51
Active RF Components/Modeling 김영석 충북대학교 전자정보대학 2010.9 E il ki @b k Email: kimys@cbu.ac.kr 전화: 043-261-3137 전자정보대학 김영석 1

Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Active RF Components/Modeling

김 영 석

충북대학교 전자정보대학

2010.9

E il ki @ b kEmail: [email protected]

전화: 043-261-3137

전자정보대학 김영석 1

Page 2: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Semiconductor Basics

Lattice Structure and Energy Bands of Silicon

2전자정보대학 김영석

Page 3: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Semiconductor Basics

Doped Semiconductors

3전자정보대학 김영석

Page 4: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

PN Junction

Space Charge Formation by Diffusion and Drift Current

4전자정보대학 김영석

Page 5: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

PN JunctionBehavior of Junction

due to an Applied Voltage

=> Capacitance

=> Bottleneck of RF Devices Bottleneck of RF Devices

5전자정보대학 김영석

Page 6: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Current Voltage Behavior of PN Junction

6전자정보대학 김영석

Page 7: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Ohmic and Schottky Contacts

7전자정보대학 김영석

Page 8: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF ComponentsRF Diodes

Schottky Diode

PIN Diode

Varactor Diode

IMPATT Diode

Tunnel Diode

TRAPATT, BARRIT, and Gunn Diode

Bipolar Junction Transistors

Silicon BJT(Bipolar Junction Transistor)

HBT(Hetero-Junction Bipolar Transistor)HBT(Hetero Junction Bipolar Transistor)

RF Field Effect Transistors

MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)

JFET(Junction FET)JFET(Junction FET)

MOSFET(Metal Oxide Semiconductor FET)

MESFET(MEtal Semiconductor FET)

HEMT(High Electron Mobility Transistor)HEMT(High Electron Mobility Transistor)

8전자정보대학 김영석

Page 9: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF Diodes용도: 믹서, Phase Shifting, Switching 등

장점(트랜지시터 대비):

구조, 공정이 간단하여 Yield좋다

구조가 간단하여 RC시정수 작다 > RF특성 우수구조가 간단하여 RC시정수 작다 => RF특성 우수

Flicker Noise 작다.

면적이 작다.면적이 작다.

DC 바이어스 필요 없는 경우 있다.

따라서 다이오드는 아주 높은 주파수에서 동작 가능.

9전자정보대학 김영석

Page 10: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Schottky DiodeMixer, Detector, Rectifier 등에 사용

Narrow Schottky Finger / N+ Sublayer – 저항 감소

Recessed Schottky Contact – Surface Charge 영향을 감소

L 2 Z 40 W 0 2 인 경우L=2um, Z=40um, W=0.2um인 경우

C=0.08pF/finger, R=3Ohm => RC<1ps (f ~ THz)

10전자정보대학 김영석

Page 11: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

PIN Diode

Attenuator, Switching Modulator, Limiter, Phase Shifter 등에 사용

I-region을 사용하여 Depletion Region Wider

=> Small Junction Capacitance=> Small Junction Capacitance

=> Microwave Switch에 적합

11전자정보대학 김영석

Page 12: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Electrical Behavior of PIN Diode

12전자정보대학 김영석

Page 13: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Varactor DiodeVoltage Dependent

Capacitance => VCOPulse Generation with a Varactor Diode

Vout=L(dIv/dt) => Short Pulse

Iv <= Reverse Recovery

13전자정보대학 김영석

Page 14: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

IMPATT(IMPact ionization Avalanche Transit Time) Diode

Millimiter파 대역에서 가장 높은출력이 나옴

단점: I/I이용하기 때문에 잡음이많다. LO에 부 적당.

원리: Avalanche Breakdown원리에 의해 생성된 전자들의 Transit Time Delay에 의해, 전류의Phase Delay가 발생하여Negative Resistance 발생

14전자정보대학 김영석

Page 15: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

IMPATT Diode

V=V0 sin wt

I=I0 sin(wt-pi)= -I0 sin wt s ( p ) s

Rac = V/I < 0

15전자정보대학 김영석

Page 16: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Tunnel Diode다음 2조건 만족하면 Quantum Mechanical Tunneling

Thin Barrier <= Thin Depletion Layer by Higher Doping

한쪽은 filled states, 다른 쪽은 empty states

16전자정보대학 김영석

Page 17: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gunn Diode(Transferred Electron Devices)

반도체에 일정한 전계(Eth)이 인가되면, 자유전자들이 Upper Valley Conduction Valley로 이동. 여기서 전자들은 이동도(mobility)가 감소하여 전류가 발생. 이것이 Negative Differential Resistance 발생.

