ac waveforms

Embed Size (px)

Citation preview

  • 8/3/2019 ac waveforms

    1/46

    PDHeng inee r . com Course E-4014

    AC Waveforms: Basic Quantities for Non-

    Electrical Engineers

    Thisdocumentisthecoursetext.Youmayreviewthismaterialat

    yourleisurebeforeorafteryoupurchasethecourse. Ifyouhavenot

    alreadypurchasedthecourse,youmaydosonowbyreturningtothe

    courseoverviewpagelocatedat:

    http://www.pdhengineer.com/pages/E4014.htm

    (Pleasebe

    sure

    to

    capitalize

    and

    use

    dash

    as

    shown

    above.)

    Oncethecoursehasbeenpurchased,youcaneasilyreturntothe

    courseoverview,coursedocumentandquizfromPDHengineersMy

    Accountmenu.

    Ifyouhaveanyquestionsorconcerns,rememberyoucancontactus

    byusingtheLiveSupportChatlinklocatedonanyofourwebpages,

    [email protected]

    freeat1877PDHengineer.

    Thankyou

    for

    choosing

    PDHengineer.com.

    PDHengineer.com,aservicemarkofDecaturProfessionalDevelopment,LLC. E4014C1

  • 8/3/2019 ac waveforms

    2/46

    Copyright 2009 Peter Basis, PE

    ACWaveforms:BasicQuantitiesPeterBasis

  • 8/3/2019 ac waveforms

    3/46

    Copyright 2009 Peter Basis,PE

    2

    ACWaveforms:BasicQuantities

    AC (Alternating Current) waveforms refer to continually changing timevarying voltagesandcurrents.Themagnitudeanddirectionof thesevoltagesandcurrentsvary inasetmanner

    fromaminimumtoamaximumvalue,inaspecifictimeinterval.ThisisincontrasttoDC(Direct

    Current), where currents or voltages do not change in magnitude or direction. They are uni

    directional. ACwaveformscanbesinusoidal(sinewave),squareortriangularasshowninfigure

    1.1.

    Sinusoidalwaveformsaretheonesgeneratedbytheutilitycompaniesandareavailablein

    ourhomesandplaceofwork.Thesquareandthetriangularwaveformsaremadefromsinusoidal

    waveforms with the help of electronic circuitry. The only waveform available in nature is the

    sinusoidal.Allotherwaveformsarecomposedofmanysuperimposedsinusoids. Thesinusoidal

    waveformistheonlyACwaveformnotaffectedbytheresponseofResistance(R),Inductance(L),

    andCapacitance(C).ThismeansthatwhenasinusoidalwaveformexcitesR,L,andC,theoutputis

    alsoasinusoidalwaveform.

    ThebasicDClawsKirchhoffsVoltageLaw,KirchhoffsCurrentLaw,andOhm'sLawgovern

    ACcircuits.AsinDCquantities,theselawswillsolveanyACnetwork.ACquantities,however,are

    morecomplicatedthanDCquantities.TosolveforACquantitiesoneneedstousetheconceptof

    thephasorandcomplexalgebra,aswillbeshownlaterinthistext.

  • 8/3/2019 ac waveforms

    4/46

    Copyright 2009 Peter Basis,PE

    3

    1.1 BasicDefinitions

    Beforeproceedingwith theanalysisofACnetworks, it is important tobecome familiar

    somebasicdefinitions. Using thesinusoidalvoltageshown in figure1.2,quantitiesaredefined

    below,whicharetrueforanyACvoltageorcurrent,andsinusoidal,squareortriangularwaves:

    PeriodicWaveform awaveformthatcontinuouslyrepeatsitself.

    Period(T) thetimeintervalrequiredbetweensuccessiverepetitionsof

    the periodic waveform. T designates the period of any

    periodic waveform. The best approach in measuring the

    periodTistousesuccessivecrossingsofthezeroaxiswitha

    positiveslope,asshowninfigure1.2.

    Cycle theperiodoftheperiodicwaveform.

    Frequency(f) thenumberofcyclesofthewaveforminonesecond.Aunit

    of the frequency is 1 cycle per second. This unit is also

    known as Hertz [Hz], and it is named after its inventor

    HeinrichR.Hertz.

    PeakValue themaximumvalueofthewaveformusingthezerolevelas

  • 8/3/2019 ac waveforms

    5/46

    Copyright 2009 Peter Basis,PE

    4

    reference.Infigure1.2,thepeakvalueisindicatedasVp.

    PeaktoPeakValue thedistancebetweenthepositivepeak(maximum)andthe

    negativepeak(minimum).ThisvalueisdesignatedasVppin

    figure1.2.

    InstantaneousValue thevalueofthewaveformatanyinstantoftime.Lowercase

    lettersareusedfortheinstantaneousvalue.

    It ismost importanttodefineasetofpolaritiesforasinusoidalACvoltagesourceanda

    directionforasinusoidalACcurrentsource.Thisisdonebychoosinganinstantoftimeduringthe

    positivehalfcycleofthesinusoidalwaveforms.Allsinusoidalsourcesareconsideredinthepositive

    half cycle, sodistinctpolarities canbeassigned for thevoltagesanddistinctdirections for the

    currentsasinDCquantities.

    Thefrequencyandtheperiodarerelatedwiththefollowingequationwherefis inHertz

    [Hz]andTisinseconds[s].

    f=T

    (11)

    Thefrequencyofaperiodicwaveformthathasaperiodof20msis:

    f=T

    =

    =50Hz

    Whenthefrequencyofaperiodicwaveformis250Hz,theperiodis:

    T= = =4x10s=4ms

    Theequationthatdescribesthesinusoidalwaveformoffigure1.2is:

    V=Vpsin t (12)

    where:

    Vp isthepeakvalue

    sin indicatesasinewave,and

    istheangularvelocityofaradiusvectorthatrotatesaboutacenter.This

    vectorhasmagnitudeVp,seefigure1.3,andthesinusoidalwaveformcan

    beconstructedtakingthelengthoftheverticalprojection,ateveryinstant

    ofrotationofthisvector,overonecompleterotation.Theangularvelocity

    is calculated as the ratio of distance over time, where the distance is

  • 8/3/2019 ac waveforms

    6/46

    Copyright 2009 Peter Basis,PE

    5

    measuredinradiansordegreesandthetimeinseconds. Observethatthe

    unitoft is [(rad/s)(s)]= [rad],thusconcluding thattheargumentofthe

    sinewaveisanangle( = t)inradians.

