54
An introduction to nonadiabatic molecular dynamics Hands on workshop on DFT, Beijing Aug. 3, 2018 Sheng Meng (孟胜) Institute of Physics, Chinese Academy of Sciences 2018.8.3

An introduction to nonadiabatic molecular dynamics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An introduction to nonadiabatic molecular dynamics

An introduction to nonadiabatic molecular dynamics

Hands on workshop on DFT, Beijing

Aug. 3, 2018

Sheng Meng (孟胜) Institute of Physics,

Chinese Academy of Sciences 2018.8.3

Page 2: An introduction to nonadiabatic molecular dynamics

An introduction to nonadiabatic molecular dynamics

I. Motivation

II. Theory

III. Implementation

IV. Applications

- NV center dynamics

OUTLINE

Page 3: An introduction to nonadiabatic molecular dynamics

I. Background: What is nonadiabatic dynamics?

Adiabatic process Thermodynamics: A process occuring without transfer of heat or matter

between a system and its surroundings.

Quantum mechanics: In the quasi-static change of a parameter, the system stays in the same (eigen)state (no quantum transitions).

“A physical system remains in its instantaneous eigenstate if a

given perturbation is acting on it slowly enough and if there is a gap

between the eigenvalue and the rest of the Hamiltonian's spectrum”

-Born and Fock, 1928

• parameter = ? hν; R

• how slow? (relative to gap)

• the same state ? • approximation !

nonadiabatic

adiabatic

Page 4: An introduction to nonadiabatic molecular dynamics

Adiabatic process

Page 5: An introduction to nonadiabatic molecular dynamics

Nonadiabatic process

Page 6: An introduction to nonadiabatic molecular dynamics

• Excited states

• Metallic systems

• Transport

• Electron-phonon coupling

• Superconductivity

• Chemical reactions

• Conical intersection

• …

Nonadiabatic effects widely exist

Page 7: An introduction to nonadiabatic molecular dynamics

Courtesy: A. Rubio

George Wald, Nobel Prize 1967

Arieh Warshel, Nobel Prize 2013

Understanding vision

Page 8: An introduction to nonadiabatic molecular dynamics

A light-driven worm-like nanocar

Sasaki & Tour, Org. Lett (2008).

Page 9: An introduction to nonadiabatic molecular dynamics

Pisana et al., Nat. Mater. 6, 198 (2007).

Page 10: An introduction to nonadiabatic molecular dynamics

II. Theory: where the story really starts …

• Two-component quantum system: electrons + nuclei / ions

Ψ 𝑟, 𝑅, 𝑡 ≡ Φ𝑅 𝑟, 𝑡 𝜒 𝑅, 𝑡 ≅ Φ𝑅0(𝑡) 𝑟 𝛿 𝑅(𝑡) − 𝑅0(𝑡)

• Born-Oppenheimer (BO) approximation (classical & adiabatic):

Classical ion trajectory;

Coupled electron-ion dynamics is neglected.

• Consequence of BO approximation:

Non-adiabatic effects!

Ψ 𝑟, 𝑅, 𝑡 ≡ Φ𝑅 𝑟, 𝑡 𝜒 𝑅, 𝑡 ≅ Φ𝑅0(𝑡) 𝑟 , 𝑡 𝛿 𝑅(𝑡) − 𝑅0(𝑡)

Ψ 𝑟, 𝑅, 𝑡

Page 11: An introduction to nonadiabatic molecular dynamics

Full quantum dynamics

Page 12: An introduction to nonadiabatic molecular dynamics

Potential energy surface (PES)

(Born-Oppenheimer (BO) approximation) (Assuming )

Page 13: An introduction to nonadiabatic molecular dynamics

Born-Oppenheimer (BO) dynamics

(nonadiabatic couplings)

(BOMD/CPMD; AIMD)

(Born-Huang expansion)

Page 14: An introduction to nonadiabatic molecular dynamics

Nonadibatic dynamics:

Full quantum treatment

Nuclear-electronic orbitals (Quantum nuclei)

Hammes-Schiffer et al., JPCA 110, 9983 (2006); JPCL 9, 1765 (2018).