17전자정보대학 김영석

Page 18: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF Active Devices: What is the Transistor?정의 및 종류

증폭작용 및 스위칭작용을 할 수 있는 반도체소자

바이폴라 트랜지스터: BJT, HBT

FET JFET MOSFET MESFET HEMTFET: JFET, MOSFET, MESFET, HEMT

VCC

RLvout

vin Transistor

18전자정보대학 김영석

Page 19: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

TransistorTRANSISTOR = TRANsferred + reSISTOR

Transferred=넘어서 혹은 다른쪽으로, Resistor=저항

Transresistance(rt) = 1/Transconductance(gm)

i=v/r i= vc/rt = gm v

v

+ i=v/r + i= vc/rt = gm v

vc

-

Resistor Trans-Resistor=Transistor

-

+

트랜지스터 소신호등가회로

-

i=gm vcvc rc트랜지스터 소신호등가회로

19전자정보대학 김영석

Page 20: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

트랜지스터역할LNA: 트랜지스터의 증폭작용이용, 소신호전압이득= -gm*RL.

(Square-Law) 믹서: 트랜지스터의 Nonlinear(Square) 성질 이용.

(Gilbert) 믹서: 트랜지스터의 증폭작용, 스위칭작용 이용.

VCO 트랜지스터를 이용하여 N ti R i t 를 만들어 줌VCO: 트랜지스터를 이용하여 Negative Resistance를 만들어 줌.

논리회로: 트랜지스터의 스위칭작용 이용.

20전자정보대학 김영석

Page 21: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF TransistorsBJT

Bipolar Operation

Low Noise

Li P A lifi tiLinear Power Amplification

Power Applications

GaAs FET(MESFET)GaAs FET(MESFET)

Monopolar Operation

Very Low Noise

Low Power

HEMT

El t GElectron Gas

Very High Frequency(f > 20GHz)

21전자정보대학 김영석

Page 22: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

BJT: 구조 및 동작

콜렉터전류

N+에미터전자들의 베이스주입

Diffusion하여 콜렉터로 이동

IC=I0*exp(VBE/VT)베이스전류베이스전류

P베이스정공들의 에미터주입

(Back Injection)(Back Injection)IB=IC/beta

22전자정보대학 김영석

Page 23: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

BJT 레이아웃BJT Noise

IB/IC Shot Noise

RB Thermal Noise

How to Reduce the BJT Noise?How to Reduce the BJT Noise?

Decrease IB/IC

Decrease RB

Fi St t iFinger Structure gives

Low RB

Reduce Current Density

=> Low Noise

23전자정보대학 김영석

Page 24: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gummel-Poon Model(1)가장 많이 사용하는 BJT/HBT 모델

모델 특징:

저전류 전류이득 감소 모델

B Width M d l tiBase-Width Modulation

High-Level Injection

RB(IB)RB(IB)

CJCi=XCJC*CJC

CJCx=(1-XCJC)*CJC

총 40개 변수(DC18, CV11,AC6,기타5)

),( BCCFF VIfunction=τ

24전자정보대학 김영석

Page 25: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gummel-Poon Model(2): Large-Signal Model

Active영역에서 동작할때

)1()1( //// '''' VTNEVVTNFV EBEB ISEISI +

)1(//1

)1()1(

//

////

'' VTNFVC

VTNEVVTNFVB

EB

EBEB

eVAFVVARV

ISI

eISEeBF

I

−++

=

−+−=

/)/24(/14411

),tan

tan)((3

//1

2

2

2'

''''

B

Bbb

CBEB

IRBIIRBI

zzz

zzRBMRBRBMr

VAFVVARV

++−=

−−+=

++

ππ

)/1(

)(

''MJE

EBJE

B

VJEVCJEC

−=

])(1[

)(

/441/2

''''

