24
Capitolo 4 Amplificatori di Potenza 4.1 Introduzione La progettazione d’amplificatori di potenza riveste un ruolo importante nella realiz- zazione di sistemi a microonde, soprattutto per applicazioni nel campo delle telecomu- nicazioni, sia terrestri sia satellitari, ove continui sviluppi della tecnologia a stato soli- do hanno portato alla realizzazione di trasmettitori sempre più piccoli, con conseguenti riduzioni di peso e costo, ma con requisiti più stringenti. Le specifiche di progetto principalmente richieste allo stadio di potenza, riguardano la riduzione del consumo di potenza e dei livelli di tensione necessari alla loro alimen- tazione, garantendo però sia un livello di potenza d’uscita che caratteristiche di linear- ità accettabili, secondo il tipo d’impiego cui sono destinati. Per esempio, nei sistemi di telefonia cellulare, l’amplificatore di potenza consuma una porzione significativa della potenza totale in continua preventivata, per cui s’intuisce la rilevanza dell’efficienza di conversione, che si traduce essenzialmente in una riduzione delle dimensioni e del peso sia del sistema di alimentazione in continua (esempio batterie), sia degli scam- biatori di calore (heat-sinks), necessari appunto allo smaltimento del calore prodotto dalla potenza dissipata sul dispositivo attivo stesso, e quindi in una riduzione delle dimensione e del peso dell’intera unità. Risulta allora evidente la necessità di metodologie di progetto per amplificatori di potenza a microonde ad elevata efficienza di conversione. E’ ben noto, infatti, che alte efficienze possono essere ottenute attraverso un’opportuna scelta del dispositivo, del 62

Amplificatori di Potenza - uniroma2.it · 4.2 Parametri di interesse nella progettazione di amplifica-tori di potenza a microonde La struttura di un amplificatore di potenza a

Embed Size (px)

Citation preview

Capitolo 4

Amplificatori di Potenza

4.1 Introduzione

La progettazione d’amplificatori di potenza riveste un ruolo importante nella realiz-

zazione di sistemi a microonde, soprattutto per applicazioni nel campo delle telecomu-

nicazioni, sia terrestri sia satellitari, ove continui sviluppi della tecnologia a stato soli-

do hanno portato alla realizzazione di trasmettitori sempre più piccoli, con conseguenti

riduzioni di peso e costo, ma con requisiti più stringenti.

Le specifiche di progetto principalmente richieste allo stadio di potenza, riguardano

la riduzione del consumo di potenza e dei livelli di tensione necessari alla loro alimen-

tazione, garantendo però sia un livello di potenza d’uscita che caratteristiche di linear-

ità accettabili, secondo il tipo d’impiego cui sono destinati. Per esempio, nei sistemi di

telefonia cellulare, l’amplificatore di potenza consuma una porzione significativa della

potenza totale in continua preventivata, per cui s’intuisce la rilevanza dell’efficienza

di conversione, che si traduce essenzialmente in una riduzione delle dimensioni e del

peso sia del sistema di alimentazione in continua (esempio batterie), sia degli scam-

biatori di calore (heat-sinks), necessari appunto allo smaltimento del calore prodotto

dalla potenza dissipata sul dispositivo attivo stesso, e quindi in una riduzione delle

dimensione e del peso dell’intera unità.

Risulta allora evidente la necessità di metodologie di progetto per amplificatori di

potenza a microonde ad elevata efficienza di conversione. E’ ben noto, infatti, che alte

efficienze possono essere ottenute attraverso un’opportuna scelta del dispositivo, del

62

Amplificatori di Potenza

suo punto di lavoro (polarizzazione) e d’appropriate terminazioni armoniche; in altre

parole, tramite un’opportuna ingegnerizzazione delle forme d’onda di tensione e cor-

rente. Tali tecniche nel corso degli anni hanno portato alla definizione di diverse classi

di funzionamento per gli amplificatori di potenza. Tuttavia, tali definizioni sono spes-

so ambigue e confusionarie: per esempio a volte sono riferite al tipo di polarizzazione

(angoli di circolazione della corrente di drain) e/o alle caratteristiche di linearità (Clas-

si A, AB, etc.); altre volte sono invece riferite al tipo di terminazioni armoniche con-

siderate (Class F, Tuned Load, etc.) oppure a particolari modi di funzionamento del

dispositivo (Class E, Class S, etc.).

4.2 Parametri di interesse nella progettazione di amplifica-

tori di potenza a microonde

La struttura di un amplificatore di potenza a microonde a singolo dispositivo attivo, è

costituita essenzialmente dal dispositivo stesso e dalle due reti di adattamento, rispet-

tivamente di ingresso (M1) e di uscita (M2), come riportato in figura 4.1. Per quanto

riguarda le retiM1 edM2, queste in genere sono realizzate mediante elementi passivi

non dissipativi, quali induttanze e capacità, sia a parametri concentrati che distribuiti,

a seconda della tecnologia a disposizione e della frequenza di lavoro.

Figura 4.1: Schema di principio di un amplificatore di potenza a singolo dispositivo

attivo.