    ThetimetheradiusvectorrequirestomakeacompleterotationisequaltotheperiodT(in

    seconds)andthedistancethathastraveledisequalto2 radians(thereare2 radiansinacircle).

    Theangularvelocitycanbecalculatedwiththefollowingformula:

    T

    [

    ] (13)

    Since f=1/T,then:

    2f [] (14)

    Theangularvelocityofasinewavethathasafrequencyof60Hzis:

    =2 f=2(3.14rad)(60Hz)=377rad/s

    1.2 PhaseRelations

    Infigure1.4thesinusoidalwaveformV=Vpsin tisrepresentedusingtheradianasthe

    unitofmeasurement for theabscissa.Themaximum isat /2, theminimumat3/2,andzero

    valueat0, and2.

  • 8/3/2019 ac waveforms

    7/46

    Copyright 2009 Peter Basis,PE

    6

    In figure, 1.5 the same sinusoidal waveform is sifted degrees to the left of 0o

    . Theequationthatdescribesthesinusoidalwaveforminfigure1.5is:

    V=Vpsin(t+) (15)

    where: tisinradiansand

    isindegrees.

    Thereasonforequation(15) isthat ifdegreesareaddedtothesinusoidoffigure1.5,thenitwillbecomethesinusoidoffigure1.4,whichisaregularsinusoidthatstartsat0

    o.Equation

    (15)isusedforanysinusoidalvoltageorcurrentthatisshifteddegreestotheleftof0o.Considerthesinusoidoffigure1.6,which isshifteddegreestotherightofthe0o.The

    equationthatdescribesthesinusoidalwaveforminfigure1.6is:

  • 8/3/2019 ac waveforms

    8/46

    Copyright 2009 Peter Basis,PE

    7

    V=Vpsin(t ) (16)

    where:

    tisinradiansand

    isindegrees.

    Thereasonforequation(16)isthatifdegreesaresubtractedfromthesinusoidoffigure1.6,thenitwillbecomethesinusoidoffigure1.4,whichisaregularsinusoid.Equation(16)isused

    foranysinusoidalvoltageorcurrentthatisshifteddegreestotherightof0o.Considerthecosinewaveinfigure1.7(a). Thesinewaveisshiftedtotheleftby90oasseen

    fromfigure1.7(b),makingthefollowingistrueregardingsinesandcosines:

    cos t=sin(t+90o) (15)

    sin t=cos(t 90o) (16)

    Sincethesinusoids,infigure1.7,havethesamefrequencyonecansaythatthecosineleads(is

    aheadof) thesineby90oorthesine lags (isbehind)thecosineby90

    o.Asaresult,thesetwo

    sinusoidsare90ooutofphase.

  • 8/3/2019 ac waveforms

    9/46

    Copyright 2009 Peter Basis,PE

    8

    The phase angle between two waveforms is measured between the points where the

    waveforms cross the horizontal axis with a positive going slope. These waveforms are out of

    phasebythenumberofdegreesthatseparatedthem.Whentwowaveformscrossthehorizontal

    axisatthesamepoint,thesewaveformsareinphase.

    Belowisalistofsomeadditionalrelations,whichhelpusfindthephaserelationsbetweenwaveforms:

    sin(t)= sin t=sin(t180o) (17)

    cos(t)=cos t (18)

  • 8/3/2019 ac waveforms

    10/46

    Copyright 2009 Peter Basis,PE

    9

    cos t=cos(t180o) (19)

    Observe that relation (17) showsanegative sign ina sinusoidalexpressiondealswith the sine

    portionoftheexpressionandnotthepeakvalueofthesinusoid.

    Whatisthephaserelationshipbetweenthefollowingsinusoidalwaveforms?Seefigure1.8.

    v=100sin(314t 30o)

    i= 50sin(314t+15o)

    ileadsvby45oor vlagsiby45

    o.

    Althoughbothstatementsabovearecorrect, inpractice,one indicateswhatthecurrent

    doeswithrespecttothevoltageanditispreferabletosaythat:

    ileadsvby45o

    1.3 AverageorDCValue

    TheaverageorDCvalueofaperiodicwaveformis:

    AVERAGE=RE UNDER THE URE FOR ONE FULL EROD

    THE EROD

    From the above definition, it is evident that the average value of a pure sinusoidal

  • 8/3/2019 ac waveforms

    11/46

    Copyright 2009 Peter Basis,PE

    10

    waveformoverone fullcycle iszero,asshown in figure1.9.This isbecausetheareaabovethe

    horizontalaxisisequalandoppositeoftheareabelowthehorizontalaxis.Further,sincethenet

    areaunderthecurve,overonefullperiodiszero,thentheaveragevalueofthesinusoidiszero.

    ThisistrueforanysinusoidalorotherACwaveformwhosecenterisonthehorizontalaxis.

    Calculatetheaveragevalueofthesquarewaveshowninfigure1.10:

    Heretheareaontopofthehorizontalaxis isequalandoppositeoftheareabelowthe

    horizontalaxismakingtheaveragevalueofthesquarewaveequaltozero.

    Calculatetheaveragevalueofthesquarewaveshowninfigure1.11:

    Theareaontopofthehorizontalaxis isgreaterthantheareabelowthehorizontalaxis,

    resultinginanaveragevalueforthissquarewave.

    Areaoftopportion: A1=(10V)(1ms)=10Vms

    Areaofbottomportion: A2=(2V)(1ms)=2Vms

    Average=

    =

    =4V

  • 8/3/2019 ac waveforms

    12/46

    Copyright 2009 Peter Basis,PE

    11

    TheaverageorDCvalueofthissquarewaveis4Volts.Thesquarewave,showninfigure

    1.11,iscomposedbya4VDClevelanda6Vpeakvaluesquarewaveridingonthat4VDC

    level,asseeninfigure1.12.

