Amber Mace - DiVA 782425/ molecular dynamics approach Amber Mace, ... from the quantum scale to the macroscopic Amber Mace, ... Qingling Liu, Amber Mace and Niklas Hedin, Applied

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

  • Multiscale Modeling of Molecular Sieving in LTA-type Zeolites Fromthe Quantum Level to the Macroscopic

    Amber Mace

    mailto:amber.mace@mmk.su.se

  • Multiscale Modeling of MolecularSieving in LTA-type ZeolitesFrom the Quantum Level to the Macroscopic

    Amber Mace

    mailto:amber.mace@mmk.su.se

  • Doctoral Thesis in Physical Chemistry 2015

    Department of Materials and Environmental ChemistryStockholm UniversitySE-10691 Stockholm, Sweden

    Faculty Opponent:

    Prof. Tina Dren, Department of Chemical Engineering, University of Bath,UK

    Evaluation committee:

    Prof. Natalia Skorodumova, School of Industrial Engineering and Manage-ment, KTH Royal Institute of Technology, Sweden

    Prof. Kersti Hermansson, Department of Chemistry, Uppsala University

    Prof. Michael Odelius, Department of Physics, Stockholm University, Sweden

    Substitute:

    Prof. Olle Edholm, Department of Theoretical Physics, KTH Royal Instituteof Technology, Sweden

    Chairman and coordinator:

    Prof. Arnold Maliniak, Department of Materials and Environmental Chem-istry, Stockholm University, Sweden

    cAmber Mace, Stockholm 2015

    ISBN 978-91-7649-081-5

    Printed in Sweden by USAB, Stockholm 2015

    Distributor: Department of Materials and Environmental Chemistry, Stockholm University

  • This thesis is dedicated to Annabelle and her sister.

  • Abstract

    LTA-type zeolites with narrow window apertures coinciding with the approxi-mate size of small gaseous molecules such as CO2 and N2 are interesting candi-dates for adsorbents with swing adsorption technologies due to their molecularsieving capabilities and otherwise attractive properties. These sieving capabili-ties are dependent on the energy barriers of diffusion between the zeolite pores,which can be fine-tuned by altering the framework composition. An ab initiolevel of theory is necessary to accurately describe specific gas-zeolite interac-tion and diffusion properties, while it is desirable to predict the macroscopicscale diffusion for industrial applications. Hence, a multiscale modeling ap-proach is necessary to describe the molecular sieving phenomena exhaustively.

    In this thesis, we use several different modeling methods on different lengthand time scales to describe the diffusion driven uptake and separation of CO2and N2 in Zeolite NaKA. A combination of classical force field based mod-eling methods are used to show the importance of taking into account boththermodynamic, as well as, kinetic effects when modeling gas uptake in nar-row pore zeolites where the gas diffusion is to some extent hindered. For amore detailed investigation of the gas molecules pore-to-pore dynamics inthe material, we present a procedure to compute the free energy barriers ofdiffusion using spatially constrained ab initio Molecular Dynamics. With thisprocedure, we seek to identify diffusion rate determining local properties of theZeolite NaKA pores, including the Na+-to-K+ exchange at different ion sitesand the presence of additional CO2 molecules in the pores. This energy barrierinformation is then used as input for the Kinetic Monte Carlo method, allow-ing us to simulate and compare these and other effects on the diffusion drivenuptake using a realistic powder particle model on macroscopic timescales.

  • List of Papers

    The following papers I-IV, referred to in the text by their Roman numerals, areincluded in this thesis.

    PAPER I NaKA sorbents with high CO2-over-N2 selectivity and high ca-pacity to adsorb CO2Qingling Liu, Amber Mace, Zoltan Bacsik, Junliang Sun, Aatto Laak-sonen and Niklas Hedin, Chem. Comm. 2010, 46, 45024504DOI: 10.1039/C000900H

    Specific contributions: planned and performed the modeling, contributedto the writing

    PAPER II Role of Ion Mobility in Molecular Sieving of CO2 over N2 withZeolite NaKAAmber Mace, Niklas Hedin and Aatto Laaksonen, J. Phys. Chem. C2013, 117, 2425924267DOI: 10.1021/jp4048133

    Specific contributions: lead role in this project, planned and performedall modeling, lead role in writing

    PAPER III Free energy barriers for CO2 and N2 in zeolite NaKA: an abinitio molecular dynamics approachAmber Mace, Kari Laasonen and Aatto Laaksonen, Phys. Chem. Chem.Phys. 2014, 16,166172.DOI: 10.1039/c3cp52821a

    Specific contributions: lead role in this project, performed all modeling,lead role in writing

    PAPER IV Temporal coarse graining of CO2 diffusion in Zeolite NaKA;from the quantum scale to the macroscopicAmber Mace, Mikael Leetmaa and Aatto Laaksonen, To be submitted.

    Specific contributions: lead role in this project, planned and performedall modeling, lead role in writing

    Reprints were made with permission from the publishers.

    http://dx.doi.org/10.1039/C000900Hhttp://dx.doi.org/10.1021/jp4048133http://dx.doi.org/10.1039/c3cp52821a

  • Additional papers by the author, which are not included in the thesis.