Con riferimento alla figura 4.1, è possibile definire le grandezze utili per la valu-

tazione delle prestazioni degli amplificatori di potenza. Di seguito si riportano breve-

mente le principali definizioni d’interesse.

63

Amplificatori di Potenza

Potenze

Per quanto riguarda le grandezze in potenza, si indicano con

- Pout

la potenza (attiva) d’uscita che effettivamente l’amplificatore cede al carico es-

ternoZL alla frequenza fondamentale di interesse;

Pout =12<e{

Vout,f · I∗out,f

}(4.1)

- Pin

la potenza di sorgente o potenza disponibile ossia la massima potenza attiva che

una sorgente esterna, con impedenza internaZG, è in grado di erogare1 .

- Pdc

la potenza fornita dall’alimentazione in continua:

Pdc = VDD · IDC (4.2)

Le potenze vengono espresse inmW o in dBm, essendo

P[dBm] = 10 log10

(P[mW ]

)(4.3)

Guadagni di potenza

Sempre con riferimento alla fig. 4.1, si definisce il :

- guadagno di trasduzioneG

definito come il rapporto tra la potenza ceduta al carico e quella erogata dalla

sorgente, che in condizioni lineari è esprimibile in forma chiusa in funzione dei

parametri S e dei coefficienti di riflessione delle impedenze esterne:

G = G(S, ΓG,ΓL

)=

Pout

Pin(4.4)

I guadagni vengono espressi indB.

1Si ha nel caso in cui la sorgente esterna è adattata in modo complesso coniugato, ossia terminata su

un’impedenza di carico pari aZ∗G (coniugato diZG)

64

Amplificatori di Potenza

Efficienze

Sono definiti due diversi tipi di efficienza:

- efficienza di conversione o di drainη

spesso indicata anche solo comeefficienzae definita in base alla relazione

η =Pout

Pdc(4.5)

- efficienza aggiunta di conversioneηadd

spesso indicata anche comepower added efficiency(PAE), definita in base alla

relazione

ηadd =Pout − Pin

Pdc(4.6)

Alcune volte si trova definita anche nella forma

ηadd =Pout

Pdc + Pin(4.7)

in quanto in questo secondo caso si evita di avere possibili valori negativi, che

potrebbero essere fonte di equivoci. Nel seguito però faremo sempre riferimen-

to alla definizione (4.6). Si osservi che è possibile esprimere l’efficienza di

conversione aggiunta in funzione dell’efficienza e del guadagno, ossia

ηadd =Pout

Pdc·

(1− 1

G

)= η ·

(1− 1

G

)(4.8)

Se due stadi amplificatori sono connessi in cascata, come riportato in figura 4.2,

si dimostra che l’efficienza di conversione dell’intero stadio può essere espressa nella

forma:

η =η2

1 + Pdc,1

Pdc,2

=η2

1 + η2

η1G1

(4.9)

doveηi, Gi e Pdc,i con i = 1, 2, sono rispettivamente le efficienze di conversione, i

guadagni di potenza e le potenze in continua dei singoli stadi.

Adattamenti

Per quantificare l’adattamento di un amplificatore, oltre ai parametriSi,i si usano

spesso anche le seguenti quantità:

65

Amplificatori di Potenza

Figura 4.2: Esempio di due stadi connessi in cascata.

- perdite per riflessione (o return loss)RL

definita in base alla relazione:

RL =

∣∣as

∣∣2∣∣bs

∣∣2 (4.10)

spesso espressa anche in dB:

RL[dB] = 10 · log10

∣∣as

∣∣2∣∣bs

∣∣2 (4.11)

esprime quindi il rapporto tra la potenza incidente e quella riflessa:

RL[dB] = 10 · log10

(Pinc

Prefl

)= −20 · log10

∣∣ΓL

∣∣ (4.12)

- rapporto d’onda stazionaria in tension (o Voltage Standing Wave Ratio, VSWR

definito in base alla relazione:

V SWR =

∣∣V ∣∣max∣∣V ∣∣min

=1 +

∣∣ΓL

∣∣1−

∣∣ΓL

∣∣ (4.13)

E’ valida poi la relazione inversa

∣∣ΓL

∣∣ = V SWR− 1V SWR + 1

(4.14)

Gli andamenti tipici delle tre grandezze di uscita fondamentaliPout, G e PAE in

funzione della potenza del segnale di ingressoPin, sono riportati in figura 4.3, per uno

stadio amplificatore tipico.

Dalla fig. 4.3 si nota che l’andamento diPout varia inizialmente in modo lineare

per poi saturare; in particolare, nella zona di funzionamento lineare il guadagnoG può

essere considerato costante ed il valore che esso assume è generalmente indicato con

il termine diguadagno lineare a piccolo segnale(o small-signal gain) ed indicato con

il simboloGlin.

66

Amplificatori di Potenza

Figura 4.3: Esempio di andamento diPout, PAE eG.