  • 8/3/2019 ac waveforms

    13/46

    Copyright 2009 Peter Basis,PE

    12

    1.4 RMSorEffectiveValue

    Consider the resistor R with the DC voltage source circuit in figure 1.13. The power

    dissipatedbytheresistoris:

    PDC= I2R

    Figure 1.14 shows the same resistor connected to an AC voltage source. The current

    suppliedtotheresistoris:

    i=Ipsin t

    Thepowerdissipatedbytheresistoris:

    PAC

    =i2R=(I

    psin t)

    2R =I

    p

    2sin

    2tR

    usingthetrigonometricidentity:

    sin2t=

    (1cos2t)

    inaddition,manipulatingthepowerequationtheresultis:

    PAC=IP2[

    (1cos2t)]R =

    cos2t

  • 8/3/2019 ac waveforms

    14/46

    Copyright 2009 Peter Basis,PE

    13

    Since the above expression for the power has a cosine term, then the average power

    suppliedisonlythefirstterm.Sincetheaveragevalueofasinusoidiszero,thentheabovepower

    expressionisasinusoidwithtwicethefrequencythatridesonaDClevel.

    EquatetheaveragepowerdeliveredbytheACsourcetothatdeliveredbytheDCsourceto

    arrivetothefollowingresult:

    PACaverage=PDC

    (Ip2R)/2=I

    2R

    Ip2=2I

    2

    Thus:

    IP=2I (110)

    Or:

    I=

    =0.707IP (111)

    Equation(111)istheRMSoreffectivevalueofthesinusoidalcurrent.Itrevealsthatthe

    sinusoidal current has an equivalent DC value equal to 0.707 of its peak value and effectively

    suppliesthesamepowertoaresistorasaDCcurrentofvalue0.707Ip.

    ThetermRMScomesfromRootMeanSquareandshowstheprocessofcalculatingthe

    effectivevalueofasinusoidusingCalculus;firstsquarethewaveform,thenfindthearea(mean)

    underthesquaredwaveformusingintegrationandthentakethesquarerootofthatarea,hence,thetermRootMeanSquare(RMS).

    From this point, the subscript eff will be used for the effective value (RMS) of any

    sinusoidalwaveformvoltageorcurrent.Therefore:

    Ieff=

    =0.707IP (112)

    inaddition,inthecaseofavoltage:

    Veff=

    =0.707VP (113)

    All the above equations deal with the effective values of sinusoidal waveforms. The

    effective values are different for square and triangular waveforms. For these two types of

    waveforms,thefollowingcanbederived:

    FortheSquareWaveform:

  • 8/3/2019 ac waveforms

    15/46

    Copyright 2009 Peter Basis,PE

    14

    EffectiveValue=PeakValue (114)

    FortheTriangularWaveform:

    EffectiveValue=

    (115)

    InthecasewhereasinusoidisridingonaDClevel,asshowninfigure1.15,theRMSvalue

    iscalledthetotalRMSvalueandequation(116)isused:

    TotalRMS=VRMS VD

    (116)

    VRMSistheRMSvalueofthesinusoiditselfandVDCistheDClevelofthesinusoid.

    CalculatethetotalRMSvalueofthesinusoidshowninfigure1.16:

  • 8/3/2019 ac waveforms

    16/46

    Copyright 2009 Peter Basis,PE

    15

    This1.414Voltpeaksinusoidhasa2VDC level.Equation(116) isusedtocalculatethe

    effectivevalueofthiswaveform.TheRMSofthe1.414Vsinusoidis(0.707)(1.414)=1V

    TotalRMS= 1 2 = 2.236V

    1.5

    ComplexNumbers

    Imaginarynumbersarose from theneed to find the 1, since the square rootofanynegative number does not exist. By definingj = 1 , a new set of numbers is created, theimaginary numbers. Electrical engineers use the term j instead of the term i, as used in

    mathematics.Inelectricalengineering,iisusedtodefinecurrent.

    Acomplexnumberhasarealpartandanimaginarypart.Thisnumberrepresentsapointin

    a twodimensionalplane called the complexplane.Thehorizontalaxisof thecomplexplane is

    calledtherealaxisandisthecollectionofallpointsfrom to+.Theverticalaxisiscalledthe

    imaginaryaxisandisthecollectionsofallpointsfrom jto+j. Figure1.17showsthecomplex

    planewiththereal[Re]andtheimaginary[Im]axes.Complex numbers are represented using either rectangular form or polar form. The

    formatoftherectangularformshowninfigure1.18is:

    C=A+jB (117)

    Theformatofthepolarformshowninfigure1.19is:

    t

    v Volts

    3.414

    FIGURE 1.16

    0.586

    2

  • 8/3/2019 ac waveforms

    17/46

    Copyright 2009 Peter Basis,PE

    16

  • 8/3/2019 ac waveforms

    18/46

    Copyright 2009 Peter Basis,PE

    17

    C=Co (118)

    Usingfigure1.18onecanconvertfromrectangulartopolarformwiththefollowingrelations:

    C=A B (119)

    =tan

    (120)

    Usingfigure1.20onecanconvertfrompolartorectangularformwiththefollowingrelations:

    A=Ccos 121

    B C sin 122

    1.6 ComplexAlgebra

    Complexalgebra is simpleanddoesnot requirememorizingany complicated formulas,

    whenthetwosimpleruleslistedbelowarefollowed:

    RULE#1: Toaddorsubtractuserectangularcoordinatesonly!

    RULE#2: Tomultiplyordivideusepolarcoordinatesonly!

  • 8/3/2019 ac waveforms

    19/46

    Copyright 2009 Peter Basis,PE

    18

    ADDITION

    Using rectangular coordinatesadd the realpartsand the imaginaryparts separately to

    formtheresultingcomplexnumber. Whileperformingtheoperation,carrythesignofthereal

    andimaginarypartsofthenumbers.

    AddthecomplexnumbersC1=5+j3 andC2=2+j8

    C3=C1+C2=(5+j3)+(2+j8)

    realpartofC3: 5+2 =7

    imaginarypartofC3: 3+8 =11

    Therefore: C3 = 7+j11

    SUBSTRACTION

    This operation is similar to addition. Subtract the real parts and the imaginary parts

    separatelytoformtheresultingcomplexnumber.

