AlGaN HEMT

Embed Size (px)

Citation preview

  • 7/29/2019 AlGaN HEMT

    1/42

    U.S. Department of Defense

    UCS

    UCSBUCS

    UCSB

    AlGaN/GaN HEMTs and HBTs

    Umesh K. Mishra

  • 7/29/2019 AlGaN HEMT

    2/42

    U.S. Department of Defense

    UCS

    UCSBUCS

    UCSB

    PART I

    AlGaN/GaN HEMTs

  • 7/29/2019 AlGaN HEMT

    3/42

    U.S. Department of Defense

    UCS

    UCSBUCS

    UCSB

    1500

    260

    5000

    1300

    TmaxJFM

    Ratio

    BFOM

    Ratio

    EgMaterial

    9.5

    9.7

    13.1

    11.4

    700 C8024.63.4GaN

    600 C603.12.9SiC

    300 C3.59.61.4GaAs

    300 C1.01.01.1Si

    BFOM = Baligas figure of merit for power transistor performance [K**Ec3]JFM = Johnsons figure of merit for power transistor performance

    (Breakdown, electron velocity product) [Eb*Vbr/2]

    Materials Properties Comparison

  • 7/29/2019 AlGaN HEMT

    4/42U.S. Department of Defense

    UCSUCSBUCSUCSB

    NeedNeed Enabling FeatureEnabling Feature Performance AdvantagePerformance Advantage

    High Linearity

    High Frequency

    TechnologyLeverage

    High TemperatureOperation

    HEMT Topology

    High Electron Velocity

    Wide Bandgap

    Direct Bandgap:Enabler for Lighting

    High Power/Unit Width Wide Bandgap, High Field Compact, Ease of Matching

    High Efficiency High Operating Voltage Power Saving, ReducedCooling

    Optimum Band Allocation

    Bandwidth, -Wave/mm-Wave

    Rugged, Reliable,Reduced Cooling

    Driving Force for Technology:Low Cost

    High Voltage Operation High Breakdown Field Eliminate/Reduce Step Down

    Low Noise High gain, high velocity High dynamic range receivers

    ThermalManagement

    SiC Substrate High power devices withreduced cooling needs

    NeedNeed Enabling FeatureEnabling Feature Performance AdvantagePerformance Advantage

    High Linearity

    High Frequency

    TechnologyLeverage

    High TemperatureOperation

    HEMT Topology

    High Electron Velocity

    Wide Bandgap

    Direct Bandgap:Enabler for Lighting

    High Power/Unit Width Wide Bandgap, High Field Compact, Ease of Matching

    High Efficiency High Operating Voltage Power Saving, ReducedCooling

    Optimum Band Allocation

    Bandwidth, -Wave/mm-Wave

    Rugged, Reliable,Reduced Cooling

    Driving Force for Technology:Low Cost

    High Voltage Operation High Breakdown Field Eliminate/Reduce Step Down

    Low Noise High gain, high velocity High dynamic range receivers

    ThermalManagement

    SiC Substrate High power devices withreduced cooling needs

    Advantages of WBG Devices

    CS

    CS

  • 7/29/2019 AlGaN HEMT

    5/42U.S. Department of Defense

    UCSUCSBUCSUCSBDC Device Level Issues (HEMTs)

    If it aint good @ DC it aint goin to be good @ RF

    SG

    D

    Maximize I Maximize nS,

    Maximize nS Maximize PSP, PPE Maximize Al mole fraction

    without strain relaxation

    Mazimize Minimize effective gatelength

    Minimize Lg and gatelength extension

    Maximize Minimize dislocations Smooth interface

    - - - - - - - - - - - - -AlGaN PSP + PPE+ + + + + + +

    Lg

    GaN

    Vmax

    Imax

    V

    - - - - - - - - - - - - - - - - - - - -

    max max max18

    S

    P V I

    I V n

    =

    =

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    6/42U.S. Department of Defense