Nella stessa figura è stato evidenziato un altro punto di interesse per gli ampli-

ficatori di potenza, ovvero il cosiddettopunto ad 1 dB di compressione(1dB Gain

compression point o 1dBGc); tale punto rappresenta il valore diPin in corrisponden-

za del quale il guadagno di potenzaG è diminuito di 1 dB rispetto al valoreGlin

che aveva a piccolo segnale. In corrispondenza di tale punto, i fenomeni di distor-

sione non lineare prodotti dall’amplificatore sono ancora d’entità accettabile ed inoltre

l’efficienza di conversione raggiunge il suo valore massimo generalmente in corrispon-

denza di circa 2dB di compressione del guadagno; il punto ad 1dB di compressione

rappresenta quindi un buon compromesso tra un’elevata efficienza di conversione ed

un comportamento lineare accettabile.

Distorsione

Le definizioni sin qui introdotte, possono essere riferite a qualsiasi tipo d’amplifica-

tore, sia lineare che non, indipendentemente dal loro interesse pratico (per gli amplifi-

catori di segnale, operanti in regime lineare, interessano più i parametri di guadagno e

d’adattamento che non le efficienze).

Per gli amplificatori di potenza però, è necessario considerare anche altri parametri,

derivanti dalla caratteristica di funzionamento non lineare del dispositivo attivo utiliz-

zato. Infatti, a differenza dei circuiti lineari, per i quali è possibile definire il principio

67

Amplificatori di Potenza

di sovrapposizione degli effetti, per gli amplificatori di potenza, come in genere per

tutti i circuiti non lineari, è necessario tener conto anche della presenza di fenomeni

non lineari, i quali danno luogo alla generazione di segnali indesiderati, di cui bisogna

tener conto sia in fase d’analisi che di sintesi. Tali segnali, generati direttamente o

per effetto di fenomeni di mescolamento, possono essere genericamente distinti in tre

categorie:

- armoniche del segnale in ingressoprodotti dalle non linearità del dispositivo

attivo;

- prodotti d’intermodulazione presenti se il segnale d’ingresso è costituito da

più di un tono;

- prodotti spuri generati da fenomeni di mescolamento fra segnali indesiderati in

ingresso (fuori banda) ed armoniche prodotte.

Figura 4.4: Segnali di uscita di un amplificatore a RF nel caso di due segnali di ingresso

a frequenzefc ± fm.

Nella figura 4.4 sono riportate graficamente le relazioni tra questi segnali indesiderati

e quelli invece di interesse, che in questo caso sono supposti pari a due toni di uguale

ampiezza alle frequenzefc ± fm. I prodotti d’intermodulazione dispari (IMD3,

IMD5, IMD7, etc.) sono i più dannosi in quanto sono i più vicini alla frequenza por-

tante (fc) e causano distorsione nei segnali ricevuti o interferenze fra canali adiacenti.

A differenza dei segnali armonici o spuri, che possono in genere essere facilmente ri-

mossi per filtraggio, i prodotti d’intermodulazione possono solo essere ridotti ad un

limite accettabile con opportune tecniche di bilanciamento e di linearizzazione.

68

Amplificatori di Potenza

Per quanto riguarda i prodotti d’intermodulazione, in genere ci si limita a consider-

are il termine del terzo ordineIMD3 dandone una misura in termini di rapportoC/I

(carrier power / IMD power). Per la misura di tale parametro, si iniettano in ingresso

al dispositivo due toni di pari ampiezza alle frequenzef1 e f2, abbastanza vicine tra

loro (generalmente 50 MHz o inferiori), e si misura il rapporto tra la potenza del seg-

nale d’uscita a frequenzaf1 (o f2) e quella prodotta alla frequenza di mescolamento

2f1 − f2 (o 2f2 − f1):

IMD3 =Pout

(2f1 − f2

)Pout

(f1

) =(C/I3

)−1(4.15)

misurata indBc (dB/carrier).

Per valutare i fenomeni di generazione di armoniche e prodotti di intermodulazione

in modo semplice, possiamo fare riferimento al seguente approccio semplificato. Si

consideri la non linearità del dispositivo attivo rappresentabile genericamente mediante

una serie di potenze, ovvero che il segnale d’uscitay possa essere espresso in funzione

del segnale di ingressox nel seguente modo:

y = A ·[x + k2x

2 + k3x3]

(4.16)

dove siax chey sono segnali le cui unità di misura sono√

W . E’ evidente che questo

considerato è un modello istantaneo, valido per segnalix relativamente piccoli.

Si consideri poi il caso di ingresso a singolo tono

x(t)

= X cos(ωt)

=X

2

(ejωt + e−jωt

)(4.17)

Allora l’uscita, in base alla (4.16) sarà:

y(t)

= A ·[X(1 +

34k3X

2)

cos(ωt)

+ k2X2

2+

+ k2X2

2cos(2ωt)

+ k3X3

4cos(3ωt)] (4.18)

Per quanto riguarda le potenze, considerando carichi unitari, si otterranno le potenze

normalizzate di ingresso e di uscita, rispettivamente date da:

Pin =X2

2(4.19)

Pout =12·

{A ·

[X

(1 +

34k3X

2

)]}2

(4.20)

69

Amplificatori di Potenza

Per quanto riguarda la potenza d’uscita, sfruttando la relazione (4.19) si può scrivere:

Pout = A2 X2

[1 +

32k3

X2

2

]2

= A2 · Pin ·

[1 +

32k3Pin

]2(4.21)

dove 32k3Pin è un termine dicompressione del guadagnosek3 < 0 ovvero diespan-

sione del guadagnosek3 > 0. In fig. 4.5 è riportato a titolo di esempio l’andamento

di Pout in funzione diPin per valori dik3 positivi o negativi.