    MULTIPLICATION

    Using polarcoordinates multiply the individual magnitudes together and add the

    individual angles together. The resulting magnitude and angle is the product of the complex

    numbers.

    FindtheproductofC1=210o,C2=525

    oandC3=412

    o:

    C4=C1C2C3=(210o)(525

    o)(412

    o)

    =(2)(5)(4)(10o+25

    o+(12

    o))

    = 4023o

    DIVISION

    Division is similar to multiplication. Divide the magnitude of the numerator by the

    magnitudeof thedenominatorand from theangleof thenumerator subtract theangleof the

    denominator.Theresultantmagnitudeandangleisthecomplexnumber.

  • 8/3/2019 ac waveforms

    20/46

    Copyright 2009 Peter Basis,PE

    19

    Findthequotient C3=C1/C2whenC1=10045o and

    C2=2010o:

    C3= 10045o /2010

    o =535

    o

    Always followtheaboveruleswhenperformingcomplexoperationsandalwaysconvertthe complex numbers in the appropriate coordinate system before performing complex

    operations.

    Find C3=C1C2whereC1=3+j4 andC2=432o:

    Beforemultiplication,get thenumberC1 intopolar coordinatesas requiredby the rule

    governingmultiplication.

    C1=3 4 5 and tan

    53o

    Therefore:C1=553o

    and

    C3=C1C2=(553o)(432

    o) = (5)(2)(53

    o+32

    o =1085

    o

    1.7 Phasors

    Theradiusvectorshowninfigure1.3,repeatedhereinfigure1.21,iscalledaphasor.This

    phasorisusedtorepresentasinusoidinthecomplexplane.Phasorssimplifyalgebraicoperations

    ofsinusoids,withthesame

    frequency,

    usingcomplexalgebra.

    Thisradiusvectorisusedwithtwomodifications.Thefirstmodificationisthatitcannotbe

    permittedtorotatewithangularvelocity ,butitwillremainstationaryatt=0.Asaresult,the

  • 8/3/2019 ac waveforms

    21/46

    Copyright 2009 Peter Basis,PE

    20

    relativepositionthatthephasorshavewitheachotherisrevealed. Thisisaccomplishedthrough

    thephasordiagram.Thesecondmodificationisthattheeffectivevalueofthesinusoidisusedfor

    the magnitude of the phasor, since the effective value iswidely used. The phase angle of the

    sinusoidwillbetheangleofthephasor. Ifthesinusoidhasaphaseangleofdegreesthenthephasoratt=0islocateddegreesfromthehorizontal(real)axis.

    Usingtheabovemodificationsthephasorofthegeneralsinusoidalvoltagev=Vpsin(t)is:

    V=Veff (123)

    inaddition,thatofthegeneralsinusoidalcurrenti=Ipsin(t)is:

    I=Ieff 124

    Example1

    Writethefollowingsinusoidalwaveformsinthephasordomain:

    a)v=28.28sin(754t+35o)

    b)i=10cos754t

    Solution:

    a)Theeffectivevalueofthesinusoidis: (0.707)(28.28)=20

    Thephasorthereforeis: V=2035o

    b)i=10cos754t=10sin(754t+90o)

    Theeffectivevalueofthesinusoidis: (0.707)(10)=7.07

    Thephasorthereforeis: I=7.0790o

    Example2

    Drawthephasordiagramofthephasorsasinexample1andcalculatethephaseangledifferencebetweenthephasors.

    Solution:

    Thephasordiagramisshowninfigure1.23.Thecurrentisaheadofthevoltageby55oand

    thereforeileadsvby55o.

  • 8/3/2019 ac waveforms

    22/46

    Copyright 2009 Peter Basis,PE

    21

    1.8 EffectonResistance(R),Inductance(L)andCapacitance(C)

    R

    ConsidertheresistorRshowninfigure1.23,wherethesinusoidalvoltagevR=Vpsin tis

    presentacrossitsterminals. Usingphasorquantitiesthisvoltageis VR=V0o. Theresistance

    value isarealnumberanditsrepresentation inthecomplexplanewillbeR0o.UsingOhm's

    lawandphasorsthecurrentthroughtheresistoris:

    I = R =

    R = I0

    HereVandIrepresenttheeffectivevaluesofthesinusoidalvoltageandcurrent,respectively.In

    thetimedomain,thecurrentthroughtheresistorisequaltoi=Ipsin t.Therefore:

  • 8/3/2019 ac waveforms

    23/46

    Copyright 2009 Peter Basis,PE

    22

    Forapureresistorthecurrentthroughandthevoltageacrossareinphase(pointingin

    thesamedirection).

    Thephasordiagramfortheresistorvoltageandcurrent isshown in figure1.24andthetimedomainquantitiesare shown in figure1.25.A finalpoint regarding resistance is that the

    valueoftheresistanceisnotaffectedbythefrequency.

    L

    Theinductorvoltageandcurrentarerelatedbythefollowingrelationship:

    VL = L

    (125)

    WhereL,representstheinductanceandhastheunitofHenry,[H].

    Throughtheinductorinfigure1.26thesinusoidalcurrentiL=Ipsin tflows. Thevoltageacross

    theinductoris:

    VL = L

    =L

    (IPsint) = LIPcost =VPcost = VP sin(t+900) (126)

    where:

    Vp= LIp

    Observethatthevoltageoftheinductoris90oaheadofthecurrent.Therefore:

    Forapure inductor,thecurrentthroughandthevoltageacrossare90ooutofphase.

    Thecurrentlagsthevoltageby90o.

    Thephasordiagram for the inductorvoltageandcurrent is shown in figure1.27and the time

    domainquantitiesareshowninfigure1.28.

  • 8/3/2019 ac waveforms

    24/46

    Copyright 2009 Peter Basis,PE

    23

    TherelationVp= LIpshowsthatthepeakvalueofthevoltagedependsonthevaluesof andL.

