17
Mathematical Surveys and Monographs Volume 191 American Mathematical Society An Introduction to Central Simple Algebras and Their Applications to Wireless Communication Grégory Berhuy Frédérique Oggier

An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Mathematical Surveys

and Monographs

Volume 191

American Mathematical Society

An Introduction to Central Simple Algebras and Their Applications to Wireless Communication

Grégory Berhuy Frédérique Oggier

Page 2: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

An Introduction to Central Simple Algebras and Their Applications to Wireless Communication

http://dx.doi.org/10.1090/surv/191

Page 3: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique
Page 4: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Mathematical Surveys

and Monographs

Volume 191

An Introduction to Central Simple Algebras and Their Applications to Wireless Communication

Grégory Berhuy Frédérique Oggier

American Mathematical SocietyProvidence, Rhode Island

Page 5: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

EDITORIAL COMMITTEE

Ralph L. Cohen, ChairRobert GuralnickMichael A. Singer

Benjamin SudakovMichael I. Weinstein

2010 Mathematics Subject Classification. Primary 12E15; Secondary 11T71, 16W10.

For additional information and updates on this book, visitwww.ams.org/bookpages/surv-191

Library of Congress Cataloging-in-Publication Data

Berhuy, Gregory.An introduction to central simple algebras and their applications to wireless communications

/ Gregory Berhuy, Frederique Oggier.pages cm. – (Mathematical surveys and monographs ; volume 191)

Includes bibliographical references and index.ISBN 978-0-8218-4937-8 (alk. paper)1. Division algebras. 2. Skew fields. I. Oggier, Frederique. II. Title.

QA247.45.B47 2013512′.3–dc23 2013009629

Copying and reprinting. Individual readers of this publication, and nonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy a chapter for usein teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Requests for suchpermission should be addressed to the Acquisitions Department, American Mathematical Society,201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made bye-mail to [email protected].

c© 2013 by the American Mathematical Society. All rights reserved.The American Mathematical Society retains all rightsexcept those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13

Page 6: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter I. Central simple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3I.1. Preliminaries on k-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3I.2. Central simple algebras: the basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7I.3. Introducing space-time coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter II. Quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21II.1. Properties of quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21II.2. Hamilton quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27II.3. Quaternion algebras based codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter III. Fundamental results on central simple algebras. . . . . . . . . . . . . . . . . 31III.1. Operations on central simple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31III.2. Simple modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35III.3. Skolem-Noether’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43III.4. Wedderburn’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45III.5. The centralizer theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter IV. Splitting fields of central simple algebras . . . . . . . . . . . . . . . . . . . . . . . 53IV.1. Splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53IV.2. The reduced characteristic polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60IV.3. The minimum determinant of a code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter V. The Brauer group of a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79V.1. Definition of the Brauer group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79V.2. Brauer equivalence and bimodules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82V.3. Index and exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter VI. Crossed products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101VI.1. Definition of crossed products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101VI.2. Some properties of crossed products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108VI.3. Shaping and crossed products based codes. . . . . . . . . . . . . . . . . . . . . . . . . . 118Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

v

Page 7: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

vi CONTENTS

Chapter VII. Cyclic algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129VII.1. Cyclic algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129VII.2. Central simple algebras over local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 137VII.3. Central simple algebras over number fields. . . . . . . . . . . . . . . . . . . . . . . . . 139VII.4. Cyclic algebras of prime degree over number fields . . . . . . . . . . . . . . . . . 141VII.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144VII.6. Cyclic algebras and perfect codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150VII.7. Optimality of some perfect codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter VIII. Central simple algebras of degree 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 165VIII.1. A theorem of Albert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165VIII.2. Structure of central simple algebras of degree 4 . . . . . . . . . . . . . . . . . . . 168VIII.3. Albert’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176VIII.4. Codes over biquadratic crossed products . . . . . . . . . . . . . . . . . . . . . . . . . . 178Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter IX. Central simple algebras with unitary involutions . . . . . . . . . . . . . . . 189IX.1. Basic concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189IX.2. The corestriction algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191IX.3. Existence of unitary involutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198IX.4. Unitary involutions on crossed products. . . . . . . . . . . . . . . . . . . . . . . . . . . 203IX.5. Unitary space-time coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Appendix A. Tensor products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231A.1. Tensor product of vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231A.2. Basic properties of the tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235A.3. Tensor product of k-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Appendix B. A glimpse of number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249B.1. Absolute values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249B.2. Factorization of ideals in number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253B.3. Absolute values on number fields and completion . . . . . . . . . . . . . . . . . . . . 262