Figura 4.5: Esempio di andamento diPout in funzione diPin per valori dik3 positivi

o negativi.

Se ora si considera un segnale di ingresso a due toni, ovvero:

x(t)

= X1 cos(ω1t)

+ X2 cos(ω2t)

(4.22)

70

Amplificatori di Potenza

l’uscita, sempre in base alla equazione (4.16), sarà:

y(t)

=A ·(

k2

2X2

1 +k2

2X2

2

)+

+ AX1 ·[1 +

34k3X

21 +

32k3X

22

]cos(ω1t)+

+ AX2 ·[1 +

34k3X

22 +

32k3X

21

]cos(ω2t)+

+ AX21

k2

2cos(2ω1t

)+ AX2

2

k2

2cos(2ω2t

)+

+ AX1X2k2 ·[cos(ω2 − ω1

)t + cos

(ω2 + ω1

)t

]+

+ AX31

k3

4cos(3ω1t

)+ AX3

2

k3

4cos(3ω2t

)+

+34k3AX2

1X2 ·[cos(2ω1 + ω2

)t + cos

(2ω1 − ω2

)t

]+

+34k3AX1X

22 ·[cos(2ω2 + ω1

)t + cos

(2ω2 − ω1

)t

]+

(4.23)

In tabella 4.1 sono riportate le freqeunze generate.

ω1 + ω1 − ω1 = ω1 AX134k3X

21 compressione

ω2 + ω2 − ω2 = ω2 AX234k3X

22

ω1 + ω2 − ω2 = ω1 AX132k3X

22 cattura

ω2 + ω1 − ω1 = ω2 AX232k3X

21

ω1 + ω2 Ak2X1X2 intermodulazione del 2◦ ordine

ω2 − ω1

2ω1 + ω2 , 2ω1 − ω234Ak3X

21X2 intermodulazione del 3◦ ordine

2ω2 + ω1 , 2ω2 − ω134Ak3X1X

22

Tabella 4.1: Frequenze generate

In generale vale la relazione:

y(t)

=∑

n−dispari

12n−1

n+12∑

m=1

( nn + 2m− 1

2

)( nn + 1

2

)knAn·

·

{cos[mω1 −

(m− 1

)ω2

]t + cos

[mω2 −

(m− 1

)ω1

]t+

} (4.24)

In figura 4.6 è riportato in forma grafica un esempio di andamenti tipici diPout

in presenza di 1 o 2 toni di ingresso e diIMD3. In tale figura è anche evidenziato il

71

Amplificatori di Potenza

puntoIP3, denominato3rd order intercept pointo punto di intercetta del terzo ordine.

Figura 4.6: Esempio di andamento diPout(f) in presenza di 1 o 2 toni di ingresso.

E’ possibile valutare grossolanamente quanto il puntoIP3 si discosti dal punto

1dBcp a singolo tono, sfruttando il modello (4.16), che ricordiamo vale per piccoli

segnali. Infatti, nel caso a singolo tono si può scrivere

y1T = Ax1T + A34k3x

31T (4.25)

Per la potenza d’uscita si ha

Pout,1T =12y21T (4.26)

mentra la potenza di ingresso è data da:

Pin =12x2

1T (4.27)

Nel punto ad 1dB di compressione si dovrà avere che laPout differisce di 1dB dal

valore lineare, ovvero:

Pout,1T,1dBcp = 10 log10

[12y21T

]= 10 log10

[12(Ax1T

)2]− 1 (4.28)

Osservando ora che

1 = 10 log10

[100.1

](4.29)

72

Amplificatori di Potenza

si può scrivere

10 log10

[12

(Ax1T + A

34k3x

31T

)2]

= 10 log10

[12

(Ax1T

)2100.1

](4.30)

da cui

x1T +34k3x

31T = x ·

√10−0.1 (4.31)

e quindi (1− 10−0.05

)= −3

4k3x

21T (4.32)

Nel caso invece di 2 toni in ingresso, per la potenza d’uscita si avrà (cfr. tabella

4.1):

- potenza d’uscita a fondamentale, generata dal termine lineare

Pout,2T

(f)

=12A2x2

2T (4.33)

- potenza d’uscita a frequenza2f1 − f2

Pout,2T

(2f1 − f2

)=

12A2

(34k3x

32T

)2

(4.34)

da cui è possibile estrapolare il puntoIP3 (fig. 4.6) dalla relazione

Pout,2T

(f)

= Pout,2T

(2f1 − f2

))2

(4.35)

ossia

x22T =

(34k3x

32T

)2

(4.36)