    PAPER V Oxygen-oxygen correlations in liquid water: Addressing thediscrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting techniqueKjartan Thor Wikfeldt, Mikael Leetmaa, Amber Mace, Anders Nilssonand Lars G. M. Pettersson, J. Chem. Phys. 2010, 132,104513104522DOI: 10.1063/1.3330752

    PAPER VI Oxide clusters as source of the third oxygen atom for the for-mation of carbonates in alkaline earth dehydrated zeolitesAlexander Larin, Andrey Rybakov, Georgii M. Zhidomirov, Amber Mace,Aatto Laaksonen and Daniel Vercauteren, J. Catal. 2011, 281, 212221DOI: 10.1016/j.jcat.2011.05.002

    PAPER VII Carbonate "door" in the NaKA zeolite as the reason of higherCO2 uptake relative to N2Alexander Larin, Amber Mace, Andrey Rybakov and Aatto Laaksonen,Microporous Mesoporous Mater. 2012, 162, 98104DOI: 10.1016/j.micromeso.2012.06.005

    PAPER VIII Adsorption kinetics for CO2 on highly selective zeolites NaKAand nano-NaKAOcean Cheung, Zoltan Bacsik, Qingling Liu, Amber Mace and NiklasHedin, Applied Energy 2013, 112, 13261336.DOI: 10.1016/j.apenergy.2013.01.017

    PAPER IX Crystal structure and magnetic properties of the S=1/2 quan-tum spin system Cu7(TeO3)6F2 with mixed dimensionalityShichao Hu, Amber Mace, Mats Johnsson, Vladimir Gnezdilov, PeterLemmens, Joshua Tapp and Angela Mller, Inorg. Chem. 2014, 53,76617667.DOI: 10.1021/ic5009686

    PAPER X K+ Exchanged Zeolite ZK-4 as a Highly Selective Sorbent forCO2Ocean Cheung, Zoltan Bacsik, Panagiotis Krokidas, Amber Mace, AattoLaaksonen, Niklas Hedin, Langmuir 2014, 30, 96829690.DOI: 10.1021/la502897p

    http://dx.doi.org/10.1063/1.3330752http://dx.doi.org/10.1016/j.jcat.2011.05.002http://dx.doi.org/10.1016/j.micromeso.2012.06.005http://dx.doi.org/10.1016/j.apenergy.2013.01.017http://dx.doi.org/10.1021/ic5009686http://dx.doi.org/10.1021/la502897p

  • PAPER XI Gas and organic vapour adsorption properties of NOTT-400and NOTT-401: selectivity derived from directed supramolecularinteractionsIlich Ibarra, Amber Mace, Sihai Yang, Junlian Sun, Sukyung Lee, Jong-San Chang, Aatto Laaksonen, Martin Schrder, Xiadong Zou, To be sub-mitted.

    PAPER XII Nanocellulose-Zeolite Composite Films for Odor EliminationNeda Keshavarzi, Farshid Mashayekhy Rad, Amber Mace, Mohd F.Ansari, Farid Akhtar, Ulrika Nilsson, Lars Berglund, Lennart Bergstrm,To be submitted.

  • Abbreviations

    m micrometer (106m)

    a.u. atomic units

    AIMD ab initio Molecular Dynamics

    AlPO Aluminum phosphate

    CHA Chabazite

    DFT Density Functional Theory

    FAU Faujasite

    fs femtosecond (1015s)

    GCMC Grand Canonical Monte Carlo

    GPW Gaussian and plane waves

    GTH Goedecker-Teter-Hutter

    KMC Kinetic Monte Carlo

    LTA Linde Type A

    MD Molecular Dynamics

    MM Molecular Mechanics

    MMC Metropolis Monte Carlo

    MOR Mordenite

    nm nanometer (109m)

    ns nanosecond (109s)

    PBC periodic boundary conditions

    PBE Perdew-Burke-Ernzerhof

    ps picosecond (1012s)

    PSA pressure swing adsorption

  • QC Quantum Chemistry

    SAPO Silica aluminum phosphate

    TSA temperature swing adsorption

    XRD X-ray diffraction

    ngstrm (1010m)

  • Contents

    Abstract vi

    List of Papers vii

    Abbreviations xi

    1 Introduction 151.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.2 Zeolites as molecular sieves . . . . . . . . . . . . . . . . . . 161.3 Molecular multiscale modeling . . . . . . . . . . . . . . . . . 18

    2 Diffusionally enhanced CO2-over-N2 selectivity in Zeolite NaKA 232.1 Zeolite A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.2 Kinetic molecular sieving . . . . . . . . . . . . . . . . . . . . 252.3 Fine-tuning the effective pore window in Zeolite NaKA . . . . 26

    3 Predicting the CO2 uptake using force field based modeling 293.1 Force fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 Modeling the thermodynamic effect with Grand Canonical Monte

    Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.3 Modeling the kinetic effect with Molecular Dynamics . . . . . 333.4 Predicting the total uptake in narrow pore zeolites . . . . . . . 35

    4 Predicting the free energy barriers of diffusion using constrainedAIMD modeling 374.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . 374.2 Periodic DFT-simulations with CP2K . . . . . . . . . . . . . 394.3 Constrained AIMD . . . . . . . . . . . . . . . . . . . . . . . 404.4 Determining the free energy barriers of diffusion in Zeolite

    NaKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.5 Identifying the local diffusion rate-determining properties . . . 42

  • 5 Scaling up: Coarse graining the time evolution with Kinetic MonteCarlo 495.1 Kinetic Monte Carlo . . . . . . .