Wavefunction:

Hartree-Fock eq.:

• e-N correlation?

• many e, many N?

Page 15: An introduction to nonadiabatic molecular dynamics

Time dependent (TD)

Time-dependence: Exact factorization

Time independent /BO

EKU Gross et al. PRL (2010); PRL (2015).

Page 16: An introduction to nonadiabatic molecular dynamics

Nonadiabatic dynamics

(BO)PES

Nuclear wavefunction

EKU Gross et al. PRL (2010); PRL (2015).

Page 17: An introduction to nonadiabatic molecular dynamics

TD Potential Energy Surface (PES) of H2+

TDPES

(BO)PES

Wavefunction

Next goals: TD + DFT ?

EKU Gross et al. PRL (2010); PRL (2015).

Dashed: 1014 W/cm2

Solid: 2.5× 1014 W/cm2

Page 18: An introduction to nonadiabatic molecular dynamics

Semiclassical methods

1. Wavepacket propagation

Multi-configuration time-dependent Hartree (MCTDH) method

Advantages: Combines the efficiency of a mean-field

method with the accuracy of a numerically exact solution

Challenges: Global potential energy surfaces are required

HD Meyer et al., CPL 165, 73 (1990); H Wang, M Thoss, JCP119, 1289 (2003); GA Worth, I Burghardt, CPL 368, 502 (2003).

Quantum Dynamics of Multi-component Systems →

Page 19: An introduction to nonadiabatic molecular dynamics

Semiclassical methods

2. Time evolution of density matrix

Mixed quantum-classical Liouville approaches

Advantages: Describes well the dynamics of nonlinear quantum systems for

quite long time

Challenges: fails to describe quantum dynamics if a part of the Hamiltonian

does not preserve irreducible subspaces of the symmetry group

W. H. Miller, J. Chem. Phys. 53, 3578 (1970); P. Huo and D. F. Coker, J. Chem. Phys. 137, 22A535 (2012).

Page 20: An introduction to nonadiabatic molecular dynamics

Semiclassical methods

3. Trajectory-based approaches

• Mean-field Ehrenfest dynamics

• Trajectory surface hopping (TSH)

• Bohmian dynamics

• Wentzel–Kramers–Brillouin (WKB) approximation

• Dephasing representation (DR) framework

• Pechukas’ path integrals method

• …

Page 21: An introduction to nonadiabatic molecular dynamics

Ehrenfest Theorem ( ↔ Schrӧdinger equation )

Page 22: An introduction to nonadiabatic molecular dynamics

Ehrenfest Dynamics

Is this newton's second law?

No. Since 𝐹 ≠ 𝐹 𝑥 .

Page 23: An introduction to nonadiabatic molecular dynamics

Transition probability

a is the off-diagonal element

C Wittig, JPCB109, 8428 (2005); M Desouter-Lecomte, JC Lorquet, JCP 71,4391 (1979).

In diabats:

In adiabats:

H12

Page 24: An introduction to nonadiabatic molecular dynamics

XS Li, JCP123, 084106(2005).

Page 25: An introduction to nonadiabatic molecular dynamics

Trajectory Surface Hopping

Tully, JCP 93, 1061 (1990).

, a jump occurs: k → j

Page 26: An introduction to nonadiabatic molecular dynamics

Fewest Switch Surface Hopping

Page 27: An introduction to nonadiabatic molecular dynamics
Page 28: An introduction to nonadiabatic molecular dynamics

Detailed balance

Tully et al., JCTC 2, 229 (2006).

SH

Ehrenfest

Page 29: An introduction to nonadiabatic molecular dynamics

Comparison

Ehrenfest dynamics

Fewest Switch Surface Hopping

Tully, JCP (1991), JPCC(2009); Prezhdo et al. PRL (2005); ...

• Coherence

• Detailed balance?

