Analog Signal VS Digital Signal

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

Analog Signal VS Digital Signal. Analog Signal is defined as signals having continuous values. Digital Signal is defined as signals which is having finite number of discrete values. Common Number Systems. Conversion Among Bases. The possibilities:. Decimal. Octal. Binary. Hexadecimal. - PowerPoint PPT Presentation

Text of Analog Signal VS Digital Signal

Analog Signal VS Digital Signal

Analog Signal VS Digital SignalAnalog Signal is defined as signals having continuous values.

1Digital Signal is defined as signals which is having finite number of discrete values.

Common Number SystemsSystemBaseSymbolsUsed by humans?Used in computers?Decimal100, 1, 9YesNoBinary20, 1NoYesOctal80, 1, 7NoNoHexa-decimal160, 1, 9,A, B, FNoNoConversion Among BasesThe possibilities:HexadecimalDecimalOctalBinaryDecimal to Decimal (just for fun)HexadecimalDecimalOctalBinary12510 =>5 x 100= 52 x 101= 201 x 102= 100 125BaseWeight1)Decimal to BinaryHexadecimalDecimalOctalBinaryDecimal to BinaryTechniqueDivide by two, keep track of the remainderFirst remainder is bit 0 (LSB, least-significant bit)Second remainder is bit 1Etc.

Example12510 = ?22 125 62 12 31 02 15 12 7 12 3 12 1 12 0 112510 = 11111012FractionsDecimal to binary3.14579 .14579x 20.29158x 20.58316x 21.16632x 20.33264x 20.66528x 21.33056etc.11.001001...2)Binary to DecimalHexadecimalDecimalOctalBinaryBinary to DecimalTechniqueMultiply each bit by 2n, where n is the weight of the bitThe weight is the position of the bit, starting from 0 on the rightAdd the resultsExample1010112 => 1 x 20 = 11 x 21 = 20 x 22 = 01 x 23 = 80 x 24 = 01 x 25 = 324310Bit 0FractionsBinary to decimal10.1011 => 1 x 2-4 = 0.06251 x 2-3 = 0.1250 x 2-2 = 0.01 x 2-1 = 0.50 x 20 = 0.01 x 21 = 2.0 2.68753)Decimal to OctalHexadecimalDecimalOctalBinaryDecimal to OctalTechniqueDivide by 8Keep track of the remainderExample123410 = ?88 1234 154 28 19 28 2 38 0 2123410 = 232284)Octal to DecimalHexadecimalDecimalOctalBinaryOctal to DecimalTechniqueMultiply each bit by 8n, where n is the weight of the bitThe weight is the position of the bit, starting from 0 on the rightAdd the resultsExample7248 => 4 x 80 = 42 x 81 = 167 x 82 = 448468105)Decimal to HexadecimalHexadecimalDecimalOctalBinaryDecimal to HexadecimalTechniqueDivide by 16Keep track of the remainder

Decimal Hexadecimal10A11B12C13D14E15FExample123410 = ?16123410 = 4D21616 1234 77 216 4 13 = D16 0 46)Hexadecimal to DecimalHexadecimalDecimalOctalBinaryHexadecimal to DecimalTechniqueMultiply each bit by 16n, where n is the weight of the bitThe weight is the position of the bit, starting from 0 on the rightAdd the resultsExampleABC16 =>C x 160 = 12 x 1 = 12 B x 161 = 11 x 16 = 176 A x 162 = 10 x 256 = 2560 274810Binary to Octal , Octal to BinaryUse Below TableDecimalBinaryOctalHexa-decimal0000001001112010223011334100445101556110667111777)Octal to BinaryHexadecimalDecimalOctalBinaryOctal to BinaryTechniqueConvert each octal digit to a 3-bit equivalent binary representationExample7058 = ?2 7 0 5

111 000 1017058 = 11100010128)Binary to OctalHexadecimalDecimalOctalBinaryBinary to OctalTechniqueGroup bits in threes, starting on rightConvert to octal digitsExample10110101112 = ?81 011 010 111

1 3 2 7 10110101112 = 13278DecimalBinary00000100012001030011401005010160110701118100091001101010111011121100131101141110151111Hexadecimal to Binary,Binary to Hexadecimal Use this Table 9)Hexadecimal to BinaryHexadecimalDecimalOctalBinaryHexadecimal to BinaryTechniqueConvert each hexadecimal digit to a 4-bit equivalent binary representationExample10AF16 = ?2 1 0 A F

0001 0000 1010 111110AF16 = 0001000010101111210)Binary to HexadecimalHexadecimalDecimalOctalBinaryBinary to HexadecimalTechniqueGroup bits in fours, starting on rightConvert to hexadecimal digitsExample10101110112 = ?1610 1011 1011

B B 10101110112 = 2BB1611)Octal to HexadecimalHexadecimalDecimalOctalBinaryOctal to HexadecimalTechniqueUse binary as an intermediaryExample10768 = ?16 1 0 7 6

001 000 111 110

2 3 E10768 = 23E1612)Hexadecimal to OctalHexadecimalDecimalOctalBinaryHexadecimal to OctalTechniqueUse binary as an intermediaryExample1F0C16 = ?8 1 F 0 C

0001 1111 0000 1100

1 7 4 1 41F0C16 = 174148