Assumendok3 negativo, si ricava

x22T = − 4

3k3(4.37)

Confrontando ora le espressioni (4.32) e (4.37), si ricava(x2T

x1T

)=

11− 10−0.05

≈ 9.2 ⇒ ≈ 9.6dB (4.38)

Un’altra grandezza che spesso si incontra nelle specifiche di progetto, soprattutto

nei sistemi in cui sono coinvolti segnali con modulazioni ad inviluppo non costante

(es. QPSK) è l’ACPR o Adjacent Channel Power Ratiodefinito in base alla seguente

relazione:

ACPRdBc =

∫C2

Pout

(f)df∫

C1Pout

(f)df

(4.39)

dove in fig. 4.7 sono riportate le grandezze coinvolte nella definizione.

73

Amplificatori di Potenza

Figura 4.7: Grandezze coinvolte nella definizione diACPR.

4.3 Amplificatori di potenza multistadio

Prima di entrare nel dettaglio delle tecniche di progettazione, è utile considerare un

esempio di sistema per la realizzazione di una catena d’amplificazione, analizzandone

la struttura topologica e la scelta dei dispositivi attivi da utilizzare (power budget).

4.3.1 Tecnologia

La prima scelta che si pone al progettista d’amplificatori di potenza, riguarda la se-

lezione della tecnologia da utilizzare. Questa, ovviamente, dipende da diversi fattori:

disponibilità in commercio, tempi di realizzo, affidabilità, costi, possibilità d’interven-

to sul prodotto finito (tuning), etc. Sono possibili due diversi approcci:

ibrido

L’approccio con tecnologia ibrida prevede la realizzazione delle strutture passive

(reti d’adattamento o di combinazione) su substrati generalmente diversi da quelli uti-

lizzati per i dispositivi attivi, al fine di diminuire le perdite. Le reti realizzate ed i

dispositivi attivi sono poi assemblati in un’unica struttura meccanica. In figura 4.8 è

riportato un esempio di amplificatore di potenza a 5GHz le cui reti di adattamento di

ingresso e di uscita sono state realizzate su Allumina.

monolitico

In questo caso sia le strutture passive che i dispositivi attivi sono realizzati sullo

74

Amplificatori di Potenza

Figura 4.8: Esempio di circuito ibrido

stesso substrato (GaAs, InP, etc.). In figura 4.9 è riportato un esempio di circuito

realizzato in tecnologia monolitica.

Figura 4.9: Esempio di circuito monolitico: amplificatore di potenza in banda X.

La tecnologia ibrida ha il vantaggio di avere una fabbricazione più semplice, con

costi e tempi di realizzazione più bassi di quella monolitica; permette inoltre di pot-

er selezionare in fase di assemblaggio i dispositivi attivi con le prestazioni migliori,

garantendo così rese più elevate. Infine, permette la possibilità di intervenire sullo

stadio realizzato (a prodotto finito) con operazioni di accordo (tuning). Gli stadi real-

izzati hanno però lo svantaggio d’avere dimensioni superiori, rispetto a quelli realizzati

in tecnologia monolitica, ed inoltre la ripetibilità del processo non sempre è garantita

75

Amplificatori di Potenza

con sufficiente cura, poiché troppi sono i fattori che possono influenzarla (ad esempio

la realizzazione dei fili di collegamento, l’assemblaggio meccanico delle varie parti,

etc.). Viceversa, l’alta ripetibilità e l’elevato numero di realizzazioni contemporanee

possibili con la tecnologia monolitica, fanno preferire quest’ultima per le realizzazioni

di tipo commerciale, in cui il progetto dello stadio è già sufficientemente assestato.

Nel caso di circuito monolitico un altro aspetto importante riguarda ilpackaging,

ossia la necessità di inserire il circuito realizzato in un opportuno contenitore, accessi-

bile dall’esterno in modo agevole e tenendo in conto eventuali problematiche connesse

allo smaltimento del calore, soprattutto per applicazioni di potenza. In figura 4.10 è

riportato a titolo di esempio il processo di packaging di un circuito monolitico.

(a) (b)

Figura 4.10: Esempio di processo di packaging: (a) le diverse fasi di realizzazione del

package ceramico con supporto metallico per garantire un adeguato smaltimento del

calore prodotto dal chip; (b)metalizzazioni (bonding wire) utilizzate per connettere i

pad del chip con i terminali esterni del package.

Il secondo problema che si pone al progettista è ovviamente la scelta del dispos-

itivo attivo, intesa sia dal punto di vista della struttura fisica (MESFET, HEMT, ecc.)

e del substrato da utilizzare (GaAs, InP, ecc.), sia dal punto di vista del numero degli

stessi da utilizzare. Per quanto riguarda la prima scelta, questa è ancora una volta det-

tata dalle disponibilità in commercio. Allo stato dell’arte, per la realizzazione degli

amplificatori di potenza, la tecnologia a MESFET (MEtal Semiconductor Field Ef-

fect Transistor) su Arseniuro di Gallio (GaAs) ha raggiunto un grado di maturazione

ed affidabilità tale per cui risulta essere la più diffusa ed utilizzata, almeno per fre-

76

Amplificatori di Potenza

quenze di lavoro inferiori ai 20-30GHz. Per frequenze più elevate nuove tecnologie

basate anche su Fosfuro di Indio (InP) e su strutture H-FET (Heterojunction Field Ef-

fect Transistor) o P-HFET (Pseudomorphic Heterojunction Field Effect Transistor) si

stanno rapidamente evolvendo.

