AFM Lecture

Embed Size (px)

Citation preview

  • 8/16/2019 AFM Lecture

    1/41

    1

    Introduction in Atomic Force Microscopy 

    • How can we “see” very small things? 

    image (geometrical representation)

    shape 

    size 

    color

    - light

    - electronsT 

    surface information

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    2/41

    2

    • Scanning probe microscopy techniques resemble the way

    of how blind people get images about things. They explore

    the thing surfaces by touch. 

    •In scanning probe microscopy a sensitive tip explores thesurface of a micro or nano object in the same way as a

    stylus profilometer get the profile of a sample surface.

    image

    tip

    surface

    What is scanning probe microscopy? How SPM help us to “see” very small things 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    3/41

    3

    How a tip probes the surface of a sample ? FIELD EMISSION EFFECT (1972 

    R.D. Young, J. Ward, F. Scire,Rev. Sci. Instrum. 43 (1972) 999.

    )exp(   d c I   

    O

         s     u     r      f     a     c     e

    STM

    TUNNELING  ELECTRON  CURRENT  INTENSITY  1982

    G. Binnig, H. Rohrer, C. Gerber, E. Weibel

    Surface Studies by Scanning Tunneling Microscopy

    Phys. Rev. Lett. 49 (1982) 57.

          d

          t      i     p

         R

     sample

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    4/41

    4

    How a tip probes the surface of a sample ? 

    O

         s     u     r      f     a     c     e

    2d 

     AR F VdV   

    nd  F    1

    AFM

    ATOMIC  AND MOLECULAR   FORCES  1986

    G. Binnig, C.F. Quate, C. Gerber Atomic Force Microscope 

    Phys. Rev. Lett. 56 (1986) 930.

          d

          t      i     p

         R

     sample

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    5/41

    5

    How a tip probes the surface of a sample ? 

    INTENSITY OF REFLECTED LIGHT (1984)SCANNING NEAR FIELD OPTICAL MICROSCOPY

    D. W. Pohl、W. Denk, M. Lanz, Appl. Phys. Lett.  44 (1984) 651 

    O

         s     u     r      f     a     c     e

    4

    1

    d  I  

    SNOM

          d

          t      i     p

         R

     sample

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    6/41

    6

    Principle of the STM operation 

    +

    -

     feedback

     controlunit

    (x, y, z)

    piezoelectricactuator 

    I t 

    sample

     x  (x, y) scan

    controlunit

    samplestage

    10 mV to 1V

    0.2 to 10 nA

    •The tip is approached to sample

    surface until the tunneling current

    reaches certain preset value. 

    •Then, the tunneling current is is

    kept constant during the scan by a

    feedback unit that controls the tip

    height, z , through a piezoelectric

    actuator. The sample surface is

    raster scanned in a (x, y) plan parallel to the sample surface. 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    7/41

    7

    Principle of the STM operation 

    sample

    tipU 

    I t = const.

    z = variable

    sample

    tipU 

    I t= variable

    z = const.

    z(x, y)

    y  x 

    I t(x, y)

    y  x 

    Depending on the feedback gain,

    the STM may operate in one of

    the either constant-current mode

    or constant-height mode.

    High feedback gain 

     I t  = const. mode 

    Low feedback gain 

     z = const. mode

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    8/41

    8

    +

    -U

    STM

     feedback

     control unit

    X,Y,Z scan

    STMZ PZT

    I t 

    sample

    STM

    tip

     AFM

    tip modulating

    piezo

    Principle of the AFM operation G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope,

    Phys. Rev. Lett. 56 (1986) 930.

    3

    4)( 

      

     l 

    hb E 

    l  z 

     F k    N  N 

    h

    b

    FORCE SENSOR

    k  N = 50 N/m

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    9/41

    9

    +

    -

    normal force

    signalOA

    laser 

    cantilever base

    cantilever 

    photodiode

    Detection of cantilever deflection system(optical lever) 

    w / 2 

    l l 

    l eff 

    3

    2/122 4/w2

    hb E k  N 

    k  N  = 0.1 - 1 N/m

    force sensor

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    10/41

    10

    Detection of cantilever deflection system(piezoelectric sensor and tuning fork) 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    11/41

    11

    Silicon microfabrication 

    S. Akamine, R. C. Barrett, M. J. Zdeblick, and C. F. Quate,

     A Planar Process for Microfabrication of a Scanning

    Tunneling Microscope,

    Sensors and Actuators A21-23 (1990) 964.

