29
[email protected] Dr. Ulrike Schmid-Staiger National German Workshop on Biorefineries 15 th September 2009, Worms Algae Biorefinery - Concepts

Algae Biorefinery : Concepts

Embed Size (px)

Citation preview

Page 1: Algae Biorefinery : Concepts

[email protected]

Dr. Ulrike Schmid-Staiger

National German Workshop on Biorefineries15th September 2009, Worms

Algae Biorefinery - Concepts

Page 2: Algae Biorefinery : Concepts

[email protected]

Microalgae - microscopic small „plants“

Ubiquitous - seawaterfreshwatersoilair

� About 40.000 different algae in marine water sytems

� Algae are consumed bymankind for thousand of years

� 40-50 Gigatons of carbon arefixed by marine algae everyyear

Page 3: Algae Biorefinery : Concepts

[email protected]

Algae biomass– a sustainable renewable resource for fine chemicals and energy

Advantages of using microalgae as renewable resource

� Growth rate is 5 to 10 times higher compared to plants

� Essential for growth are sunlight, CO 2, and anorganicnutrients like nitrogen and phosphorous

� Carbon dioxide emitted from combustion processes can be used as a source of carbon for algal growth (1 kg of dry algal biomass requiring about 1.8 kg of CO 2).

� Microalgae can be cultivated in seawater or brackish water on non-arable land, and do not compete for resources with conventional agriculture.

� Microalgae biomass can be harvested during all seasons.

� The biomass is homogenous and free of lignocellulose.

Page 4: Algae Biorefinery : Concepts

[email protected]

Lipids

Main components of microalgaeAlgae

Proteins

• high contentup to 50% of dry weight in growing cultures

• all 20 amino acids

Carbo-hydrates

• storage productsά-(1-4)-glucans ß-(1-3)-glucans, fructanssugars, glycerol

• only very low cellulose content

storage lipids

• mainly TAGs

• up to 50% of DW

• with solvents extractable fromwet biomass

• recovery by pressing out the dry and ruptured biomass

valuable Compounds

• pigments

• antioxidants

• fatty acids

• vitamins

• anti-fungal, -microbial -viral toxinssterolsMAAs

membrane lipids

• different lipid classes

• up to 40% of total lipids are PUFA

• solubilised by solventextraction of wet biomass, then transesterification

Page 5: Algae Biorefinery : Concepts

[email protected]

Valuable compounds from microalgae

Pigments / Carotenoidsß-Carotene

AstaxanthinLuteinZeaxanthinCanthaxanthinChlorophyllPhycocyaninPhycoerythrinFucoxanthin

Fatty acids (PUFAs) DHA (C22:6)EPA (C20:5) ARA (C20:4) GAL (C18:3)

VitaminsA, B1, B6, B12, C, EBiotineRiboflavinNicotinic acidPantothenateFolic acid

AntioxidantsCatalasesPolyphenolsSuperoxid DismutaseTocopherols

Other / PharmaceuticalsAntifungalAntimicrobialAntiviralToxinsAmino acids, ProteinsSterolsMAAs as light protectant

Page 6: Algae Biorefinery : Concepts

[email protected]

Utilization of microalgae biomass

Lipids

Proteins

Carbo-hydrates

valuable Compounds

BioenergyBiofuels

Feed

Chemical Building Blocks

AquaculturePoultry breeding

Fatty acids/lipidsPigmentsVitaminsAntioxidantsNutraceuticals

Bifunctional building blocksacidsalcohols

DieselKeroseneMethaneSyngas

Productionin closed PBR

Harvestand

Processingdewateringdrying

Algae biomassfractionation

Food

Feed

Food

Cosmetics

Page 7: Algae Biorefinery : Concepts

[email protected]