  • 8/3/2019 ac waveforms

    25/46

    Copyright 2009 Peter Basis,PE

    24

    Since this relation is Ohm's law and the units of voltage and current are volts and amperes

    respectively,thentheunitofthequantity LmustbeOhms.Thequantity Liscalledinductive

    reactancefromthewaytheinductorreactstosinusoidalquantities,andistheoppositionofthe

    inductor to the flow of current. The inductive reactance has the unit of Ohms [] and is

    representedwithXLas:

    XL= L (127)

    Equation (127) is a straightline equation, which passes from the origin. Figure 1.29

    showsthegraphofXLvs. .TheslopeofthelineisLandasthevalueoftheinductorincreases,

    theslopeofthelinebecomessteeper.When =0(DC),thevalueofthereactanceiszeroOhms

    and the inductor isa shortcircuit.As approaches infinity, the reactance isalsoapproaching

    infinity.Atveryhighfrequencies,theinductorisanopencircuit,asseeninfigure1.30.

    Thecurrentandvoltageoftheinductorinthephasordomainare:

    IL=I

    0

    o

    and

    VL=V

    90

    o

    Vand Iaretheeffectivevaluesofthesinusoidalvoltageandcurrentrespectively.UsingOhm's

    law:

    VL=XLIL

    andsolvingforXL:

    XL =

    =

    = XL90 = jXL (128)

    Itisevidentfromequation(128)thattheinductivereactanceisavectorinthecomplex

    planewithafixedmagnitudeofXLandatanangleof90o.Asseeninfigure1.31itisavector(not

    aphasor,since itdoesnotrepresentasinusoidalfunction) inthepositive imaginaryaxisofthecomplexplane.

  • 8/3/2019 ac waveforms

    26/46

    Copyright 2009 Peter Basis,PE

    25

    C

    Thecapacitorcurrentandvoltagearerelatedbythefollowingrelationship:

    IC = C

    (129)

    WhereC,representsthecapacitanceandhastheunitofFarad,[F]

    Acrossthecapacitor in figure1.32thesinusoidalvoltagevC=Vpsin t ispresent. The

    currentthroughthecapacitoris:

    IC = C

    = C

    (VPsint) =CVPcos t = IPsin(t +90o)

    where: Ip= CVp

    Observethatthecurrentofthecapacitoris90o

    aheadofthevoltage.Therefore:

    Forapurecapacitor,thecurrentthroughandthevoltageacrossare90ooutofphase.

    Thecurrentleadsthevoltageby90o.

    Thephasordiagramforthecapacitorcurrentandvoltage isshown infigure1.33,andthetime

    domainquantitiesareshowninfigure1.34.

    RearrangetheexpressionIp= CVptoget:

  • 8/3/2019 ac waveforms

    27/46

    Copyright 2009 Peter Basis,PE

    26

    ==

  • 8/3/2019 ac waveforms

    28/46

    Copyright 2009 Peter Basis,PE

    27

    Theunitofthequantity1/C istheOhmsincetheaboveequation isOhm's law. Thequantity

    1/C is called the capacitive reactance and is the opposition of the capacitor to the flow of

    charge.ThecapacitivereactancehastheunitofOhms[]andisrepresentedwithXC:

    XC =

    (130)

    thus:

    Vp=XCIpFigure1.35showsthegraphofXCvs. ( =2f).When approaches0(DC),thevalueof

    thereactanceapproachesinfinityandthecapacitorisanopencircuit. As approachesinfinity,

    thereactanceisapproachingzero. Inaddition,atveryhighfrequencies,thecapacitor isashort

    circuit,asseeninfigure1.36.

    Thecurrentandvoltageofthecapacitorinthephasordomainare:

    IC=I90o

    and

    VC=V0o

    Vand Iaretheeffectivevaluesofthesinusoidalvoltageandcurrentrespectively.UsingOhm'slaw:

    VC=XCIC

    solvingforXC: XC =

    =

    = XC 90o (131)

    Itisevidentfromequation(131)thatthecapacitivereactanceisavectorinthecomplex

    planewithafixedmagnitudeofXCandanangleof90o. Asseeninfigure1.37,itisavector(notaphasor, since itdoesnot representasinusoidal function) in thenegative imaginaryaxisof the

    complexplane.

    1.9 AveragePowerandPowerFactor

    Considerthegeneralloadshowninfigure1.37wherev=Vpsintand i=Ipsin(t+).

  • 8/3/2019 ac waveforms

    29/46

    Copyright 2009 Peter Basis,PE

    28

    Thepowertotheloadis: P=vi=VPsint IPsin(t VP IP sin t sin(t +)

    Usingthetrigonometricidentity: sin sin

    then:

    P =

    cos

    cos (2t + 132

  • 8/3/2019 ac waveforms

    30/46

    Copyright 2009 Peter Basis,PE

    29

    Theplotsofv,i,andpareshownusingthesamesetofaxesasinfigure1.39.Observethat

    thepowercurve isasinusoidwithtwicethe frequencyofthecurrentorvoltage.Observealso

    thatpartofthepowersinusoid is locatedbelowthehorizontalaxis.Asshown inthesectionof

    reactive power, the part of the sinusoid located below the horizontal axis represents power

    returnedtothesourceanditdependsonthesineofangle.Theportionofthepowercurve,on

    topoftheaxis,ispowerthatwillbedissipatedbyresistance.Inequation(132),thefirsttermisaconstantfactorandrepresentstheaveragevalueof

    thepower.

    cos

    cos Veff Ieffcos

    Therefore,theaveragepoweris:

    P=Veff Ieffcos 133

    Theangleisthephaseangledifferencebetweenthevoltageandthecurrentandthetermcosisthepowerfactoroftheload.Therefore:

    p.f.= cos (134)

    R

    Inapurelyresistivecircuit,thevoltageandcurrentareinphase.Therefore,=0oandtheaveragepoweris:

    P=VeffIeffcos0o=VeffIeff [W]

    Thepowerfactorofapurelyresistivecircuitis1sincecos0o=1.

    L

    In a purely inductive circuit, the phase angle difference between the voltage and the

    currentis90o.Therefore,=90oandtheaveragepoweris:

    P=VeffIeffcos90o=0W

    The power factor of a purely inductive circuit is 0, since cos90o = 0 and there is no power

    dissipationbyan ideal inductor.Since inan inductorthecurrent lags,thevoltagean inductive

    networkwillhavealaggingpowerfactor.