    S. Akamine, R. C. Barett, and C. F. Quate,

     Improved AFM images using microcantilevers with sharp tips,

    Appl. Phys. Lett. 57 (1990) 316.

    Manufacturing the AFM probes 

    0.5mm

    3.5mm

    Pyrexglass

    Si3N

    4

     Au

    0.1-0.2 mm

    35o

    3-4 m

    (111)

    35o (110)

    100)

    •Low effective mass

    •high resonant frequency (> 10KHz)

    •small elasticity constant (0.1-1 N/m)

    •high quality factor ( 104 in UHV)

    •good light reflectivity

    •sharp tips (10-50 nm)

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    12/41

    12

    Commercial AFM probes 

    silicon triangular pyramidal tip

    triangular single-beam

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    13/41

    13

    AFM tip characteristics 

    TEM image of a carbon nanotubeattached to the AFM tip

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    14/41

    14

    Scan system: the piezolelectric tube lead zirconate titanate cylindrical

    tube with one inner electrode andfour outer electrodes

          P      I      E      Z      O

    -x +x 

    -y 

    -x +x 

    -y 

    +y 

    +V  x 

    -V  x 

    +V  y 

    -V  y 

    d t 

    l d V  z  y x  z  y x

    2

    31,,,,

    x

      c  o  n   t  r  a  c   t  e   d

      e   l  o  n  g  a   t  e   d

    fixed base

    -Vx

    +Vx

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    15/41

    15

    Block diagram of the AFM 

    force detector (F )

     x 

    y z 

    -y 

    -x +

     x 

    +

    preset force

    value

    (F 0 )

    subtraction

    stage

    (F -F 0 )

    error 

    signalPC

      z  s   i  g  n  a   l

      y  s  c  a  n

      x  s  c  a  n

    high voltageamplifier 

       A   D   C

    DAC

    sample 

       P   I   E   Z   O

    -x + 

    x -y 

    The force signal from the force detector  isfed into the feedback loop  consisting of

    subtr action stage  that yields the error

    signal, which is the difference between the

     preset force and the detected force. The

    error signal is integrated to remove high

    frequency noise and is fed to a correctionblock  to set the voltage that has to be

    applied to the z actuator  in order to keep

    constant the tip-sample interaction force.

    feedback loop   -digital

    -analog

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    16/41

    16

    forwardbackward

     Y

    X

    fast scan direction

     s l   ow

     s  c  an d i  r  e c  t  i   on

    (a)

    forwardbackward

     Y

    X

    fast scan direction

     s l   ow

     s  c  an d i  r  e c  t  i   on

    (b)

    How an AFM image is acquired? 

     j 

     j + 1i  i+1y 

     x 

    z i, j 

    y  x

    11,

     N 

     N 

     X  y x

    0 200 400 600 800 1000

    -10

    0

    10

     

    z(x)

    x [ nm ]

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    17/41

    17

    Contact mode of AFM  operation 

    sample

    sample

    sample

    (a)

    (b)

    (c)

    20 0 -20 -40 -60 -80 -100

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    e

    b

    a

    working point

    (z)

    tip

     a       t         t        r       a       c       t        i        v      

     e      

       r   e   p  u   l   s   i  v   e

     jump out of contact

     jump into contact

     

    approach

     retract

       t   i   p  -   s   a   m   p   l   e   i   n   t   e   r   a   c   t   i   o   n   f   o   r   c   e

       [   n   N

       ]

    sample height [ nm ]

    k  N = 0.57 N/m

    0 20 40 60 80 100

    -20

    -15

    -10

    -5

    0

    510

    15

    20

     a       t        t       r      

     a       c       t       i       v      

     e      

      r  e  p  u   l  s   i  v  e

     jump out of contact

     jump into contact

     

    approach

     retract

       t   i  p  -  s  a  m  p   l  e   i  n   t  e  r  a  c   t   i  o  n   f  o  r  c  e

       [  n   N

       ]

    tip-sample distance [ nm ]