    UCSUCSBUCSUCSBIssues With Mazimizing Al Mole Fraction in AlxGa1-xN

    Eg

    Lattice Constant

    GaN

    AlN

    InN

    AlxGa1-xN

    G

    Pseudomorphic Relaxed with Misfit Morphology MediatedBy Dislocaton

    DISLOCATIONS LEAD TO PREMATURE RELAXATION OF AlGaN AND A POTENTIALRELIABILITY PROBLEM BECAUSE OF THE METALLIZED PITS

    xAl = 0.2 xAl = 0.4 xAl = 0.6

    250 nm 250 nm 250 nm

    xHC= 0.3

    relaxed

    GaN

    2.5 3 3.5

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    7/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBIssues With Increasing Mobility

    0

    5

    10

    15

    20

    25

    30

    0

    1 104

    2 104

    3 104

    4 104

    5 104

    6 104

    7 104

    10 100 1000

    NS,

    1012c

    m-2

    ,cm2

    /Vs

    1000/T, 1/K

    x = 0.09

    High Mobility AlGaN/GaN StructuresGrown by RF Plasma Assisted MBE

    xAl

    0.0 0.2 0.4 0.6

    ns

    [1

    013cm-2]

    0.60.81.0

    1.21.41.61.8

    300

    300

    300

    300

    [cm2/Vs]

    0

    1000

    1100

    1200

    1300

    1400

    1500

    INCREASING Al MOLE FRACTION DECREASES MOBILITY

    RMS [nm]

    0.1 0.2 0.3 0.4 0.5 0.6

    300

    300

    300

    300

    [cm

    2/Vs]

    600

    800

    1000

    1200

    1400

    Al0.3

    Ga0.7

    NMobility v. Al Fraction Plot

    Relaxed

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    8/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBMinimizing Gate Length Extension

    ELECTRONS IN SURFACE STATES AND/ORBUFFER TRAPS DEPLETE THE CHANNELCAUSING GATE LENGTH EXTENSION

    SEVERE CONSEQUENCE: DISPERSIONBETWEEN SMALL SIGNAL AND LARGESIGNAL BEHAVIOR BECAUSE OF THE LARGETRAP TIME CONSTANTS

    Vds

    (V)

    Id(5mA

    )

    DC

    AC

    Load line

    Dispersion

    WHY DO THESE TRAPS ARISE?

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    9/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    GaAsGaAs High PowerAmplifier Module

    Equivalent

    High Power

    GaNGaN AmplifierModule

    I

    N

    O

    U

    T

    I

    N

    O

    U

    T

    10-x power density ( > 10 W/mm)

    10-x reduction in power-combining

    Improved efficiency (> 60 %)

    Improved reliability

    Compact size

    Superior Performance at reduced costGaAsGaAs High PowerAmplifier Module

    Equivalent

    High Power

    GaNGaN AmplifierModule

    I

    N

    O

    U

    T

    I

    N

    O

    U

    T

    I

    N

    O

    U

    T

    I

    N

    O

    U

    T

    10-x power density ( > 10 W/mm)

    10-x reduction in power-combining

    Improved efficiency (> 60 %)

    Improved reliability

    Compact size

    Superior Performance at reduced cost

    Example of Advantage of WBG Devices

  • 7/29/2019 AlGaN HEMT

    10/42

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    11/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    AlGaN

    2DEG

    SOURCE DRAINGATE

    GaN

    Nucleation

    LayerGaN, AlGaN or AlN

    Substrate: Typically Sapphire or SiC

    SiN Passivation

    Schematic of Device Structure

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    12/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBBall and Stick Diagram of the GaN Crystal

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    13/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBPolarization World

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    14/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    AlxGa1-xN

    GaN

    + + + + + + + + + + +

    + + + + + + + + + + +

    ,Q AlGaN

    ,Q AlGaN

    ,Q GaN

    ,Q GaN

    + + + + + + + + + + +

    ( ) ( )( ) ,,x GaNAlGaNP Q Q = +

    includes the contribution of spontaneous and piezo-electric contributionsQ

    How does the electron gas form in AlGaN/GaN structures? - A

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    15/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    InxGa1-xN