Appendix C. Complex ideal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265C.1. Generalities on hermitian lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265C.2. Complex ideal lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Page 8: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Foreword

Mathematics continually surprises and delights us with how useful its most abstractbranches turn out to be in the real world. Indeed, physicist Eugene Wigner’s mem-orable phrase1 “The unreasonable effectiveness of mathematics” captures a criticalaspect of this utility. Abstract mathematical ideas often prove to be useful in rather“unreasonable” situations: places where one, a priori, would not expect them at all!For instance, no one who was not actually following the theoretical explorations inmulti-antenna wireless communication of the late 1990s would have predicted thatdivision algebras would turn out to be vital in the deployment of multi-antennacommunication. Yet, once performance criteria for space-time codes (as codingschemes for multi-antenna environments are called) were developed and phrased asa problem of design of matrices, it was completely natural that division algebrasshould arise as a solution of the design problem. The fundamental performancecriterion ask for n× n matrices Mi such that the difference of any two of the Mi isof full rank. To anyone who has worked with division algebras, the solution simplyleaps out: any division algebra of index n embeds into the n × n matrices over asuitable field, and the matrices arising from the embedding naturally satisfy thiscriterion.

But there is more. Not only did division algebras turn out to be the most naturalcontext in which to solve the fundamental design problem above, they also proved tobe the correct objects to satisfy various other performance criteria that were devel-oped. For instance, a second, and critical, performance criterion called the codinggain criterion turned out to be naturally satisfied by considering division algebrasover number fields and using natural Z-orders within them that arise from ringsof integers of maximal subfields. Other criteria (for instance “DMG optimality,”“good shaping,” “information-losslessness” to name just a few) all turned out to besatisfied by considering suitable orders inside suitable division algebras over numberfields. Indeed, this exemplifies another phenomenon Wigner describes: after sayingthat “mathematical concepts turn up in entirely unexpected connections,” he goeson to say that “they often permit an unexpectedly close and accurate descriptionof the phenomena in these connections.” The match between division algebras andthe requirement of space-time codes is simply uncanny.

The subject of multi-antenna communication has several unsolved mathematicalproblems still, for instance, in the area of decoding for large numbers of antennas.Nevertheless, division algebras are already being deployed for practical two-antenna

1Eugene P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,Comm. Pure Appl. Math., 13 Feb. 1960, 1–14

vii

Page 9: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

viii FOREWORD

systems, and codes based on them are now part of various standards of the Insti-tute of Electrical and Electronics Engineers (IEEE). It would behoove a studentof mathematics, therefore, to know something about the applicability of divisionalgebras while studying their theory; in parallel, it is vital for a communicationsengineer working in coding for multiple-antenna wireless to know something aboutdivision algebras.

Berhuy and Oggier have written a charming text on division algebras and their ap-plication to multiple-antenna wireless communication. There is a wealth of exam-ples here, particularly over number fields and local fields, with explicit calculations,that one does not see in other texts on the subject. By pairing almost every chapterwith a discussion of issues from wireless communication, the authors have given avery concrete flavor to the subject of division algebras. The book can be studiedprofitably not just by a graduate student in mathematics, but also by a mathe-matically sophisticated coding theorist. I suspect therefore that this book will findwide acceptability in both the mathematics and the space-time coding communityand will help cross-communication between the two. I applaud the authors’ effortsbehind this very enjoyable book.

B.A. Sethuraman

Northridge, California

Page 10: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Bibliography

1. S.M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J.Selected Areas Communications 16 (1998), 1451–1458.

2. A.A. Albert, Structure of Algebras, A.M.S. Coll.Pub., vol. 24, AMS, 1939.3. S.A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), no. 4, 408–420.4. E. Bayer-Fluckiger, F. Oggier, and E. Viterbo, New algebraic constructions of rotated

Zn–lattice constellations for the Rayleigh fading channel, IEEE Transactions on InformationTheory 50 (2004), no. 4.

5. J.-C. Belfiore and G. Rekaya, Quaternionic lattices for space-time coding, Proceedings ofIEEE Information Theory Workshop (ITW), Paris (2003).

6. J.-C. Belfiore, G. Rekaya, and E. Viterbo, The Golden code: A 2× 2 full rate space-time codewith non vanishing determinants, IEEE Trans. on Inf. Theory 51 (2005), no. 4.

7. G. Berhuy, Algebraic space-time codes based on division algebras with a unitary involution,(2012), Preprint. Available from http://www-fourier.ujf-grenoble.fr/~berhuy/fichiers/

unitarycodes.pdf.