VTFVCC

EB

CCFF

EB

DEDE

IXTFTF

dVId

dVdQC ==

τ

])(1[ /44.1/2 '' VTFV

CC

CCFF

CBeITFI

IXTFTF+

+=τ

25전자정보대학 김영석

Page 26: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gummel-Poon Model(3): Small-Signal ModelTransconductance:

2nd O d Eff t

bemCbeTCCTbeBEcCC vgIvVIIVvVIiIi +=+≈+=+= )/(]/)exp[(0

2nd Order Effects:

+B C

ic

Cmu

ivrivr

CCEo

BBE

∂∂=∂∂=π

//

-

rovbe rpi gm vbeCpi

CapBCJunctionCvivQC BEFFCBEn

=∂∂=∂∂=

μ

π τ /)(/

E

26전자정보대학 김영석

Page 27: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gummel-Poon Model(4): 주파수 특성

Cutoff Frequency(fT): Short Circuit Current Gain =1인 주파수

1/2πfT=RC 시정수+ Transit Time + Miller Capacitance 시정수2πfT 시정수 p 시정수

JCVTFV

CC

CC

m

JCJE

T

CRCREeITFI

IXTFTFg

CCf

CB )(])(1[2

1 /44.1/2 '' +++

+++

Transit Time=(Emitter Delay)

+(Emitter Base Space Charge Region Delay)

CCmT gf

+(Emitter-Base Space Charge Region Delay)

+(Base Transit Time) + (Base-Collector Space Charge Region Delay)

Maximum Oscillation Frequency:

Power Gain=1인 주파수

fT

C 2

VTF

XTF

μπ Crffbb

T

'max 8

=

ICVCE1

VCE2ITF

27

IC

전자정보대학 김영석

Page 28: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Si BJT 주파수 특성 향상 방법1/2πfT=RC 시정수+ Transit Time

Si BJT의 동작주파수를 증가시키기 위해서는

(1) RC 시정수 감소(1) RC 시정수 감소

(2) Transit Time 감소

⇒전자의 베이스 통과시간을 감소시켜야 함⇒전자의 베이스 통과시간을 감소시켜야 함

⇒즉, 베이스 폭을 감소시켜야함

⇒PunchThrough 쉽게 발생

⇒베이스 도핑 증가시켜야 함

⇒Back Injection 발생

IB 증가 전류 이득 감소⇒ IB 증가, 전류 이득 감소

⇒이 문제를 HBT에서 해결

28전자정보대학 김영석

Page 29: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

HBT(Hetero Junction Bipolar Transistor)

HBT는 에미터와 베이스의Eg가 다름.

⇒베이스폭 감소

⇒베이스도핑 증가

⇒에미터의 Eg가 커서

Back Injection Barrier증가증가

⇒ IB는 증가치 않음.

⇒전류이득 일정 유지.

=>HBT의 ft는 보통 50-100GHz임

( Si BJT 의 ft 는 보통( Si BJT 의 ft 는 보통20GHz 정도임)

용도: LNA(SiGe HBT),

29

Power Amp(InGaP,AlGaAs)

전자정보대학 김영석

Page 30: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Model Parameter Extraction

DC,CV,AC 측정

SPICE 변수추출

SPICE변수 최적화SPICE변수 최적화

Benchmark회로 시뮬레이션(예, Ring Osc)

Benchmark회로측정결과와 비교 NO

YES

SPICE변수

YES

30전자정보대학 김영석

Page 31: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Measurement Setup

HP4156 SemiconductorParameter Analyzer

DC&CV Probe StationWith TEMP Controller

HP4284 LCR Meter AC Probe Station WithCascade Microwave Probe

HP8510 Network Analyzer

k iWork Station

UTMOST

31전자정보대학 김영석

Page 32: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF Test Pattern 및 De-embedding

C S T P t SGate Drain

MOSFETGate Drain Gate Drain

C-S Two Port S-para.

Sub Bias

Gate DrainSource & Well Cnt. Source & Well Cnt. Source & Well Cnt.