  • 8/3/2019 ac waveforms

    31/46

    Copyright 2009 Peter Basis,PE

    30

    C

    In a purely capacitive circuit, the phase angle difference between the voltage and the

    currentis90o.=90oandtheaveragepowerisasfollows:

    P=VeffIeffcos90o

    =0W

    The power factor of a purely capacitive circuit is 0 since cos90o

    = 0 and there is no power

    dissipationbyanidealcapacitor.Sinceinacapacitorthecurrentleads,thevoltageinacapacitive

    networkwillhavealeadingpowerfactor.

    Example3

    Calculatethepowerfactorofaloadthathasavoltageacrossitsterminalsv=100sin(314t 35o),

    whilethecurrentthroughisi=5x103

    sin(314t+15o).

    Solution:

    Thecurrentleadsthevoltageby50oandthereforethisloadhasaleadingpowerfactor:

    p.f.=cos50o

    =0.643leading.

    1.10 ReactivePower

    Considerequation(132)againandtakeitafewstepsfurther.

    P =

    cos

    cos (2t +

    Usingthetrigonometricidentity:

    cos( + )=cos cos sin sin

    Aftermanipulations,wehavethefollowing:

    P=VeffIeffcos(1 cos2t) + VeffIeffsin sin 2t 135

    Equation(135)willpresentafewinterestingresultsregardingR,LandC.

  • 8/3/2019 ac waveforms

    32/46

    Copyright 2009 Peter Basis,PE

    31

    L

    Thediscussionstartedintheprevioussectionandcontinuesinthissectionbyconsidering

    thegeneralcase,showninfigure1.40,ofaloadthathasthefollowingvoltageandcurrent:

    v=Vpsint and i=Ipsin(t+)

    Iftheloadisanidealinductor,thephaseangleofthecurrentis= 90owhenthecurrentlags the voltage by 90

    o. Substituting this phase angle in equation (135) gives the following

    results:

    P=VeffIeffcos90(1 cos2t) + VeffIeffsin90 sin 2t VeffIeff sin 2t 136

    sincecos(90o)=0andsin(90

    o)= 1

    Thesinusoidofequation(136)isshown infigure1.41.This isasinusoid,withtwicethe

    frequencyofthecurrentorvoltage,apeakvalueequal toVeffIeff,andhasnoaveragevalueas

    seenfrombothequation(136)andfigure1.41.Observethatoveronefullcycle,theareaontop

    ofthehorizontalaxisisequaltotheareabelowtheaxis.Theareaontoprepresentsthepower

    suppliedbythesourceandtheareabelowrepresentsthepowerreturnedbytheinductor.Thissuggeststhatthe ideal inductordoesnotdissipateanyenergyandthatthere isanexchangeof

    power between the source and the inductor every quarter cycle of the current or voltage

    sinusoid.

  • 8/3/2019 ac waveforms

    33/46

    Copyright 2009 Peter Basis,PE

    32

    Thepowerexchangedbetweenthesourceandtheinductoriscalledreactivepower.The

    symbolusedforreactivepowerisQandtheunitofmeasureistheVAR(VoltAmpereReactive).

    Reactivepoweriscalculatedasfollows:

    Q=VeffIeffsin [VAR] (137)

    isthephaseanglebetweenthevoltageandthecurrent. Fortheinductorthephaseangleis90oandthereactivepowerisasfollows:

    QL=VeffIeff [VAR]

    In conclusion, an ideal inductor does not consume any average power, but receives

    reactive power from the source and returns the same to the source without dissipating any

    energy.

    C

    Considernowthattheloadisanidealcapacitorasshowninfigure1.42. Thephaseangle

    ofthecurrentis=90o,sincethecurrentleadsthevoltageby90oinacapacitor.Substitutingthisphaseangleinequation(135)givesthefollowing:

    P=VeffIeffcos90(1 cos2t) + VeffIeffsin90 sin 2t VeffIeff sin 2t 138

    sincecos90o=0andsin90

    o=1.

  • 8/3/2019 ac waveforms

    34/46

    Copyright 2009 Peter Basis,PE

    33

    Thesinusoidofequation(138)isshown infigure1.43.This isasinusoid,withtwicethe

    frequencyofthecurrentorvoltage,apeakvalueequaltoVeffIeff,andhasnoaveragevaluejust

    liketheoneoftheinductor.Observethatoveronefullcycletheareaontopofthehorizontalaxis

    isequaltotheareabelowtheaxis. Theidealcapacitordoesnotdissipateanyenergy. Thereisan

    exchangeofpowerbetweenthesourceandthecapacitoreveryquartercycleofthecurrentor

    voltage sinusoid. This power is the reactive power of equation (137). For the capacitor, the

    phaseangleis90o

    andthereactivepoweris:

    QC=VeffIeff [VAR]

    In conclusion, an ideal capacitor does not consume any average power but receives

    reactive power from the source and returns the same to the source without dissipating any

    energy.

  • 8/3/2019 ac waveforms

    35/46

    Copyright 2009 Peter Basis,PE

    34

    R

    Considernowthattheloadisaresistorasshowninfigure1.44. Thephaseangleofthe

    currentis=0o,sincecurrentandvoltageareinphaseinaresistor.Substitutingthisphaseangleinequation(135)givesthefollowing:

    P=VeffIeffcos0(1 cos2t) + VeffIeffsin0 sin 2t VeffIeff VeffIeffcos2t (139)sincecos0

    o=1andsin0

    o=0

    Thesinusoidofequation(139)isshowninfigure1.45.Itisaninvertedcosinewave,with

    twicethefrequencyofthecurrentorvoltage,apeakvalueequaltoVeffIeff,and averagevalue

    equaltoVeffIeff. Observethatthepowercurveiscompletelyabovethehorizontalaxis.Thismeans

    thatallthepowerdeliveredtotheresistorwillbedissipatedasheat. Asaresult,theresistorsees

    onlyaveragepowerandusingequation(137)thereactivepowerforaresistoris:

    VeffIeffsin0o

    =0 VAR.