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    18/41

    18

    20 0 -20 -40 -60 -80 -100

    -20

    -15

    -10

    -5

    0

    5

    10

    1520

    e

    b

    a

    working point

    (z)

    tip

     a       t        t       r      

     a       c       t       i        v      

     e      

      r  e  p  u   l  s   i  v  e

     jump out of contact

     jump into contact

     

    approach

     retract

       t   i  p  -  s  a  m  p   l  e   i  n   t  e  r  a  c   t   i  o  n   f  o  r  c  e

       [  n   N

       ]

    sample height [ nm ]

    k  N = 0.57 N/m

    20 0 -20 -40 -60 -80-40

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    b

    a

     jump into contact

     

    approach

     retract

       t   i  p  -  s  a  m  p   l  e   i  n   t  e  r  a  c   t   i  o  n   f  o  r  c

      e

       [  n   N   ]

    sample height [ nm ]

    k = 15 N/m

    Role of the cantilever stiffness. Capillary

    condensation 

    sample

    sample

    stiff

    soft

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    19/41

    19

    F z F  x 

    F z 

    F  x 

    recedeadvance

    Lateral force microscopy (LFM) 

    0 500 1000 1500 2000

    -0.11

    -0.10

    -0.09

    -0.08

    -0.07

    Ffr  (recede)

    Ffr  (advance)

    null lateral force line  

    advance

     recede

       l  a   t  e  r  a   l  s   i  g  n  a   l   [   V   ]

    advancin or receeding distance [ nm ]

     A F 

      fr 

     fr 2

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    20/41

    20

    vertical

     deflectionlateral

     deflection

    torsion

    vertical

     deflection

    laser 

    beamvertical

    deflectionlateral

    deflectionvertical

    signal

    lateral

    signal

    +

    +

    -

    -

    How is measured the lateral force? 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    21/41

    21

    Dependence of the friction force on the

    sample chemical composition 

    -CH3

    -CH3

    -COOH

    -COOH

    tip

    tip couvered by

    functional

    molecules

    terminated with

    CH3 group

    high friction

    -CH3

    -CH3

    -COOH

    -COOH

    tip

    tip couvered byfunctional

    molecules

    terminated with

    COOHgroup

    low friction

    C. D. Frisbie, L. F. Rozsnyai, A. Noy,

    M. Wrighton, C. M. Lieber

    Science 265 (1994) 2071.

    Chemical Force Microscopy

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    22/41

    22

    Dependence of the friction force on the

    sample chemical composition? 

    20

    30

    40RH 40

      z   [  n  m    ]

    0 200 400 600 800 1000 1200

    0

    200

    400

    600

       l  a   t  e  r  a   l  s   i  g  n  a   l   [  m   V   ]

    Topography image Friction force image

    Au Si(100)

    Au 

    Si(100)

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    23/41

    23

    •Working in contact mode may deform or even

    destroy soft surfaces as those of polymers or biological samples.

    •To investigate the topography of soft samples

    a non-contact AFM mode, which employs the

    long-range tip-sample interaction forces to

    determine the sample height, should be used.

    •The non-contact AFM modes use a vibrating

    AFM tip to explore the sample surface. When

    such a vibrating tip approaches a sample

    surface, the amplitude, frequency and the

     phase of the oscillations change and this

    changes are used by a feedback loop to

    determine the sample surface height.

    • This technique is called dynamic force

    microscopy (DFM).

    Dynamic force Microscopy 

    F(d)

      s  a

      m  p   l  e

    excitation

    F(d)

      s  a

      m  p   l  e

    excitation

     A A

    Tapping

    intermittent contact mode Non-contact mode

    11:25 Introduction in AFM

    O i d A l i h h

  • 8/16/2019 AFM Lecture

    24/41

    24

    0.8 0.9 1.0 1.1 1.20

    20

    40

    60

    80

    100

     

      /  0 

      a  m  p   l   i   t  u   d  e   [  a .  u .