    + + + + + + + + + + +

    + + + + + + + + + + +

    ,Q InGaN

    ,Q InGaN+

    ,Q GaN

    ,Q GaN

    ( ) ( )( ) ,,x InGaNGaNP Q Q = +

    includes the contribution of spontaneous and piezo-electric contributionsQ

    How does the electron gas form in AlGaN/GaN structures? - B

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    16/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    GaNAlGaN

    sp2

    ( )Q cm

    sn2( )Q cm

    vE

    ,Eg GaN

    l , Maximum Dipole MomentA GaN g GaN vV E E+ =!

    How does the electron gas form in AlGaN/GaN structures? - C

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    17/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    EFGaNAlGaN

    EDD

    DD+ 2( )Q cm

    Q sn

    How does the electron gas form in AlGaN/GaN structures? - D

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    18/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    Vds

    (V)

    Id(5

    mA)

    DC

    AC

    Load line

    Dispersion

    Dispersion in AlGaN/Ga HEMTs

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    19/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    Lg

    AlGaN

    GATE

    Electrons in

    Surface States

    GaN

    Source Drain

    Depletion of 2DEG

    caused by occupied

    surface states

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    20/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBPerformance of Passivated AlGaN/GaN HEMT on Sapphire

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    21/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 5 10 15 20 25 30

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Pout

    Gain

    PAEId

    Pin

    (dB)

    P

    out

    (dB),Ga

    in(dB),PAE(%)

    Id(mA)

    Pout = 10.3 W/mmPAE= 41.6%

    f=8GHz,Tuned for Power

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 5 10 15 20 25 30

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Pout

    Gain

    PAEId

    Pin

    (dB)

    P

    out

    (dB),Ga

    in(dB),PAE(%)

    Id(mA)

    Pout = 10.3 W/mmPAE= 42%

    f=8GHz,Tuned for Power

    Performance of AlGaN/GaN HEMT on SiC (CLC)

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    22/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    -5 0 5 10 15 20 25

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    Pin (dB)

    Pout(

    W/mm)

    f=8GHz

    PAE(%)

    Increasing Vds

    PAE; Pout

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    -5 0 5 10 15 20 25

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    Pin (dB)

    Pout(

    W/mm)

    f=8GHz

    PAE(%)

    Increasing Vds

    PAE; Pout

    Drain Bias Dependence of Rf Power (CLC)

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    23/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBFlip-chip AlGaN/GaN HEMT for Thermal Management

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    24/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    Vds (V/divsion)

    Id(A/d

    ivsion)

    Vg start: +2V, Step: -2 V

    I-V Curves from 8mm-wide HEMT

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    25/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBLow Flip-chip Wide Bandwidth Amplifier

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    26/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    0

    5

    10

    15

    20

    25

    30

    35

    40

    18 22 26 30 34 38 42

    10

    15

    20

    25

    30

    35

    40

    45

    50

    GainDEPAEPout

    Pin (dBm)

    Gai

    n(dB),DE(%),PA

    E(%)

    Pout(dBm)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    18 22 26 30 34 38 42

    10

    15

    20

    25

    30

    35

    40

    45

    50

    GainDEPAEPout

    Pin (dBm)

    Gai

    n(dB),DE(%),PA

    E(%)

    Pout(dBm)

    Pulse Power Performance of mm-flipped Device

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    27/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    IncludesIncludes ALL LEADINGALL LEADING players in the fieldplayers in the fieldCREE =CREE = Cree LightingCree Lighting++ CreeCree--DurhamDurham

    1996 1998 2000 2002

    Total power

    Year

    Cree

    Totalpower(W)

    HRL

    CREE

    Cree

    UCSBCornell

    0

    10

    20

    30

    40

    50

    60

    Early

    Player

    s

    Sapphire

    SiC

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1996 1998 2000 2002Year

    Powerde

    nsity(W/mm)

