Click here to load reader
View
1
Download
0
Embed Size (px)
i
An Electrochemical and Spectroscopic Investigation of Nickel
Electrodes in Alkaline Media for Applications in Electro-Catalysis
David S. Hall
Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements
For the PhD degree in Chemistry
Department of Chemistry
Faculty of Science
University of Ottawa
© David Hall, Ottawa, Canada, 2014
ii
Abstract
Nickel-based catalysts in aqueous alkaline media are low-cost electrode materials for
electrolytic hydrogen generation, a renewable method of producing fuel and industrial feedstock.
However, further work is necessary to develop inexpensive electro-catalyst materials with high
activity and long-term stability. This thesis employs spectroscopic and electrochemical methods
to directly address specific research problems for the development of improved materials and
devices with commercial or industrial value. The first chapter reviews the applications of nickel
electrodes; the structures of nickel, nickel hydroxides, and nickel hydrides; and techniques for
measuring the electrochemically active surface area (AECSA) of nickel. In the second chapter,
electrochemically precipitated nickel hydroxide materials are fully characterized by Raman
spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron
spectroscopy (XPS), and X-ray diffraction (XRD). This work unifies and simplifies the large
body of literature on the topic by considering two fundamental phases, α- and β-Ni(OH)2, and
various types and extents of structural disorder. The third chapter examines and demonstrates the
potential applications of in situ Raman spectroscopy by monitoring the spontaneous ageing of α-
Ni(OH)2 to β-Ni(OH)2 in pure water at room temperature. The fourth chapter considers the
longstanding problem of electrode deactivation, the gradual decrease in nickel electro-catalyst
activity during prolonged hydrogen production. Voltammetric and XRD evidence demonstrates
that hydrogen atoms can incorporate into the electrode material and cause structural disorder or
the formation of α-NiHx and β-NiHx at the surface. The voltammetric formation of NiOx, α-
Ni(OH)2, β-Ni(OH)2, and β-NiOOH surface species are examined by electrochemical and XPS
measurements. The fifth chapter of this thesis presents a new method to measure the AECSA of
iii
nickel, in situ, by the addition of an oxalate salt to the alkaline electrolyte. Oxalate adsorbs onto
the (001) surface of the surface Ni(OH)2, as evidenced by voltammetric and attenuated total
reflectance (ATR) FT-IR spectroscopy measurements. The adsorbed oxalate limits the surface
hydroxide to a single layer. The surface NiOOH/Ni(OH)2 reduction peak during the reverse scan
may be used to accurately and precisely measure the AECSA. The error of this method is estimated
at < 10 %.
iv
Table of Contents
Abstract ........................................................................................................................................... ii
Acknowledgements ....................................................................................................................... vii
Table of Tables .............................................................................................................................. ix
Table of Figures ............................................................................................................................. xi
List of Abbreviations .................................................................................................................... xv
1. General Introduction .............................................................................................................. 1
1.1. Nickel Electrodes and Applications in Electro-catalysis ........................................ 2
1.2. Electrode Materials ................................................................................................. 3
1.2.1. Nickel ............................................................................................................. 3
1.2.2. Nickel Hydroxides.......................................................................................... 5
1.2.1. Nickel Hydrides............................................................................................ 21
1.3. Electrochemically Active Surface Area (AECSA) Measurements .......................... 24
1.4. Thesis Objectives .................................................................................................. 27
2. Raman and Infrared Spectroscopy of α and β Phases of Nickel Hydroxide ....................... 29
2.1. Introduction ........................................................................................................... 30
2.2. Experimental Methods .......................................................................................... 31
2.2.1. Material Preparation ..................................................................................... 31
2.2.2. X-Ray Diffraction (XRD) ............................................................................ 33
2.2.3. X-Ray Photoelectron Spectroscopy (XPS) .................................................. 33
2.2.4. Raman Spectroscopy .................................................................................... 34
2.2.5. Fourier Transform Infrared (FT-IR) Spectroscopy ...................................... 36
2.3. Results and Discussion .......................................................................................... 36
2.3.1. X-Ray Diffraction Patterns........................................................................... 36
2.3.2. X-Ray Photoelectron Spectra ....................................................................... 39
2.3.3. Raman Spectra.............................................................................................. 41
2.3.4. Infrared Spectra ............................................................................................ 43
2.3.5. Vibrational Modes of β-Ni(OH)2 ................................................................. 45
2.3.6. Vibrational Modes of α-Ni(OH)2 ................................................................. 61
v
2.3.7. Nitrate Bands ................................................................................................ 70
2.3.8. Sulfate Bands................................................................................................ 71
2.3.9. Fluorescence ................................................................................................. 72
2.3.10. Disorder ........................................................................................................ 73
2.4. Conclusions ........................................................................................................... 74
3. Applications of In Situ Raman Spectroscopy for Identifying Nickel Hydroxide Materials
and Surface Layers During Chemical Aging ....................................................................... 76
3.1. Introduction ........................................................................................................... 77
3.2. Methods ................................................................................................................. 77
3.2.1. Material Preparation ..................................................................................... 77
3.2.2. Raman Spectroscopy .................................................................................... 78
3.2.3. α-Ni(OH)2 Film Aging ................................................................................. 79
3.3. Results and Discussion .......................................................................................... 79
3.3.1. Raman Spectroscopy of Ni(OH)2 Films Immersed in Water ....................... 79
3.3.2. In Situ Raman Spectroscopy of Film Aging in Room Temperature Water . 89
3.4. Conclusions ......................................................................................................... 101
4. Electrochemistry of Metallic Nickel in Alkaline Media ................................................... 103
4.1. Introduction ......................................................................................................... 104
4.2. Experimental Methods ........................................................................................ 105
4.2.1. Electrode Preparation ................................................................................. 105
4.2.2. Electrochemical Experiments ..................................................................... 106
4.2.3. X-ray Diffraction (XRD) ............................................................................ 107
4.2.4. X-ray Photoelectron Spectroscopy (XPS) .................................................. 107
4.3. Results and Discussion ........................................................................................ 107