       ]

     no external force

     attractive

     repulsive

      z  z eff     k  z  F    //10     

    eff  

     z 

    mk 0 

    O

         s     u     r      f     a     c     e

    2d 

     AR F VdV   

    nd 

     F   1

    AFM

    0,0  

     z 

     F 

     z 

    V   z  z 0

     z 

    V  z 

    Operation modes. Analogy with the

    harmonic oscillator  

    vacuum: Q = 104

    air: Q = 50-200

    liquid: Q = 2-50

    repulsive

    Intermittentcontact

    atractive

     Non-contact11:25 Introduction in AFM

    O i d i i

  • 8/16/2019 AFM Lecture

    25/41

    25

    Operation modes. intermittent contact

    and non-contact modes 

    intermittent non-contact

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    26/41

    26

    vacuum: Q = 104

    air: Q = 50-200

    liquid: Q = 2-50

    Cantilever quality factor  

    11:25 Introduction in AFM

    W ki i li id i Th l

  • 8/16/2019 AFM Lecture

    27/41

    27

    Working in liquid environment. Thermal

    noise frequency power spectrum 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    28/41

    28

    0 -20 -40 -60 -80 -100

    13.0

    13.5

    14.0

    14.5

    15.0

    intermittent-contact

     approach

     retract

     

      o  s  c   i   l   l  a   t   i  o  n  a  m  p   l   i   t  u   d

      e   [  n  m    ]

    sample height [ nm ]

    Amplitude curve 

    Typical  amplitude curve

    in air.

    The sample surface isdetected by the decrease of

    the tip oscillation

    amplitude

    11:25 Introduction in AFM

    D d f th h l

  • 8/16/2019 AFM Lecture

    29/41

    29

    0.96 0.98 1.00 1.02 1.040

    20

    40

    60

    80

    100

    120

    140

    160

    180

    500

    100

         

    180

    90

    0

     

      /  0 

      p   h  a  s  e   l  a  g   [

       d  e  g .

       ]

     Q = 100

     Q = 500

    Dependence of the phase lag on energy

    loss: case of the harmonic oscillator  

    22

    0

    0   /)()tan(  

       

      Q

    0

    022/ 

           eff  Q

    eff  W 

    W Q   02 

    11:25 Introduction in AFM

    D d f th h l

  • 8/16/2019 AFM Lecture

    30/41

    30

    Dependence of the phase lag on

    surface chemical composition 

    Topography image

    Phase lag image

    Au 

    Si

    SiAu 

    11:25 Introduction in AFM

    D d f th h l

  • 8/16/2019 AFM Lecture

    31/41

    31

    Dependence of the phase lag on

    surface structure and topography 

    Topography effect

    Variations of the

     phase lag occur

    mainly at the grain

     borders

    Effect of the

    crystal structure

    The contrast in the

     phase lag is due to

    composite crystal

    structure of the

    surface

    (dark -rutile TiO2)

    (light -amorphous TiO2)

    11:25 Introduction in AFM

    Ch i th i ht til

  • 8/16/2019 AFM Lecture

    32/41

    32

    Choosing the right cantilever  

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    33/41

    33

    Force curve mapping •All important information on sample

    surface properties and forces is contained

     by the tip-sample force curves.•If force curve data are digitally acquired

    for a number of points homogeneously

    distributed on a sample surface, then these

    data can be digitally processed to extract

    the relevant information on the samplesurface properties. This technique is called

    force curve mapping (FCM)

    •FCM provide simultaneously imaging of

    sample topography along with other

    important sample properties, as surfacestiffness (elasticity), viscosity, adhesion

    force, shear force, chemical composition ,

    etc., at the atomic or nano scale.

     x y

     z 

    LASER PHD

    Z piezodriv er 

    PC

    approach

    retract 

    sample

    X, Y piezo drivers

    Memory = 128 x 128 x (2 x 128) x 2 bytes

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    34/41

    34

    Acoustic mode AFM 

    11:25 Introduction in AFM

    AFM as a biologic sensor: shift in

  • 8/16/2019 AFM Lecture

    35/41

    35

    AFM as a biologic sensor: shift in

    resonant frequency

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    36/41

    36

    Plane correction. Image flattening

    Surface tilted in both x and y directions

    xy

    Surface after correction along ydirection, still tilted in x direction

    y x

    Surface after correction along x and ydirections

    y

    x

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    37/41

    37

    Widening small objects: lateral versus normal resolutio

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    38/41

    38

    Lateral resolution 

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    39/41

    39

    Effect of tip shape: double tip

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    40/41

    40

    correct feedback

    slow feedback

    too fast feedback

    Effect of feedback on the topography image

    11:25 Introduction in AFM

  • 8/16/2019 AFM Lecture

    41/41

    41

    Further reading 

    11 25 I d i i AFM