    CREE

    Cree

    Cree

    Cornell

    UCSB

    HRL

    Early

    Play

    ers

    Sapphire

    SiC

    11 Power densityCornell

    UCSB

    NEC

    IncludesIncludes ALL LEADINGALL LEADING players in the fieldplayers in the fieldCREE =CREE = Cree LightingCree Lighting++ CreeCree--DurhamDurham

    1996 1998 2000 2002

    Total power

    Year

    Cree

    Totalpower(W)

    HRL

    CREE

    Cree

    UCSBCornell

    0

    10

    20

    30

    40

    50

    60

    Early

    Player

    s

    Sapphire

    SiC

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1996 1998 2000 2002Year

    Powerde

    nsity(W/mm)

    CREE

    Cree

    Cree

    Cornell

    UCSB

    HRL

    Early

    Play

    ers

    Sapphire

    SiC

    11 Power densityCornell

    UCSB

    NEC

    Power Performance vs. Year

    Cree108W,

    CW Cree

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    28/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB

    Part II

    High Voltage Operation (> 330 V) ofAlGaN/GaN HBTs

    UCS

    UCSBUCS

    UCSBBipolar transistor key issues

  • 7/29/2019 AlGaN HEMT

    29/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBBipolar transistor key issues

    Injection

    !1

    n! 1[I=I0 exp (qv/nkt)]

    Output ConductanceOutput Conductance

    IC/VCE!!!! 0

    (WB/VCE!!!! 0)

    CollectionCollection

    Cbc!!!! 0

    v!!!! vsat [2 x 107 cm/s] (Kolnik et. al.)

    Vbr!!!! Ecrit WC [Ecrit ~2 MV/cm] (Bhapkar and Shur.)

    Subcollector

    Base

    Collector

    Emitter

    TransportTransport-- !!!! 1

    UCS

    UCSBUCS

    UCSBHurdles with GaN bipolar transistors

  • 7/29/2019 AlGaN HEMT

    30/42

    U.S. Department of Defense

    UCSUCSBUCSUCSBHurdles with GaN bipolar transistors

    Lack of low damage etch toreveal base

    Leaky E/B junction

    Bad base contact

    No etch stop High RB

    Poor p-GaN base contact

    Low p-GaN base

    conductivity Deep acceptor (~160 meV)

    Subcollector

    Base

    Collector

    Emitter

    Surface leakageSurface leakage

    due to etch damagedue to etch damage

    Dislocation causesDislocation causes

    leakageleakage

    Hard to control junction placement inHard to control junction placement inMOCVD due to memory effect of pMOCVD due to memory effect of p--dopantdopant MgMg

    Low minority carrierLow minority carrier

    lifetimelifetime

    UCS

    UCSBUCS

    UCSB Demonstration of dislocation enhanced leakage

  • 7/29/2019 AlGaN HEMT

    31/42

    U.S. Department of Defense

    UCSUCSBUCSUCSB g

    1 10-15

    100 10-15

    10 10-12

    1 10-9

    100 10-9

    10 10-6

    -20 -15 -10 -5 0 5 10 15 20

    LeakageCurrent[A]

    Applied Bias [V]

    Leakage from Collector to Emitter,

    Wing vs Window

    LEO used to investigate leakage of devicesLEO used to investigate leakage of deviceswithout dislocations. (Lee McCarthy et al.)without dislocations. (Lee McCarthy et al.)

    Dislocated

    LEO

    AFM scan of wing vs Windowon LEO GaN

    Regrowth Mask Regrowth Mask

    StandardtemplateLEO GaN

    Results: LEO device demonstratedReduction in LeakageStable operation past 20V

    Gain unchangedDevices on dislocated material alsofunctional

    ExplanationThick substrate sufficiently reduces

    dislocations to prevent C/E short in

    window regionGain (e) not currently limited by

    dislocation density

    UCS

    UCSBUCS

    UCSBStrategy: Thick Collector

  • 7/29/2019 AlGaN HEMT

    32/42

    U.S. Department of Defense

    gy

    Decent dislocation density

    High quality MOCVD templates achievedDislocation density ~ 5e8 cm-2

    Low background doping

    ND < 1e16 cm-3 (Assuming uniform doping ND and Ecritical = 2 MV/cm,requires 10 m to achieve 1 KV breakdown voltage.)