    Example4

  • 8/3/2019 ac waveforms

    36/46

    Copyright 2009 Peter Basis,PE

    35

    ThesourcevoltageofanetworkisV=200o

    andthecurrentsuppliedtothenetworkisI=10

    30o.Calculatetheaveragepowerandthereactivepowersuppliedtothenetwork.

    Solution:

    Thephaseangledifferencebetweenthevoltageandthecurrentis30o,andtheeffective

    valuesofthesinusoidsarealreadygiveninthephasors.Therefore:

    P=VeffIeffcos = (20)(10)cos30o

    =173.2 W

    Q=VeffIeffsin = (20)(10)sin30o

    =100 VAR

    1.11

    Apparent

    Power

    Apparent power is the product of the applied voltage and produced current. It is the

    power that is apparently delivered to the load like in DC circuits. However, the power factor

    decideshowmuchpower isdissipatedbya loadand then there is the continualexchangeof

    reactive power between the source and loads that contain reactive elements. Therefore, the

    productoftheappliedvoltageandproducedcurrentisnotalwaysthepowerdeliveredtoaload,

    unless thepower factor is1 (purely resistive load).Thisproduct isusefulasapower ratingof

    electricalcomponentsandsystems.

    ApparentpowerisrepresentedbySandhastheunitoftheVoltAmpere(VA),sinceitis

    theproductofvoltageandcurrent.

    S=VeffIeff [VA] (140)

    Now fromthedefinitionofapparentpower theaveragepowerandthereactivepower

    canbewrittenas:

    P=VeffIeffcos=Scos [W] (141)

    Q=VeffIeffsin=Ssin [VAR] (142)

    Fromequation(141)solveforcos.

    Powerfactor=pf=cos=S

    (143)

    Thepowerfactorofanetworkistheratiooftheaveragepowertotheapparentpower.

  • 8/3/2019 ac waveforms

    37/46

    Copyright 2009 Peter Basis,PE

    36

    Example5

    Calculatetheapparentpowerdeliveredtothenetworkofexample4.

    Solution:

    S=VeffIeff=(20)(10)=200VA

    1.12 Impedance

    The previous sections discussed the effect on R, L and C caused by the sinusoidal

    waveform. Fromthesediscussions,thefollowingareconcluded:

    TheResistanceisarealnumberlocatedonthepositiverealaxisofthecomplexplane:

    R=R0o.

    The inductorhasan InductiveReactance,an imaginarynumber locatedon thepositive

    imaginaryaxisofthecomplexplane:

    XL=XL90o=jXL=jL.

    ThecapacitorhasaCapacitiveReactance,animaginarynumber,locatedonthenegative

    imaginaryaxisofthecomplexplane:

    XC=XC 90o= jXC= j/C

    since j=1/j then XC=1/jC

    Theplotsofresistance,inductiveandcapacitivereactances,onthecomplexplane,areshownin

    figure1.46.Here[Re]istherealaxisand[Im]istheimaginaryaxis.

    AnyelementbyitselforanycombinationsoftheseelementsiscalledtheImpedanceofa

    circuit.ThequantityofimpedanceisrepresentedwiththecapitalletterZandthediagraminfigure

    1.46 is called the Impedance diagram. The unit of the impedance is the Ohm [], since both

    resistanceandreactanceareinOhms.

  • 8/3/2019 ac waveforms

    38/46

    Copyright 2009 Peter Basis,PE

    37

    Impedance isameasureofhowmuchthecircuitwill impede(oppose)currentflow.The

    impedanceisnotaphasorbutavectorquantityinthecomplexplaneandcanberepresentedin

    eitherrectangularorpolarcoordinates.Iftheimpedancediagramisinthefirstquadrant,thenthe

    circuit is inductivewitha laggingpowerfactor.Thecurrentwillthen lagthevoltagebyanangle

    equaltotheimpedanceangle.Iftheimpedancediagramisinthefourthquadrant,thenthecircuit

    iscapacitivewithaleadingpowerfactor.Thecurrentwillleadthevoltagebyanangleequaltothe

    impedanceangle.The total impedanceofelements connected in series isequal to sumof the

    individualimpedances.

    Example6

    Drawtheimpedancediagramfortheseriesconnectionshowninfigure1.47.

    Solution:

    Thetotalimpedanceis:

    ZT=Z

    1+Z

    2+Z

    3

    =690o + 4 90

    o +100

    o

    =j6 j4+10

    =10+j2 =10.211.3o

  • 8/3/2019 ac waveforms

    39/46

    Copyright 2009 Peter Basis,PE

    38

    Theimpedancediagramisshowninfigure1.48.

    The circuit has both an inductive and a capacitive reactance. However, the inductive

    reactance is largerthanthecapacitivemakingthe impedance inductive.Here,thepower

    factorislaggingandtheimpedancediagramislocatedinthe1st

    quadrant.

  • 8/3/2019 ac waveforms

    40/46

    Copyright 2009 Peter Basis,PE

    39

    1.13 PowerTriangleandComplexPower

    In the previous sections, the three components of AC power were defined to be the

    averagepowerP,thereactivepowerQ,andtheapparentpowerS,whicharerelatedasfollows:

    S=VeffIeff P=Scos and Q=Ssin

    isthephaseanglebetweenthevoltageandthecurrent.

    Theabove relationsconclude that theACpowerquantitiesarevectors,which forma

    righttriangleandasvectorsarerelatedbythefollowingrelationship:

    S=P+Q (144)

    Forinductiveloadstheapparentpower S=P+jQL andthepowertriangleisinthefirstquadrant

    asseeninfigure1.49.Forcapacitiveloadstheapparentpower S=P jQCandthepowertriangle

  • 8/3/2019 ac waveforms

    41/46

    Copyright 2009 Peter Basis,PE

    40

    isinthe4th

    quadrant,asseeninfigure1.50.

    When both inductive and capacitive loads are present, the total reactive power is

    determinedfromthedifferenceofQL QC.Thepowertriangleiseitherinthe1st

    quadrant,fora

    positive reactive power (inductive) or in the 4th

    quadrant for a negative reactive power

    (capacitive). Thepowertrianglecanbedeterminedfromtheimpedancetrianglebymultiplying

    each component of the impedance diagram by the current squared (I2

    ). This is shown in theimpedancediagraminfigure1.51.MultiplicationbyI

    2yieldsthepowertriangleoffigure1.52.