Device Open Short

1) Ymeas – Yopen = YMO , Yshort – Yopen = YSOp , p2) ZMO – ZSO = Z3) Z Y S, calculate H21, MSG, MAG

32전자정보대학 김영석

Page 33: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Cutoff Frequency and Maximum Oscillation Frequency

1. Cutoff Frequency fT : h21(f= fT) = 1

2 Maximum Oscillation Frequency f : MAG(f= f ) = 1

-2 S21h21=

2. Maximum Oscillation Frequency fmax: MAG(f= fT) = 1

h21 (1-S11)(1+S22)+S12S21|S21|MSG(Maximum Stable Gain)=|S

, K>1

|S21|MAG (Maximum Available Gain)= =|S12

(K-(K2-1)0.5)

|S12|

|S12|1-|S11|2-|S22|2+|Δ|2

where K=2|S12S21|

Δ=S11S22-S12S21| 12 21|

33전자정보대학 김영석

Page 34: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF 특성 비교 (1)

0.18μm CMOS:fmax =150GHz (IEDM’01)

0.05μm SOI CMOS: fmax =193GHz (IEDM’01)

34전자정보대학 김영석

Page 35: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

RF 특성 비교 (2)

MESFET (GaAs)HEMT (GaAs, InP)

Bipolar (Si)BiCMOS, SiGe BiCMOS ( , )

HBT (SiGe, GaAs),

CMOS (Si)fT

HEMT200 GH

‘01 IEDM

100 GHz

0 18

HBTHEMT

0.13u

200 GHz

0.18u fmax0.07u

30 GHz

10 GHz 0.6u0.5u

0.35u0.25u

0.18u

G A3 GHz

1 GHz 2

1u

0.8u MOSFETGaAs

Year‘01‘77 ‘81 ‘85 ‘89 ‘93 ‘97

1 GHz

3u

2uBipolar

‘02

35전자정보대학 김영석

Page 36: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MOSFET(Metal Oxide Semiconductor FET): 구조 및 동작

게이트 전압에 의해(수직전계) 채널전자 형성

드레인 전압에 의해(수평전계) 전자는드레인으로 Drift함

VDS>VDSat(Saturation Region)VDS>VDSat(Saturation Region)이면 드레인 근처는 높은 수평전계 형성=> 전자는 Velocity Saturation 하여 전류 포화됨하여 전류 포화됨.

])(2[21 2

DSDStGSoxnD VVVVLWCI −−= μ tGSDS VVV −≤

2 L

2][21

tGSoxnD VVLWCI −= μ VVV GSDS −>

36전자정보대학 김영석

Page 37: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MOSFET: BSIM3v3 ModelBerkeley 대학에서 개발된 Submicron 소자를 위한 모델

Noise/Temperature 효과를 고려. 약 120 개 변수

드레인 전류 및 미분치가 모두 연속성을 가짐.

D i C tDrain Current:

])(2[)11()( 1210 DSsbiLseff

LXSBsSBsTHNTHN VV

LNKVKVKVV +−−−+++−++= φθφφφ

VVV

RF 특성 부정확

]1)[( ,,

'

A

satDSTHNDSsatDSTHNGSoxsatD V

VVVVVVCvWI

−−+−−⋅⋅=

D

SubRg RSub

Rd

G

BSIM3v3 S11S11 S22S22

Sub.

RS 측정R=25

R=50측정

BSIM3v3

측정

BSIM3v3

37

S BSIM3v3R=0BSIM3v3BSIM3v3

전자정보대학 김영석

Page 38: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MOSFET: Small-Signal ModelTransconductance:

2nd O d Eff t

gsmDgstGSDtgsGSdDD vgIvVVKIVvVKiIi +=−+≈−+=+= )](2[)( 2

2nd Order Effects:

Channel Length Modulation:

Gate-Source Cap:

)1()( 2DStGSD VVVKI λ+−= Do Ir //1 λ=

WLCC 2=Gate Source Cap:

Gate-Drain Cap: Overlap Cap

WLCC oxGS 3=

G DCGD

+

vgs gm vgs ro

id

CGS

-

g

S

g gCGS

38

S

전자정보대학 김영석

Page 39: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MOSFET: RF 특성주파수 특성: MOS의 경우 fT가T

fmax가 높다.