    Doping vs. Depth

    (010704GA, 8 m collector)

    1.E+14

    1.E+15

    1.E+16

    1.E+17

    0 1 2 3

    Depth (m)

    Doping(cm-3)

    UCS

    UCSBUCS

    UCSBEmitter Regrowth Process Flow

  • 7/29/2019 AlGaN HEMT

    33/42

    U.S. Department of Defense

    g

    Selectively grow MOCVDemitter on base-collector

    structures.1. Pattern regrowth mask

    2. Regrow emitter layer byMOCVD

    3. Remove mask and contactbase and etch to collector

    4. Contact collector, emitter

    n+ Subcollector

    Sapphire Substrate

    n- Collector

    p Base

    Mask

    n+ Subcollector

    Sapphire Substrate

    n- Collector

    p Base

    n+

    Emitter

    n+ Subcollector

    Sapphire Substrate

    n- Collector

    p Base

    n+

    Emitter

    n+ Subcollector

    Sapphire Substrate

    n- Collector

    p Base

    n+

    Emitter

    1. 2.

    3. 4.Pd/Au

    Al/Au

    Al/AuRegrown emitter

    UCS

    UCSBUCS

    UCSB SIMS: Mg by MOCVD

  • 7/29/2019 AlGaN HEMT

    34/42

    U.S. Department of Defense

    Severe memory effect observed in non-interrupted MOCVD growthSlow decay tail into GaN:Si regrown on as-grown GaN:Mg layer

    Growth directionGrowth direction

    1E+15

    1E+16

    1E+17

    1E+18

    1E+19

    1E+20

    1E+21

    0 0.5 1 1.5 2 2.5 3

    Depth (m)

    Concentration(cm-3)

    Low Mg

    background in

    clean reactor

    Mg

    Si

    Turnoff of Mg source

    Decay rate ~ 140

    nm/decade

    230 nm

    400 nm

    1.E+16

    1.E+17

    1.E+18

    1.E+19

    1.E+20

    1.E+21

    1 1.5 2 2.5 3 3.5

    Depth (m)

    Concentration(cm-3) Mg

    Si

    Regrown surface

    Decay rate

    ~ 115 nm/decade

    ~ 30 nm/decade

    Memory effect Slow decay tail in regrowth

    UCS

    UCSBUCS

    UCSBSIMS: regrowth with surface treatment

  • 7/29/2019 AlGaN HEMT

    35/42

    U.S. Department of Defense

    Regrown in Mg-free reactor and all grown by MOCVD Presence of an excessive amount of Mg on the surface, which

    can be removed by acid etch

    Occurrence of Mg diffusion, ~ 40 nm/decade sharpness achieved

    1E+15

    1E+16

    1E+17

    1E+18

    1E+19

    1E+20

    1E+21

    1E+22

    1E+23

    0 500 1000 1500 2000

    Depth (nm)

    Mg

    concentratio

    n(a.u.)

    C: as grown, ~100 nm/decadeD: etch in HFand HCl

    for 5 min, ~ 50 nm/decadeE: etch in BHF (1:20) for

    15 sec and HCl for 20 sec,

    ~40 nm/decade

    C

    D

    E

    Regrowth surface

    Detection limit

    UCS

    UCSBUCS

    UCSBSelectively regrown n/p diodes

  • 7/29/2019 AlGaN HEMT

    36/42

    U.S. Department of Defense

    Mask enhanced growth complicatesthe analysis

    Regrowth rate depends on the

    mask layout, diode size etc

    Bunny ear regrowth profile isoften seen

    Only the emitter edge is active

    in device operation due to

    highly resistive base layer

    The junction quality depends on

    how the regrowth is initiated,

    e.g. Temp, P, flows, presence of

    Si and Al etc.

