CII

• Wess-Zumino term (random Dirac fermions, related to chiral anomaly)

classes AIII, CI, DIII

Page 37: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractality at the Quantum Hall critical point

Evers, Mildenberger, ADM ’01

important for identification of the CFT of the Quantum Hall critical point

0.5 1.0 1.5 2.0 2.5α

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f (α)

0.8 1.2 1.6 2.0 2.40.0

0.5

1.0

1.5

2.0

f(α)

L=16L=128L=1024

0 1 2q

0.24

0.26

0.28

0.30

∆ q/q(

1−q)

QHE: anomalous dimensions

−→ spectrum is parabolic with a high (1%) accuracy:

f(α) ' 2− (α− α0)2

4(α0 − 2), ∆q ' (α0−2)q(1−q) with α0−2 = 0.262±0.003

recent data, still higher accuracy (unpublished): non-parabolicity is for real!

Page 38: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Multifractal wave functions at the Quantum Hall transition

Page 39: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Spin quantum Hall effect

• disordered d-wave superconductor (class C):

charge not conserved but spin conserved

• time-reversal invariance broken:

• dx2−y2 + idxy order parameter

• strong magnetic field

• Haldane-Rezayi d-wave paired state of composite fermions at ν = 1/2

−→ SQH plateau transition: spin Hall conductivity quantized

jZx = σsxy

(

−dBz(y)

dy

)

Model: SU(2) modification of the Chalker-Coddington network

Kagalovsky, Horovitz, Avishai, Chalker ’99 ; Senthil, Marston, Fisher ’99

Page 40: Anderson transitions and wave function multifractality ...Anderson transitions and wave function multifractality Part II Alexander D. Mirlin ... †quasi-1D geometry: exact solution,

Spin quantum Hall effect (cont’d)

Similar to IQH transition but:

• DoS critical ρ(E) ∝ Eµ

• mapping to percolation: analytical evaluation of

• DOS exponent µ = 1/7

• localization length exponent ν = 4/3

• lowest multifractal exponents: ∆2 = −1/4, ∆3 = −3/4

• numerics: analytics confirmed

multifractality spectrum: ∆q, f(α) not parabolic

10−1

100

101

E/δ

0.1

1.0

ρ(E

) L1/

4

0 1 2 3 4E/δ

0

1

2

ρ(E

) L1/

4

0 1 2 3 4q

0.12

0.13

0.14

∆ q / q

(1−

q)

1 1.5 2α−0.5

0

0.5

1

1.5

2

f(α)

2.08 2.1 2.12 2.141.996

1.998

2

Gruzberg, Ludwig, Read ’99; Beamond, Cardy, Chalker ’02; Evers, Mildenberger, ADM ’03