8. G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4, Pro-ceedings of Applied algebra, algebraic algorithms and error-correcting codes, Lecture Notesin Comput. Sci 4851 (2007), 90–99.

9. , On the existence of perfect space-time codes, IEEE Transactions on InformationTheory 55 (2009), no. 5, 2078–2082.

10. G. Berhuy and R. Slessor, Optimality of codes based on crossed product alge-bras, (2011), Preprint. Available from http://www-fourier.ujf-grenoble.fr/~berhuy/

Berhuy-Slessor-2209.pdf.11. J.W.S. Cassels and A. Frolich, Algebraic number theory, Acad. Press, 1967.12. M. O. Damen, A. Tewfik, and J.-C. Belfiore, A construction of a space-time code based on

number theory, IEEE Transactions on Information Theory 48 (2002), no. 3.13. P. Elia, B.A. Sethuraman, and P. V. Kumar, Perfect space-time codes for any number of

antennas, IEEE Transactions on Information Theory 53 (2007).14. Jr. G. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, Efficient modulation for

band-limited channels, IEEE Journal on Selected Areas in Communications 2 (1984), no. 5,632–647.

15. A. Frohlich and M. Taylor, Algebraic number theory, Cambridge University Press, 1991.16. P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies

in Advanced Mathematics, vol. 101, Cambridge University Press, 2006.17. D. Haile, A useful proposition for division algebras of small degree, Proc. Amer. Math. Soc.

106 (1989), no. 2, 317–319.18. T. Hanke, A twisted Laurent series ring that is a noncrossed product, Israel J. Math. 150

(2005).

19. B. Hassibi and B. Hochwald, Cayley differential unitary space-time codes, IEEE Trans. onInformation Theory 48 (2002).

20. J. Hiltunen, C. Hollanti, and J. Lahtonen, Dense full-diversity matrix lattices for four trans-mit antenna MISO channel, Proceedings of IEEE International Symposium on InformationTheory (ISIT) (2005).

21. B. Hochwald and W. Sweldens, Differential unitary space time modulation, IEEE Trans.Commun. 48 (2000).

22. J. G. Huard, B. K. Spearman, and K. S. Williams, Integral bases for quartic fields withquadratic subfields, J. Number Theory 51 (1995), no. 1, 87–102. MR1321725 (96a:11115)

23. B. Hughes, Differential space-time modulation, IEEE Trans. Inform. Theory 46 (2000).

271

Page 11: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

272 BIBLIOGRAPHY

24. K. Iyanaga, Class numbers of definite hermitian forms, J. Math. Soc. Japan 21 (1969).25. N. Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996.26. G. J. Janusz, Algebraic number fields, second ed., Graduate Studies in Mathematics, vol. 7,

American Mathematical Society, Providence, RI, 1996.27. S. Karmakar and B Sundar Rajan, High-rate, multi-symbol-decodable STBCs from Clifford

algebras, IEEE Transactions on Information Theory 55 (2009), no. 6.28. A. W. Knapp, Advanced algebra, Cornerstones, Birkhauser Boston Inc., Boston, MA, 2007,

Along with a companion volume ıt Basic algebra.29. M.A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Amer. Math.

Soc. Coll. Pub., vol. 44, A.M.S, 1998.30. H. Koch, Algebraic number theory, Springer-Verlag,Berlin, 1997.31. , Number theory: algebraic numbers and functions, Graduate Studies in Mathematics,

vol. 24, A.M.S, 2000.32. J. Lahtonen, N. Markin, and G. McGuire, Construction of space-time codes from division

algebras with roots of unity as non-norm elements, IEEE Trans. on Information Theory 54(2008), no. 11.

33. F. Oggier, On the optimality of the Golden code, IEEE Information Theory Workshop(ITW’06) (2006).

34. , Cyclic algebras for noncoherent differential space-time coding, IEEE Transactions onInformation Theory 53 (9) (2007), 3053–3065.

35. , A survey of algebraic unitary codes, International Workshop on Coding and Cryp-tology 5757 (2009), 171–187.

36. F. Oggier, J.-C. Belfiore, and Viterbo E., Cyclic division algebras: A tool for space-timecoding, Now Publishers Inc., Hanover, MA, USA, 2007.

37. F. Oggier and B. Hassibi, “an algebraic family of distributed space-time codes for wirelessrelay networks, Proceedings of IEEE International Symposium on Information Theory (ISIT)(2006).

38. , Algebraic cayley differential space-time codes, IEEE Transactions on InformationTheory 53 (2007), no. 5.