    Bunny ear regrowth profile of two differentsquare diodes

    UCS

    UCSBUCS

    UCSB

  • 7/29/2019 AlGaN HEMT

    37/42

    U.S. Department of Defense

    UCS

    UCSBUCS

    UCSBRegrown n/p Diodes Characteristics

  • 7/29/2019 AlGaN HEMT

    38/42

    U.S. Department of Defense

    Comparison of various structures regrown on 0.5 m GaN:Mg

    1100/300

    1100/300

    1100/300

    1100/300

    1140/760

    ~60xAl~ 5%

    30 nm GaN:Si

    30 nm AlGaN->GaN:Si

    730 nm AlGaN:Si

    60 nm GaN->AlGaN

    60 nm GaN

    010517AA

    ~40450 nm GaN:Si (1e18)

    30 nm GaN

    010513GC

    ~30xAl~ 5%

    250 nm AlGaN:Si

    (1e18)75 nm GaN->AlGaN:Si

    (1e18)

    000714AF

    ~30250 nm Al0.06GaN:Si(1e18)

    000714AE

    ~30400 nm GaN:Si

    (4e18 cm-3)

    0005

    10GF

    Growth Parameter

    G.R. Temp/Press

    (nm/min) (C/Torr)

    Layer structureRun#

    -20 -15 -10 -5 0 5

    10-6

    1x10-5

    1x10-4

    10-3

    10-2

    10-1

    100

    101

    102

    Idensity(A

    /cm

    2)

    V (Volts)

    000510GF

    000714AE

    000714AF

    010513GC010517AA

    Year 2000

    Year 2001

    UCS

    UCSBUCS

    UCSBHBT with 8 mm GaN collector

  • 7/29/2019 AlGaN HEMT

    39/42

    U.S. Department of Defense

    Current gain () > 20 Common emitter operation > 300 V Non-passivated Base thickness 1000

    Al0.05GaN emitter Vbr ~330 V

    UCS

    UCSBUCS

    UCSB Device structure

  • 7/29/2019 AlGaN HEMT

    40/42

    U.S. Department of Defense

    Utilization of uid GaN spacer and grading layer- HBTs with high emitter injection coefficiency

    Etch damage and current mask layout limits Vbr

    n+ Subcollector

    Sapphire Substrate

    1000 p Base

    n+

    Emitter

    Sapphire

    2 m GaN:Si (1e18 cm-3) subcollector

    8 m uid GaN (4e15 cm-3) collector

    100 nm GaN:Mg (2e19 cm-3) base

    8 nm uid GaN spacer

    8 nm GaN->Al0.05

    GaN (?3e18 cm-3) grading

    4 nm GaN:Si (1e18 cm-3) contact

    4 nm Al 0.05 GaN->GaN:Si (1e18 cm-3) grading

    105 nm Al 0.05 GaN:Si (1e18 cm-3) emitter

    8 m n- collector

    Effective collectorthickness ~ 2-3 m

    UCS

    UCSBUCS

    UCSBI-V Characteristics

  • 7/29/2019 AlGaN HEMT

    41/42

    U.S. Department of Defense

    reasonable base contacts

    Improved B/E diodes Rectifying B/C diodes, Vbr > 300 V

    Base-collector diode

    -12 -10 -8 -6 -4 -2 0 2 4 6 8 10

    -0.04

    -0.020.00

    0.02

    0.04

    0.06

    0.080.10

    0.12

    I(mA)

    VBE

    (V)

    Base-emitter diode

    -10 -8 -6 -4 -2 0 2 4 6 8 10-50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    I(A)

    V (Volts)

    UCS

    UCSBUCS

    UCSBSummary

  • 7/29/2019 AlGaN HEMT

    42/42

    U.S. Department of Defense

    Conclusion

    In selective emitter regrowth, a sharp Mg profile, ~ 40

    nm/decade, enables the precise junction placement

    Improvement of regrown-emitter/base diodes

    Demonstration of high Vbr (> 300 V) with high (DCcommon emitter operation up to 35)