)(2m

T CCgf

+=

πoT

RRRff+

=2max

그림에서, 0.5um경우 fT=20GHz,

0.35um경우 fT=40GHz,

)(2 gdgs CC +π gs RR +2

.35um경우 fT 4 GHz,

0.18um경우 fT=90GHz로 RF 특성은

BJT, HBT, MESFET보다 우수하다.

2-10GHz 대역의 RF 회로는 전혀 문제가 없다.

단점:

Si 기판의 RF손실이 심하다Si 기판의 RF손실이 심하다.

수동소자, 즉 High–Q 인덕터 구현이 힘들다.

39전자정보대학 김영석

Page 40: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MOSFET: RF Modeling(BSIM4)

기판 저항(Rsub): RF에서는 기판저항을 고려하여야 함. 출력저항에 영향을 미침. Substrate Coupling 일어남. Body Potential Fluctuation.

Channel Charging Resistance(Rch): NQS Effect (Non Quasi Static;Effect (Non-Quasi-Static; 게이트 전압 변화에 따라 즉각채널 전하가 변화 못함) 고려.

Gate Resistance(Rg): Gate Delay. Input Impedance/NF 에 영향 미침.p 에 영향 미침

Intrinsic Cap: 정확한 모델 필요.

40전자정보대학 김영석

Page 41: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

How to optimize fmax?

ff

2 2 f R C G RmaxT

T g gd ds in=

At a given technology, only Rg , Cparasitic depends on designer

50

S

D

S

D z)

40

50

Wu= 5 μmWu= 10 μmWu= 15 μmWu= 20 μm

NMOSL=0.35 μmVgs=1.5 VVds=3.3 V

S

S

DS

D

S f max

(GH

z

20

30

Rg1 > Rg2 ≈ Rg3Fi N b

1 10 10010

20

Finger Number

∗The shorter unit finger , the better performance ? NO !

41전자정보대학 김영석

Page 42: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Gate Layout 영향

Total W=40μm 40

W=10μm x 10, "W=10μm x 4, Comb

S D

A’A (dB

)

20

30W=5μm x 8, "

W=5μm x 8, MeanderW=5μm x 20, "

W=5μm x 20, "RegressionG

S D

5 X 8

A’A

|H21

|

10

20

NMOSFETL=0.35μmVds=3.3VV 1 VW=10μm X 4 5μm X 8

Frequency (Hz)1x109 10x109

0

Vgs=1.5V

fT1 > fT2

fmax1 > fmax2 : Suitable for high gain

Frequency (Hz)

Parasitic Cgbmax1 max2 g g

Trade off between Rg and Parasitic Cgb

42전자정보대학 김영석

Page 43: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Inter-connection 영향 (1)

- S/D/G connection is important for multi finger (20 ~ 120) TR.

G DS DSG DS DS

1. Minimize Gate-Drain overlap ↑ parasitic Cgd ↑ S12

2. Source-Drain overlap ↑ parasitic Cds ↓ Zout2. Source Drain overlap ↑ parasitic Cds ↓ Zout

3. Gate-Source overlap ↑ parasitic Cgs ↓ fT

- Metal migration rule (~1mA/ μm) Wide metal ↑ Parasitic

43전자정보대학 김영석

Page 44: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Inter-connection 영향 (2)

0.32 0.320.64 0.24 0.240.46

0.24

M1 M10.18

M1 M1

S D S D

- Minimum design rule (Compact design) is not recommended

0.25 μm CMOS 0.18 μm CMOS

- Metal migration rule (~1mA/ μm) Wide metal ↑ ParasiticIt is not severe in Rx/Tx design but should be considered inIt is not severe in Rx/Tx design, but should be considered indriver amp. or PA.