• Final state?

)()( tVtF

• Detailed balance

• Decoherence?

• Frustrated hop?

Page 30: An introduction to nonadiabatic molecular dynamics

O3 dissociation

A special case: conical intersections (CI)

Baloitcha et al., JCP123, 014106 (2005).

Page 31: An introduction to nonadiabatic molecular dynamics

BG Levine, TJ Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).

Page 32: An introduction to nonadiabatic molecular dynamics

Ryabinkin et al. JCP 140, 214116 (2014).

Effect of Berry Geometry Phases (GP)

po

pu

latio

n

Page 33: An introduction to nonadiabatic molecular dynamics

Ehrenfest dynamics: From DFT to TDDFT

)...,,,( 21 Nrrr

N

j

jN rdrrrr2

2

2 ),...,,()(

)()(]['

)'(')(

2

22

rErVrr

rdrrV

miiixcexternal

Theorem II.

Theorem I. )...,,,( 21 Nrrr

)(r

Time-dependent density functional theory (TDDFT) (Runge-Gross, 1984)

Density functional theory (DFT) and single-particle approximation (Kohn-Sham, 1965)

E Rouge & EKU Gross, PRL 52, 997 (1984).

III. Implementation

Page 34: An introduction to nonadiabatic molecular dynamics

“Electron-nuclear” density functional theory

j

tot j j

( , , t), , t ( , , t)

J

J J

r Ri H r R r R

t

2 2 22 2

,

1 1

2 2 2 2

, ,

JI

tot j J

j J i j I J I Ji j

Jext j J

j J j J

Z ZeH

m m R Rr r

eZU r R t

r R

ext xc

, r ,, , ,I I

s

I

Z R t tv r t v r t dR dr v r t

r R r r

ext xc

, ,, , ,J J JI I

s J J J

I

r t Z R tV R t V R t Z dr Z dR V R t

R r R R

Ψ 𝑟, 𝑅, 𝑡 ≡ Φ𝑅 𝑟, 𝑡 𝜒 𝑅, 𝑡 ≅ Φ𝑅0(𝑡) 𝑟 , 𝑡 𝛿 𝑅(𝑡) − 𝑅0(𝑡)

Meng & Kaxiras, JCP (2008).

Page 35: An introduction to nonadiabatic molecular dynamics

Coupled electron-ion dynamics Beyond Born-Oppenheimer

Gross 1984’

A new implementation:

• Real time (nonlinear, dynamics)

• Local bases: numeric atomic orbitals

• Paralleling over Kohn-Sham orbitals

• External field, spin excitation, large scale,…

Ehrenfest dynamics combined with (TD)DFT

Time-dependent density functional theory (TDDFT)

Time-Dependent

Ab-initio Package

Page 36: An introduction to nonadiabatic molecular dynamics

Crank-Nicholson propagator

Propagating wavefunctions

Page 37: An introduction to nonadiabatic molecular dynamics

Taylor polynomial

Splitting techniques

Other propagators

Castro et al. JCP 121, 3425(2004).

Page 38: An introduction to nonadiabatic molecular dynamics

rc

r0

pseudopotential + numerical atomic orbitals

0 20 40 6010

1

102

103

104

Our method

Real space grid

Com

pute

r T

ime (

s)

Number of Valence Electrons

101

102

MQPyrazineO3

COH2

Mem

ory

(M

B)

C. Lian, M.X. Guan, S.Q. Hu, J. Zhang, S. Meng, Adv. Theo. Simul. (2018).

W. Ma, J. Zhang,…, S. Meng, Comp. Mater. Sci. 112, 478 (2016).

Computational efficiency

timestep 1 as → 24 as ~50 as

Page 39: An introduction to nonadiabatic molecular dynamics

Quantum dynamics with real time TDDFT

with rt-TDDFT

• fixed ions : pure electron dynamics (one-component)

photoabsorption; nonlinear optics; transport…

• coupled e-ion dynamics:

e-phonon coupling; strong laser field; photo reactions…

• DFT-MD → Ab initio MD

ion dynamics driven by DFT forces (PES)

Page 40: An introduction to nonadiabatic molecular dynamics

Current challenges

blocking wide use of TDDFT • Lack of non-adiabatic fXC(ω)

• Charge transfer excitation: nonlocal exchange

• Double excitation; Rydberg states

• Tiny timestep ~ 1 as;

• Inefficient propagation: stability; convergence

• Heavy computation: 103× heavier than AIMD; 106× than static DFT

• How to prepare physically-sound initial states?