Sustainable Algae-based Processes

CHP-Plant

Microalgae Cultivation

Lignocellulose freeAlgae Biomass

Solar Energy

NutrientsN , P, Mg, K

CO2

Wet BiomassConcentrating

Methane electr. Energy thermal Energy

Biogas Technology

Input Output

• Carbohydrates

• Proteins

• Lipids, PUFAs

• Antioxidants

• Pigments

• Silicates

• Micronutrients (Fe, Zn, Mg)

Production DSP

Residual Biomass

Operating Power Drying

Extraction

Recycling

Page 8: Algae Biorefinery : Concepts

[email protected]

Comparison between different cultivation systems

highhighlowBiomass concentration

lowhighhighEnergy demand per kg biomass produced

highhighlowVolumetric productivity

highhighlowCost to scale-up

highhighlowSterility

low

Low-high

excellent

excellent

Flat panel airlift reactors

excellentFairly goodLight efficiency

highlowOxygen accumulation

Low-highPoorGas transfer

excellentNoneTemperature control

Tubular reactorsRaceway pondsSystem

Net energy production is possible !

Page 9: Algae Biorefinery : Concepts

[email protected]

static mixer

main targeted flow

deep-drawn PVC half-shellsincluding the static mixers

�High productivity by a sophisticated system of static

mixers resulting in efficient light distribution to all algal

cells and low shear forces effecting to the algal cells

�Low production cost of the reactor by construction of

plastics

�High scalability and modularity

�Low energy consumption for inter-mixing due to airlift-

driven intermixing

�A pure photoautotrophic production process

- Low requirements of energy as sunlight as main energy

source can be used

�Provides the possibility to grow all kind of algae with high

productivity at high biomass concentration

Characteristics of the Flat Panel Airlift Reactor

Page 10: Algae Biorefinery : Concepts

[email protected]

Scale-up Step to a Pilot Plant

� Link of several reactor modules (with a volume of 180 litre each) and joint operation outdoors

� Production of algal products in the range of several hundred kilograms.

� Net energy production is possible, due to reduction of energy demand with scale-up

64 MJ/kg TS 24 MJ/kg TS

21,6 MJ/kg TS

Page 11: Algae Biorefinery : Concepts

[email protected]

0

20

40

60

80

100

120

140

160

Energieaufwand / Energy demand (MJ/kg DW)

Raceway Rohrreaktorhorizontal,gepumpt*

Rohrreaktorhelical,

gepumpt*

Rohrreaktorvertikal,

gepumpt**

Flat PanelReaktor, Uni

Almeria*

FPA , Subitecderzeit §

FPA , Subitec,Ziel §

Comparison of the energy input per kg DW of different production systems

Page 12: Algae Biorefinery : Concepts

[email protected]

Sustainable Algae-based Processes

CHP-Plant

Microalgae Cultivation

Lignocellulose freeAlgae Biomass

Solar Energy

NutrientsN , P, Mg, K

CO2

Wet BiomassConcentrating

Methaneelectr. Energy thermal Energy

Biogas Technology

Input Output

• Carbohydrates

• Proteins

• Lipids, PUFAs

• Antioxidants

• Pigments

• Silicates

• Micronutrients(Fe, Zn, Mg)

Production DSP

Residual Biomass

Operating Power Drying

Extraction

Page 13: Algae Biorefinery : Concepts

[email protected]

Growth and Biomass Productivity in FPA-Reactors exemplary of Phaeodactylum tricornutum

� High biomass productivity at even high biomass concentrations due to efficient intermixing

� Dependency of biomass productivity of relative light intensity per cell

� Optimum biomass yield at relatively low light availability (g DW produced per mole of photons E).

Phaeodactylum tric.: Growth in FPA-Reaktor

0

5

10

15

20

25

30

10 15 20 25 30

time

DW

(g/l)

0

400

800

1200

Ligh

t int

ensi

ty

(µE

m-2

s-1

)

0,0

0,4

0,8

1,2

1,6

0 5 10 15 20 25

biomass concentration (g DW l -1)

Pro

d. (g

DW

l-1

d-1)

0,0

0,4

0,8

1,2

1,6

0,0 0,1 0,2 0,3 0,4 0,5

rel. light availability (E g DW -1d-1)P

rod.