39. F. Oggier and L. Lequeu, Families of unitary matrices achieving full diversity, International

Symposium on Information Theory (2005), 1173–1177.40. F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, Perfect space-time block codes, IEEE

Trans. Inform. Theory 52 (2006), no. 9.41. R.S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag,

New York-Berlin, 1982.42. S. Pumpluen and T. Unger, Space-time block codes from nonassociative division algebras,

Advances in Mathematics of Communications 5 (2011), no. 3.43. P. Ribenboim, Classical theory of algebraic numbers, Universitext, Springer, 2001.44. J.-P. Serre, Corps locaux (4eme edition), Hermann, 1997.45. B. A. Sethuraman, Division algebras and wireless communication, Notices of the AMS 57

(2010), no. 11.46. B.A. Sethuraman and B. Sundar Rajan, An algebraic description of orthogonal designs and

the uniqueness of the Alamouti code, Proceedings of GlobCom (2002).47. , STBC from field extensions of the rational field, Proceedings of IEEE International

Symposium on Information Theory (ISIT), Lausanne (2002).48. B.A. Sethuraman, B. Sundar Rajan, and V. Shashidhar, Full-diversity, high-rate space-time

block codes from division algebras, IEEE Transactions on Information Theory 49 (2003).49. A. Shokrollahi, B. Hassibi, B.M. Hochwald, and W. Sweldens, Representation theory for high-

rate multiple-antenna code design, IEEE Trans. Information Theory 47 (2001), no. 6.50. R. Slessor, Performance of codes based on crossed product algebras, Ph.D. thesis, School

of Mathematics, Univ. of Southampton, May 2011 note = Available from http://

eprints.soton.ac.uk/197309/3.hasCoversheetVersion/Thesis_--_Richard_Slessor.pdf,

OPTannote = annote, 2011.51. H. P. F. Swinnerton-Dyer, A brief guide to algebraic number theory, Cambridge University

Press, 2001.52. V. Tarokh, N. Seshadri, and A. Calderbank, Space-time codes for high data rate wireless

communication : Performance criterion and code construction, IEEE Trans. Inform. Theory44 (1998), 744–765.

Page 12: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

BIBLIOGRAPHY 273

53. The PARI Group, Bordeaux, PARI/GP, version 2.3.3, 2005, available from http://pari.

math.u-bordeaux.fr/.54. J.-P. Tignol, Produits croises abeliens, J.of Algebra 70 (1981).55. T. Unger and N. Markin, Quadratic forms and space-time block codes from generalized quater-

nion and biquaternion algebras, IEEE Trans. on Information Theory 57 (2011), no. 9.56. R. Vehkalahti, C. Hollanti, J. Lahtonen, and K. Ranto, On the densest MIMO lattices from

cyclic division algebras, IEEE Transactions on Information Theory 55 (2009), no. 8.

57. S. Vummintala, B. Sundar Rajan, and B.A. Sethuraman, Information-lossless space-time blockcodes from crossed-product algebras, IEEE Trans. Inform. Theory 52 (2006), no. 9.

58. H. Yao and G.W. Wornell, Achieving the full MIMO diversity-multiplexing frontier withrotation-based space-time codes, Proceedings of Allerton Conf. on Communication, Controland Computing (2003).

Page 13: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique
Page 14: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Index

k-algebra

center of a, 4central, 8definition, 3morphism, 3

quaternion, 8simple, 7split, 9

absolute discriminant, 259absolute value

p-adic, 262

archimedean, 249definition, 249discrete, 250equivalence, 249

extension, 251non-archimedean, 249

absolutevalue

extensiontotally ramified, 251ramification index, 251ramified, 251

residual degree, 251unramified, 251

bimodule, 82

Brauer equivalence, 46Brauer group, 81

relative, 82

canonical involution, 228centralizer, 31coboundary, 113cocycle, 104

codebook, 13coding gain, 14coherence interval, 12

coherent, 13cohomologous cocycles, 113corestriction, 195

crossed product, 107cyclic algebra, 130

decomposition group, 261

degree, 46

different ideal, 259differential modulation, 209discriminant ideal, 259

diversity, 14

elementary tensor, 233exponent, 95

fading matrix, 11Frobenius map, 253

fully diverse code, 14

Goldman element, 86

Hasse symbol, 138

ideal (ramification)inert, 255

ramification index, 255ramified, 255

tamely ramified, 255totally ramified, 255totally split, 255

unramified, 255wildly ramified, 255

index, 46

information symbol, 12inner automorphism, 43involution

definition of an, 189of the first kind, 189of the second kind, 189

local parameter, 251

MIMO, 11

moduledefinition, 35finitely generated, 36

free, 37morphism, 36rank, 41

non-coherent, 209norm of an ideal

275

Page 15: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

276 INDEX

absolute norm, 258relative norm, 258

number field, 253

opposite algebra, 34

place, 249complex, 262finite, 262real, 262

prime idealsresidual degree, 255

ramification groups, 261rate, 14, 17reduced characteristic polynomial, 63reduced norm, 66