• Calculation of time-dependent properties ?

• Beyond Ehrenfest dynamics ?

• Open systems ? …

Page 41: An introduction to nonadiabatic molecular dynamics

Implementing Trajectory Surface Hopping

NA AD

Prezhdo et al.

Page 42: An introduction to nonadiabatic molecular dynamics

H2

IV. Application: some examples

Page 43: An introduction to nonadiabatic molecular dynamics

O3

Page 44: An introduction to nonadiabatic molecular dynamics

Photodynamics in a molecule

Clouds = e density in excited state

Meng & Kaxiras, Biophys. J. 95,4396 (2008). Meng & Kaxiras, Biophys. J. 94, 2095 (2008). Kaxiras, Tsolakidis, Zonios, Meng, Phys. Rev. Lett. (2006).

e-proton concerted dynamics

Page 45: An introduction to nonadiabatic molecular dynamics
Page 46: An introduction to nonadiabatic molecular dynamics

Femtosecond dynamics of ion-molecule collision

Burnus et al. PRA 71, R10501 (2005).

Page 47: An introduction to nonadiabatic molecular dynamics

-2

0

2

1

2

3

0 10 20 30 40

1

2

3

ћeV

E (

V/Å

)

O15

H29

O49

H98

dO

H (

Å)

dO

H (

Å)

Without Au20

t (fs)

E

Water Photosplitting Dynamics

Yan et al., ACS Nano 10, 5452(2016);J. Phys. Chem. Lett. 9, 63 (2018).

Page 48: An introduction to nonadiabatic molecular dynamics

Ultrafast evolution of water orbitals

Page 49: An introduction to nonadiabatic molecular dynamics

Occupation changes of KS orbitals

Red : Increase

Blue: Decrease

Page 50: An introduction to nonadiabatic molecular dynamics

Generation of H2 “bubles”

Page 51: An introduction to nonadiabatic molecular dynamics

“Chain reaction” mechanism

Yan et al., ACS Nano 10, 5452(2016);J. Phys. Chem. Lett. 9, 63 (2018).

Page 52: An introduction to nonadiabatic molecular dynamics

An introduction to nonadiabatic molecular dynamics

I. Motivation

II. Theory

III. Implementation

IV. Applications

- NV center dynamics

OUTLINE

Page 53: An introduction to nonadiabatic molecular dynamics

Prof. E.G. Wang (PKU/CAS)

Prof. Efthimios Kaxiras (Harvard)

Prof. Z.Y. Zhang (USTC)

Prof. S.W. Gao (CSRC)

Prof. S.B. Zhang (RPI)

Prof. X.C. Zeng (UNL)

Prof. G. Lu (CSUN)

Prof. X.F. Guo (PKU)

Prof. F. W. Wang (IOP-CAS)

Prof. X.H Lu (IOP-CAS)

Prof. K.H. Wu (IOP-CAS)

Prof. X.Z. Li (PKU)

Dr. Junyeok Bang (RPI)

Prof. Maria Fyta (Stuttgart)

Prof. Tomas Frauenheim (Bremen)

Funding:

Collaborators:

http://everest.iphy.ac.cn [email protected]

Chao Lian

Lei Yan

Jin Zhang

Hang Liu

Jiyu Xu

Mengxue Guan

Shiqi Hu

Peiwei You

...

Dr. Jiatao Sun

Team members:

Page 54: An introduction to nonadiabatic molecular dynamics

THANK YOU