(g

DW

l-1

d-1

); Y

light

(g

DW

/E)

Y light (g DW/E)

Page 14: Algae Biorefinery : Concepts

[email protected]

Production of storage products in microalgae

Growing algal cells

N- and P-limitationvaluable

compound

proteins

carbohydrates

lipids

pigments

Carbohydrates as energy storage product

valuable compound

proteins

carbohydrates

lipidspigments

valuable compound

proteinscarbohydrates

lipids

pigments

Lipids as energy storage product

Page 15: Algae Biorefinery : Concepts

[email protected]

Energetic use: Microalgal lipid production

���� Microalgal lipid production depends strongly on available light per cell

0

10

20

30

40

50

60

0 2 4 6 8 10

time (d)

lipid

s (

% o

f dry

wei

ght)

Nanno.o. Nanno.l Chl.v. Nanno.o2

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2rel. light availability (E g DW -1*d-1 )

Lipi

d in

crea

se p

er d

ay (

%)

Optimized production

Page 16: Algae Biorefinery : Concepts

[email protected]

Fatty acid composition

Chlorella vulg. - Wachstumsphase

C14:0

C16:0

C18:1n9cC18:2n6c

C20:0

C16:1n7

C18:0

Gesamtlipidgehalt 9 % der TS

Chlorella vulg. - Lipidphase

C14:0C16:0

C18:1n9c

C18:2n6c

C20:0

C18:0

C16:1n7

Ölsäure

Total lipid content 45% of DW

Main fatty acid: C18:1 oleic acid

Total lipid content 9 % of DW

Growth phase Lipid phase

Page 17: Algae Biorefinery : Concepts

[email protected]

Downstream Processing

Algaeproduction Cell harvest Drying Cell disruption

Extraction /Purification Products

Process line

1

2

3

Separation

Filtration

Precipitation

Flotation

Spray drying

Superheatedsteam

High pressurehomogenizer

Ball mill

Fast expansion

from drybiomass

Fluid extractionorg. solventsl / H2O

Supercritical fluidsscCO2

Fluid extractionorg. solventsl / H2O

from wetbiomass

hydrophilic

• Proteins• Starch• Glycerine• Vitamins• Micronutrients

lipophilic

• Oils• Fatty acids (PUFA)• Carotenoids• Steroids

Residual biomass

FhG1

Page 18: Algae Biorefinery : Concepts

Slide 17

FhG1 Th e challenge foralgal biomass harvesting is to take the very low cell densityand concentrate it to a point where lipid extraction ispossible (as much as 1000X) using the lowest possible costand process options. Th erefore, energy-intensive processessuch as centrifugation may be feasible for high-valueproducts but are far too costly in an integrated systemproducing lower-value products, such as algal oils forbiofuels applications.Fraunhofer Gesellschaft, 12-09-2009

Page 19: Algae Biorefinery : Concepts

[email protected]

Sustainable Algae-based Processes

CHP-Plant

Microalgae Cultivation

Lignocellulose freeAlgae Biomass

Solar Energy

NutrientsN , P, Mg, K

CO2

Wet BiomassConcentrating

Methaneelectr. Energy thermal Energy

Biogas Technology

Input Output

• Carbohydrates

• Proteins

• Lipids, PUFAs

• Antioxidants

• Pigments

• Silicates

• Micronutrients(Fe, Zn, Mg)

Production DSP

Waste Biomass

Operating Power Drying

Extraction

Page 20: Algae Biorefinery : Concepts

[email protected]

Downstream processes of microalgae: Eicosapentaenoic acid (EPA)

• part of the membrane lipids of algal chloroplasts• occurs as one of the fatty acids of the monogalactosyldiglycerides