Ogni processo realizzativo è caratterizzato dal valore della densità di potenza per

unità di periferia di gate; scelto allora il processo da utilizzare (in genere MESFET

su GaAs), e noto il livello di potenza richiesto dalle specifiche di progetto, una prima

analisi di sistema consiste nella determinazione sia delle dimensioni fisiche del dis-

positivo, intese come dimensioni della periferia di gate, sia del numero degli stessi

che eventualmente è necessario combinare. Spesso, infatti, i livelli di potenza d’usci-

ta richiesti sono tali da non poter essere ottenuti con l’impiego di un solo dispositivo

attivo; all’aumentare della periferia di gate la potenza d’uscita aumenta fino a satu-

rare ad un valore massimo, ed i guadagni di potenza ottenibili (e quindi le efficienze)

diminuiscono, per cui esiste un primo compromesso sulla dimensione massima della

periferia di gate che conviene utilizzare per ogni processo a disposizione. A titolo di

esempio, in fig. 4.11 sono riportati i dati forniti dalla fonderia Rayteon relativi al pro-

cesso di realizzazione di P-HEMT confingers(dita) di gate di 0.15µm di larghezza

. Nel grafico, sono riportati i valori di potenza, guadagno ed efficienza aggiunta, per

dispositivi con finger di dimensioni fisse (larghi 0.15µm e lunghi 100µm), al variare

del numero di questi e quindi della periferia totale di gate. Si noti come la potenza

d’uscita tenda a saturare e risulti abbastanza indipendente dalla frequenza di misura

(14 o 18 GHz). Questa seconda caratteristica è una proprietà su cui torneremo più

approfonditamente in seguito.

L’aver fissato la periferia totale di gate però, non conclude ancora la fase di dimen-

sionamento del dispositivo attivo, in quanto le stesse periferie possono essere ottenute

variando numero e lunghezza dei fingers di gate. Quest’ulteriore scelta dipende dai

dati di fonderia disponibili. Sempre con riferimento alla Rayteon, in fig. 4.12 sono

riportate le prestazioni di dispositivi con periferia totale di gate fissa (1.2mm), ma con

numero di fingers (e lunghezza) variabili.

77

Amplificatori di Potenza

Figura 4.11: Prestazioni misurate su un wafer prodotto dalla fonderia Rayteon, al

variare del numero di finger (e quindi della periferia totale di gate) di P-HEMT da

0.15µm.

Figura 4.12: Prestazioni misurate su un wafer prodotto dalla fonderia Rayteon, del pro-

cesso P-HEMT 0.15µm, al variare del numero di finger (e quindi della loro lunghezza),

per periferie totali di gate costanti di 1.2mm.

78

Amplificatori di Potenza

4.3.2 Strutture di combinazione epower budget

Finita questa prima fase di analisi della tecnologia a disposizione, ed ipotizzando la

necessità di ricorrere alla combinazione di più dispositivi attivi (amplificatori multista-

dio), si passa ad una successiva analisi di sistema, ossia s’inizia a progettare, a livello

di sistema, la struttura dell’amplificatore di potenza a multistadio. In figura 4.13 è

riportato un tipico esempio di amplificatore di canale, in cui un amplificatore multi-

stadio di guadagno ‘pilota’ un amplificatore di potenza, realizzato in configurazione

bilanciata .

Figura 4.13: Esempio di schema a blocchi per un sistema di amplificazione.

Con riferimento alla fig. 4.13, gli ultimi due stadi sono quelli di potenza veri e

propri; vengono infatti dimensionati e progettati per operare in condizioni di massima

potenza di uscita e massima efficienza di conversione, tipicamente ottenibile intorno

ai 2dB di compressione.

Per quanto riguarda lo stadio pilota, questo è progettato per avere il massimo

guadagno di potenza possibile operando in condizioni di linearità. A volte, l’ulti-

mo amplificatore di quest stadio (indicato con PD3 in fig. 4.13) è realizzato per op-

erare in condizioni di saturazione, in modo tale da permettere una certa tolleranza

sulla variazione della potenza di ingresso all’intera catena; infatti, in compressione la

Pout è meno sensibile alle variazioni diPin di quanto ovviamente non sia in zona lin-

eare, a fronte però di una riduzione del guadagno stesso (fig. 4.3). Le impedenze di

adattamento in ingresso ed uscita dei singoli stadi dovranno allora essere progettate

per soddisfare requisiti diversi: adattamento a piccolo segnale (e generalmente di tipo

complesso coniugato) per gli stadi lineari di guadagno ovvero adattamento in potenza

79

Amplificatori di Potenza

(e si chiarirà meglio in seguito cosa si intende) per gli stadi di potenza.