reduced trace, 66residue field, 250restriction map, 82ring of integers, 253

Sandwich morphism, 35semilinear map, 191simple

module, 39SNR, 13space-time codes, 13splitting field, 53subalgebra

definition, 3subfield, 9submodule, 36

tensor productof algebras, 5, 243of vector spaces, 231

trace form, 76

valuation ring, 250

Page 16: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

Selected Published Titles in This Series

191 Gregory Berhuy and Frederique Oggier, An Introduction to Central Simple Algebrasand Their Applications to Wireless Communication, 2013

187 Nassif Ghoussoub and Amir Moradifam, Functional Inequalities: New Perspectivesand New Applications, 2013

186 Gregory Berkolaiko and Peter Kuchment, Introduction to Quantum Graphs, 2013

185 Patrick Iglesias-Zemmour, Diffeology, 2013

184 Frederick W. Gehring and Kari Hag, The Ubiquitous Quasidisk, 2012

183 Gershon Kresin and Vladimir Maz’ya, Maximum Principles and Sharp Constants forSolutions of Elliptic and Parabolic Systems, 2012

182 Neil A. Watson, Introduction to Heat Potential Theory, 2012

181 Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay Representations, 2012

180 Martin W. Liebeck and Gary M. Seitz, Unipotent and Nilpotent Classes in SimpleAlgebraic Groups and Lie Algebras, 2012

179 Stephen D. Smith, Subgroup complexes, 2011

178 Helmut Brass and Knut Petras, Quadrature Theory, 2011

177 Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov,Non-commutative Cryptography and Complexity of Group-theoretic Problems, 2011

176 Peter E. Kloeden and Martin Rasmussen, Nonautonomous Dynamical Systems, 2011

175 Warwick de Launey and Dane Flannery, Algebraic Design Theory, 2011

174 Lawrence S. Levy and J. Chris Robson, Hereditary Noetherian Prime Rings andIdealizers, 2011

173 Sariel Har-Peled, Geometric Approximation Algorithms, 2011

172 Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald Solomon,The Classification of Finite Simple Groups, 2011

171 Leonid Pastur and Mariya Shcherbina, Eigenvalue Distribution of Large RandomMatrices, 2011

170 Kevin Costello, Renormalization and Effective Field Theory, 2011

169 Robert R. Bruner and J. P. C. Greenlees, Connective Real K-Theory of FiniteGroups, 2010

168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kirichenko, Algebras, Ringsand Modules, 2010

167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster Algebras andPoisson Geometry, 2010

166 Kyung Bai Lee and Frank Raymond, Seifert Fiberings, 2010

165 Fuensanta Andreu-Vaillo, Jose M. Mazon, Julio D. Rossi, and J. JulianToledo-Melero, Nonlocal Diffusion Problems, 2010

164 Vladimir I. Bogachev, Differentiable Measures and the Malliavin Calculus, 2010

163 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James

Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci Flow:Techniques and Applications: Part III: Geometric-Analytic Aspects, 2010

162 Vladimir Maz′ya and Jurgen Rossmann, Elliptic Equations in Polyhedral Domains,2010

161 Kanishka Perera, Ravi P. Agarwal, and Donal O’Regan, Morse Theoretic Aspectsof p-Laplacian Type Operators, 2010

160 Alexander S. Kechris, Global Aspects of Ergodic Group Actions, 2010

159 Matthew Baker and Robert Rumely, Potential Theory and Dynamics on theBerkovich Projective Line, 2010

For a complete list of titles in this series, visit theAMS Bookstore at www.ams.org/bookstore/survseries/.

Page 17: An Introduction to Central Simple Algebras and Their ...An introduction to central simple algebras and their applications to wireless communications /Gr´egory Berhuy, Fr´ed´erique

SURV/191

Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory.

Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wire-less communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory.

Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations.

This book provides an introduction to the theory of central algebras accessible to graduate students, while also presenting topics in coding theory for wireless commu-nication for a mathematical audience. It is also suitable for coding theorists interested in learning how division algebras may be useful for coding in wireless communication.

www.ams.orgAMS on the Web

For additional information and updates on this book, visit

www.ams.org/bookpages/surv-191

Phot

ogra

ph c

ourt

esy

of G

régo

ry B

erhu

y

Phot

ogra

ph c

ourt

esy

of A

. Dat

ta