    Sincethethreepowersformarighttriangle,thePythagoreanTheoremrelatesthem.

    S=P Q (145)

    Example7

    Constructthepowertriangleofthenetworkoffigure1.53.

    Solution:

    ZT=6+j8=1053.1o

    I=E/ZT=(500o)/(1053.1

    o)=553.1

    o

    P=I2R=(5)

    26=150W

    QL=I2XL=(5)

    28=200VAR

    S=I

    2

    ZT=(5)

    2

    10=250VAandalternatively,fromequation(145):

    S=150 200 = 250VA

    Thepowertriangle isshown infigure1.54.Theangle isthe impedanceanglebut itcan

    alsobecalculatedas:

  • 8/3/2019 ac waveforms

    42/46

    Copyright 2009 Peter Basis,PE

    41

    cos1

    (150/250)=53.1o

    Theapparentpowerofanetworkcanbe calculated invector formusingthe following

    equation:

    S=VI*

    (146)HereVisthevoltageappliedacrossthenetworkandI

    *isthecomplexconjugateofthecurrent

    supplied to the network. Equation (146) is called the complex power of the network. The

    complexconjugateofacomplexnumber isfoundbysimplychangingthesignofthe imaginary

    part intherectangularcoordinatesystemorbychangingthesignoftheangle inthepolarco

    ordinatesystem.

    Example8

    Calculatethecomplexpowerforthenetworkofexample7.

    Solution:

    Fromexample7:

    E=500o

    and I=553.1o

    Therefore:

    I*=553.1

    o

    and

    S=(500o)(553.1

    o)= 25053.1

    o VA

    1.14 TotalP,QandS

    Tocalculatethetotalaveragepowerofanetwork,addtheindividualaveragepowersof

    thebranches.This is independentofwhether thebranchesareconnected in seriesorparallel

    connections.Inasimilarfashion,tofindthetotalreactivepowerofanetwork,addtheindividual

    reactive powers of the branches. Inductive reactive power is positive and capacitive reactive

    powerisnegative. Afterboththetotalaveragepowerandthereactivepowerarecalculatedthen

    useequation(145) tocalculatethetotalapparentpowerofanetwork.Thisisdemonstratedintheexamplethatfollows.

  • 8/3/2019 ac waveforms

    43/46

    Copyright 2009 Peter Basis,PE

    42

  • 8/3/2019 ac waveforms

    44/46

    Copyright 2009 Peter Basis,PE

    43

    Example9

    a) CalculatethetotalP,QandSforthenetworkoffigure1.55.

    b) Drawthepowertriangleandcalculatethepowerfactor.

    Solution:

    a) Thetotalaveragepoweris:

    PT=400W+200W+500W+100W=1200W

    Thetotalreactivepoweris:

    QT= 100VAR+400VAR 1000VAR

    = 700VAR

    =700VARcapacitive

    Thetotalapparentpoweris:

    S=1200 700 = 1389.24VA

    b) Thepowertriangle isshown in figure1.56. It isacapacitivenetworkandtherefore the

    powertriangleislocatedinthe4th

    quadrant.

    Thepowerfactoris: pf=P/S=1200/1384.24=0.864

    and =cos1

    0.864=30.3o

    1.15 PowerFactorCorrection

    Mostof the real life loadsare inductive loadswith laggingpower factor.Power factor

    correctionistheprocessofintroducingreactiveelements(capacitors)tobringthepowerfactor

    closertounity(resistivenetwork).TheimprovementofthepowerfactortounitymeansthatS=

    PandQ=0.Asa result,thereare lower levelsofSand thecurrent isminimum.Thus,power

    factorcorrectionminimizesthecurrentrequirementsbycalculatingthecapacitorneededtobe

    placedinparallelwiththesystemthatrequirespowerfactorcorrection.

    Example10

    A loadconnectedtoa120V,60Hzsupplyis2kWresistiveand 1.25kVARinductive.Calculate

    thecapacitancerequiredforunitypowerfactor.

    Solution:

    Thepowertriangleisshowninfigure1.57.Theapparentpoweris:

    S=2000 1250 = 2358.5VA

  • 8/3/2019 ac waveforms

    45/46

    Copyright 2009 Peter Basis,PE

    44

    thepowerfactoris:

    cos =(2000)/(2358.5)=0.848lagging

    inaddition,thecurrentsuppliedbythesourceis:

    I=S/V=(2358.5VA)/(120V)=19.65A

    Withtheunitypowerfactorthepowertrianglebecomesthestraight line infigure1.58,

    andS=P=2000VA.Forunitypowerfactoraddacapacitivereactivepowerequaltothe

    inductivereactivepowerseeninfigure1.57.ThereforeQC=1250VARand:

    QC =

    X XC =

    =

    = 11.52

    C =

    X =

    X

    = =

    X . X X .= 230.4 F

    Then,connecta230.4 Fcapacitor inparallelandthepowerfactorbecomesunity.Thecurrentsuppliedbythesourceisnow:

    I=S/V=(2000VA)/(120V)=16.67A

    thisislessthanthecurrentsuppliedwithoutthepowerfactorcorrection.

  • 8/3/2019 ac waveforms

    46/46

    1.16 Summary

    Inthiscourse,wediscusssomebasicquantitiesassociatedwithACwaveforms.

    Wepresentsinusoids,squareandtriangularwaves.

    Wedefinethefollowingterms:periodicwaveform,period,cycle,frequency,peakvalue,peak

    topeakvalue,instantaneousvalue,angularvelocity,averagevalue,RMSoreffectivevalue

    andtotalRMS.

    Westudyphaserelations,phasors,complexnumbersandcomplexalgebraandhowithelps

    withphasors.

    Thetermslags,leadsandinphaseandoutofphasearepresented.

    TheeffectoftheR,LandC elementsisdiscussed.

    Averagepower,powerfactor,reactivepower,apparentpower,impedanceandimpedance

    triangle,powertriangleandcomplexpower,totalP,QandSandfinallypowerfactor

    correctionarepresented.