44전자정보대학 김영석

Page 45: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

NMOSFET and PMOSFET

50L=0.35 μmW=40μmF8 NMOS

GH

z)30

40 Vds=3.3 V

f T, f

max

(

20 PMOS

0

10

fT

fmax

Two times lower fmax, fT compared with NMOSFETIds (mA)

0.1 1 10

because of mobility (transconductance). Low 1/f noise ? Buried channel (>0.35)

45전자정보대학 김영석

Page 46: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MESFET(MEtal Semiconductor FET): 구조 및 동작원리동작: Metal Schottky Junction 게이트로 전류흐름 제어(JFET과 유사)

VT ~ -1.7V

High-Frequency 가능:

G A 6000 2/V (1450 f Si)GaAs μn=6000cm2/Vsec(1450 for Si)

Gate Length=Short, e.g. 0.5μm,

Region II/III: Velocity Saturation RegionRegion II/III: Velocity Saturation Region

VGS>0

VGS<0

46전자정보대학 김영석

Page 47: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

MESFET 장점 및 단점장점

High Electron Mobility

Schottky Junction 이용: Low Input Cap ~ 0.2pF, Cgd<0.02pF(10%)

f 5*f (f 20GH f 100GH )fmax ~ 5*fT (fT=20GHz, fmax=100GHz)

i

oT

RRRRff

++=

2maxgc

mT C

gfπ2

=

단점

High Flicker Corner Frequency(10MHz-100MHz)

gsi RRR ++2gc

due to Lack of Surface Passivation(SiN instead of SiO2 for Si)

Higher Output Conductance (100 – 500Ohm) (~Kohm for BJT)

L N i Mi O ill t 등에 부적합Low-Noise Mixer or Oscillator 등에 부적합

47전자정보대학 김영석

Page 48: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Large-Signal Model(1)Curtice Quadratic:

Transconductance, Pinch-off,

O t t C d t

)tanh()1()( 2DSDSPGSDS VVVVI αλβ +−=

Output Conductance,

Onset of Drain-Saturation Vtg

Curtice Cubic:Curtice Cubic:

RF의 Intermodulation 고려=> Cubic 항 포함

)tanh()( 32 VVAVAVAAI +++= α

G t S C it Ti D l 고려

)](1[

)tanh()(

01

1312110

DSDScjw

GS

DSDS

VVeVV

VVAVAVAAI

−+=

+++=− β

ατ

Gate-Source Capacitance Time Delay 고려

48전자정보대학 김영석

Page 49: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Large-Signal Model(2)Statz-Pucel Model:

ID 개선, New Capacitance Model

PGSPGS

VVVV )()(2

2 ββ −>−−

nDSDS

PGSPGS

nVV

VVbVV

)1(1)tanh(

)(1)(

αα

β

−−>−

−+>

Materka-Kacprzak Model:

Breakdown 고려

Saturation Current 정확

VV ]tanh[)1( 2

PGS

DSM

P

GSDSSDS VV

VVVII

−−=

α

49전자정보대학 김영석

Page 50: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

Small-Signal Model여러가지 Signal Delay 고려

(1) W 방향 Propagation Delay

=> Lg, Rg, Cgc

(2) R i I(N V l it S t ti )(2) Region I(No Velocity Saturation)

Depletion Region Charging Delay

=> Ri, Cgc> Ri, Cgc

(3) Region II/III(Velocity Saturation)

Depletion Region Charging Delay

=>τjw

meg −

50전자정보대학 김영석

Page 51: Active RF Components/Modeling - chungbuk.ac.krbandi.chungbuk.ac.kr/~ysk/RF1Active.pdfSilicon BJT(Bipolar Junction Transistor) HBT(Hetero-JunctionBipolarTransistor)Junction Bipolar

HEMT(High Electron Mobility Transistor)

2DEG(Dimension Electron Gas) 형성: N-AlGaAs의 Donor들은 Binding Energy~0.01eV로 상온에서 모두 Ionize=>전자들 GaAs로 이동Space Charge 고려하면 Triangular Potential Well 형성(깊이 100Α)

No Ionized Impurity Scattering(Doping 거의 없음)

n=7000cm2/Vsec(2500 for Doped Material): High Electronμn=7000cm2/Vsec(2500 for Doped Material): High Electron Mobility

게이트 전압(<0) 인가: N-AlGaAs Depletion 시킴, 더욱 증가하면 2-DEG도Depletion 시킴 -> 전류 차단.

장점: low NF (~0.85dB at10GHz)

51전자정보대학 김영석