� cell disruption� preextraction of the monogalactosyldiglyceride necessary

• only fatty acid ethyl esters or free fatty acids can be extracted by use of scCO2

� transesterification of the monogalactosyldiglyceride

monogalactosyldiglyceride Fatty acid ethyl ester

+ +

EthanolEPA

Gly

cero

l

Gly

cero

l

Lipase/

Alkali-catalyst EPA

Fatty acidFatty acid

Page 21: Algae Biorefinery : Concepts

[email protected]

Vorlagebehälter

scCO2 SourcescCO 2-Extraction

Extraction with scCO 2

Expansion

EPA

EtOH

Extraction (2. steps)

1h, RT

Lipase/KOH

Trans-esterification/ Saponification

Centrifugation(filtration)

Preextraction withtransesterification

Downstream processes of microalgae: Eicosapentaenoic acid (EPA)

Algaecultivation

Page 22: Algae Biorefinery : Concepts

[email protected]

Downstream processes of microalgae: Astaxanthin

Vorlagebehälter

scCO2 SourcescCO 2-Extraction

Extraction with scCO 2

Expansion

Astaxanthinoil

Drying and grindingAlgaecultivation

Drying Grinding

Page 23: Algae Biorefinery : Concepts

[email protected]

Energy conversion processes from microalgae

Page 24: Algae Biorefinery : Concepts

[email protected]

Schematic process of biodiesel production

Page 25: Algae Biorefinery : Concepts

[email protected]

Sustainable Algae-based Processes

CHP-Plant

Microalgae Cultivation

Lignocellulose freeAlgae Biomass

Solar Energy

NutrientsN , P, Mg, K

CO2

Wet Biomass Concentrating

Methane electr. Energy thermal Energy

Biogas Technology

Input Output

• Carbohydrates

• Proteins

• Lipids, PUFAs

• Antioxidants

• Pigments

• Silicates

• Micronutrients (Fe, Zn, Mg)

Production DSP

Residual Biomass

Operating Power Drying

Extraction

Recycling

Page 26: Algae Biorefinery : Concepts

[email protected]

Outlook: Integrated process for mass and energy based utilization of microalgae

Products: pigmentsω-3-fatty acidsvitamins

residual biomass

digestion /codigestion

CO2

NH4, PO4

recycling

1,85 kg CO2 are fixed per kg algal biomass produced

CHPS

Algal biomassH2O

CO2

O2 CH2O

Calvin-ZyklusLichtreaktionen

ATP+NADPH+H+

ADP+ Pi

+NADP+

Energie

8 MJ electricity

12 MJ heatper m³ biogas

Biogas

organic wastes

Page 27: Algae Biorefinery : Concepts

[email protected]

Demands to Microalgal Biorefinery Processes

• Energy efficient algae biomass production process

high rate of photosynthesis, photobioreactor, CO2-utilization, net energy

balance

• Product recovery

solvents (which and quantity)

extraction from wet biomass, avoiding energy intensive drying steps

• Residual biomass utilization

free of lignocellulose, conversion to biogas by anaerobic digestion,

• Recycling of nutrients

CO2, nitrogen, phosphate

• Water use

quantity and quality

Page 28: Algae Biorefinery : Concepts

[email protected]

Thank you for your attention

Ulrike Schmid-Staiger, Ph.D.Fraunhofer IGBNobelstr. 1270569 StuttgartTel. +49-(0)711-970 4111Email: [email protected]

Page 29: Algae Biorefinery : Concepts

[email protected]

Downstream processes of microalgae: Eicosapentaenoic acid (EPA)

• preextraction with EtOH

• wet Biomass shows betterresults than dried biomass

• only 2 extraction steps arenecessary

27,4

77,6

12,7

5,3

9,6

0,0

0

10

20

30

40

50

60

70

80

90

100

2% dried biomass 2% wet biomass

Yie

ld [%

]

3. extraction2. extraction1. extraction