Per quanto riguarda il dimensionamento dei singoli stadi amplificanti, occorre

analizzare l’intera struttura a ritroso. Al fine di esemplificare la metodologia, si farà

riferimento alla struttura riportata in fig. 4.13.

Si considera il livello di potenza d’uscita richiesto dalle specifiche, che nell’esem-

pio si suppone essere pari a 39dBm (5W). Poiché in genere, per quanto precedente-

mente detto, difficilmente un solo dispositivo attivo è in grado di fornire i livelli di

Pout richiesti, è necessario ricorrere a strutture di combinazione, come ad esempio

riportato in fig. 4.14. In questi casi è allora necessario tenere conto delle perdite in-

Figura 4.14: Amplificatore di potenza 32-45GHz con dispositivi HEMT realizzato con

tecniche di combinazione.

trodotte da tali strutture combinanti. Senza entrare in dettaglio sulle varie tecniche di

combinazione, si supporrà per semplicità che le strutture di combinazione e di divi-

sione utilizzate abbiano perdite di circa 0.3dB alla frequenza di lavoro. In tal caso,

all’ingresso della struttura combinante saranno richiesti

39− (3− 0.3) = 36.3dB(≈ 4.3W )

Si supponga allora di avere a disposizione dei dispositivi attivi in grado di erogare

solo fino ad un massimo di 0.4W/mm, ossia 0.4W per mm di periferia di gate, con un

guadagno di 8dB. Se ne deduce allora che saranno necessari dei dispositivi con una

80

Amplificatori di Potenza

periferia di gate che può essere calcolata mediante la relazione

4.3W

0.4 Wmm

= 10.75mm

Tale numero ovviamente andrà arrotondato per eccesso verso i valori realizzabili prati-

camente. Dal valore del guadagno si risale poi al valore della potenza d’ingresso

necessaria per pilotare tale dispositivo, che sarà pari a

36.3− 8 = 28.3dBm(≈ 680mW )

Per quanto riguarda la periferia di gate di PA1, questa sarà determinata dalla relazione

0.68/0.4=1.7 mm, mentre la potenza d’ingresso di tutto lo stadio di potenza sarà pari a

28.3-8=20.3 dBm (≈ 110mW).

Per quanto riguarda lo stadio pilota, tenendo conto degli 0.3dB di perdita della

struttura di divisione, dovrà essere in grado di fornire una potenza pari a

20.3 + 3.3 = 23.6dBm(≈ 230mW )

Per il dimensionamento dei vari dispositivi dello stadio di guadagno si procede in modo

analogo. In fig. 4.15 sono riportate le potenze d’uscita dei singoli stadi (tra parentesi

sono riportati i guadagni ipotizzati per i vari blocchi).

Figura 4.15: Esempio di dimensionamento di uno stadio di potenza.

4.4 Power Match Condition

Uno degli aspetti principali della progettazione degli amplificatori di potenza, riguarda

il concetto di adattamento e di carico ottimo. E’ ben noto infatti che per garantire il

massimo trasferimento da una sorgente ad un utilizzatore (carico), è necessario che

81

Amplificatori di Potenza

quest’ultimo soddisfi la condizione di adattamento complesso coniugato con l’impe-

denza interna della sorgente. In particolare, con riferimento alla figura 1.3, deve essere

soddisfatta la relazione

ZL = Z∗S (4.40)

definita comeconjugate match conditions.

Tale relazione viene adottata anche nella progettazione degli amplificatori lineari,

nell’ambito del trasferimento di segnale (e quindi di potenza) dal dispositivo attivo ver-

so il carico. In questo caso infatti si dimostra che il carico ottimo è il complesso coni-

ugato della impedenza che si vede guardando dal drain verso l’interno del dispositivo.

Indicheremo il carico ottimo per il guadagno comeZGopt.

Nella determinazione del carico ottimo per il guadagno non si tiene però conto

dei limiti fisici del dispositivo attivo, in quanto si lavora in regime di piccoli segnali e

quello che interessa è il massimo guadagno ottenibile nel trasferimento di segnale dalla

sorgente fino al carico (tramite il dispositivo attivo). Negli amplificatori di potenza

invece quello che interessa è la massima potenza ottenibile dal dispositivo attivo in

condizioni di linearità (o quasi). In questo caso il carico ottimoZopt è quello che

permette la massima escursione contemporanea di corrente e di tensione, garantendo

la massima potenza d’uscita erogabile dal dispositivo attivo. Tale condizione viene

definitapower match condition.

Supponendo per semplicità che i carichi siano reali,ZGopt darà luogo ad una retta

di carico2 con pendenza opposta a quella delle caratteristiche, mentreZopto ad una

retta di carico corrispondente alla massima escursione di tensione e corrente, come

riportato in figura 4.16, in altre parole si ha∣∣ZGopt

∣∣ > ∣∣Zopt

∣∣ (4.41)

In realtà, poiché i carichi presentano anche una parte reattiva, anziché delle rette si

avranno delle ellissi di carico.

Si noti che perZload = ZGopt sono sufficienti piccoli valori diPin per pilotare il

dispositivo in zone di funzionamento fortemente non lineare, rappresentate soprattut-

to dalle limitazioni fisiche del dispositivo (regione ohmica e di breakdown); il punto2La retta di carico o più in generale la curva di carico rappresenta sulle caratteristiche d’uscita del

dispositivo attivo la curvaid(t) in funzione divds(t).

82

Amplificatori di Potenza

Figura 4.16: Esempio di rette di carico corrispondenti alle condizioni di massimo

guadagnoZGopt o massima potenza di uscitaZout

1dBGc si ottiene per valori relativamente più bassi di potenza di ingressoPin, rispetto

al caso in cuiZload = Zopt.

4.5 Classificazione degli amplificatori di potenza

La classificazione degli amplificatori di potenza, a prima vista semplice, è in realtà

un argomento abbastanza confusionario ed a volte ambiguo, se non addirittura conflit-

tuale; infatti, con il termine di classe di funzionamento, spesso si possono intendere

diversi aspetti, che vanno dalla scelta della polarizzazione o dell’angolo di circolazione

della corrente di drain (Classi A, AB, etc.), alla scelta delle terminazioni da utilizzare

(Class F, Tuned Load o carico accordato, etc.) oppure che possono riguardare un modo

di funzionamento particolare del dispositivo stesso (Class E, Class S, etc.).

Per evitare possibili equivoci, si è ritenuto opportuno usare nel seguito il termine

classe di funzionamento per indicare l’angolo di circolazioneφ della corrente d’uscita

(di drain) del dispositivo attivo, indipendentemente dal tipo di terminazione armonica

considerata, ma supponendo che il dispositivo attivo sia pilotato con un segnale sinu-

soidale. E’ evidente che nel caso di funzionamento del dispositivo attivo assimilabile

ad un interruttore (switching mode), di cui si parlerà in seguito), tale classificazione

perde ovviamente di validità. Si parla allora diClasse Aquando l’angolo di circo-

lazione èφ = 2π, per cui il dispositivo è in conduzione per tutto il periodo del segnale

83

Amplificatori di Potenza

di ingresso; si parla invece diClasse Bquandoφ = π, ossia il dispositivo conduce

solo per metà periodo (50%), con conseguente aumento dell’efficienza; si hanno poi

le classi intermedie, quali laClasse ABquandoπ < φ < 2π e la Classe Cquando

φ < π.

Chiarito il concetto di classe di funzionamento, possiamo ora introdurre una prima

generica classificazione degli amplificatori di potenza, basata sulle caratteristiche di

funzionamento del dispositivo attivo e sulle prestazioni ottenibili in termini di ‘purezza

spettrale’ del segnale in uscita. Si individuano quindi essenzialmente due categorie di

funzionamento: gli amplificatori di potenza lineari e quelli ad elevata efficienza di

conversione.

Si parla di amplificatori lineari di potenza quando in uscita è riprodotta una replica

fedele del segnale d’ingresso, aumentata nel livello di potenza. Tali amplificatori sono

generalmente utilizzati nei sistemi di trasmissione SSB o multimodo, nei quali è richi-

esta una riproduzione accurata sia dell’inviluppo che della fase del segnale d’ingresso.

In questo tipo d’amplificatori, il dispositivo attivo è terminato in uscita con un partico-

lare carico (quasi sempre un filtro passa basso), che sopprima le eventuali armoniche

indesiderate generate in uscita dalle non linearità del dispositivo stesso. Si parla in

questo caso di configurazioni di tipo a carico accordato oTuned Load.

Per quanto riguarda la categoria degli amplificatori di potenza ad elevata efficienza

(di conversione), si intendono quelli in cui si fa ricorso a particolari reti d’adattamento

che, come si vedrà meglio in seguito, tendono a ridurre il prodottotensionex cor-

rented’uscita del dispositivo attivo, ossia a ridurre la potenza dissipata sullo stesso,

aumentandone contemporaneamente anche l’affidabilità.

Nel caso di amplificatori di potenza ad elevata efficienza possono essere adottate

tecniche di due tipi: quelle che si basano su un funzionamento del dispositivo anal-

ogo al comportamento di un interruttore (switching-mode), e quelle che ricorrono a

particolari chiusure armoniche (harmonic-tuned).

Gli approcci del primo tipo si basano sull’osservazione che un interruttore ideale

ha sempre o tensione o corrente nulla ai suoi capi, per cui non dissipa potenza. Nei

casi reali ovviamente ciò non sarà più vero, ma continuerà ad essere minima la poten-

za dissipata. Le classi di funzionamento che fanno riferimento a tale principio sono

84

Amplificatori di Potenza

indicate comeClasse D, Classe EeClasse S.

Per quanto riguarda le classi che invece fanno ricorso a particolari terminazioni

armoniche, indubbiamente la più famosa e diffusa è la cosiddettaClasse F, anche se

per applicazioni a microonde approcci nuovi sono stati proposti e verranno visti nel

seguito.

85