13
‐1‐ The SCALE-UP Project: A Student-Centered Active Learning Environment for Undergraduate Programs Robert J. Beichner, North Carolina State University, Raleigh, NC I. Introduction SCALE‐UP 1 stands for “Student‐Centered Active Learning Environment for Undergraduate Programs.” It describes a place where student teams are given interesting things to investigate while their instructor roams—asking questions, sending one team to help another, or asking why someone else got a different answer. Even in a science course, there is usually no need for a separate lab. Most of the “lectures” are class‐wide discussions. The groups are carefully structured and give students many opportunities to interact with each other and the instructor. Three teams (labeled A, B, and C) sit at each round table and have white boards nearby. Every group has a laptop for searching the web. At NC State, the original site, classes usually have 11 tables of nine students. Most of the 50+ schools that have adopted the approach have smaller classes, while a few have even larger ones 2 . The majority of class time is spent on 10 or 15 minute “tangibles” and “ponderables.” Essentially these are hands‐on activities, simulations, or interesting questions and problems. In science classes there are usually some longer, hypothesis‐driven lab activities where students have to write detailed reports. Occasionally there will be lecturing, but that is mostly to provide motivation and a view of the “big picture,” which can be difficult for students to discern when they are not familiar with the entire course content. Figure 1. This photograph from Ithaca College shows the typical SCALE‐UP environment: round tables seating three teams of three students, surrounded by screens, white boards and handy equipment storage. There is a teacher station located somewhere in the midst of the action. (Note that these tables are slightly smaller than usual.) Photo courtesy of Michael Rogers.

A Student-Centered Active Learning Environment for Undergraduate

  • Upload
    buitu

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

‐1‐

The SCALE-UP Project: A Student-Centered Active Learning Environment for Undergraduate Programs

Robert J. Beichner, North Carolina State University, Raleigh, NC

I. Introduction

SCALE‐UP1standsfor“Student‐CenteredActiveLearningEnvironmentforUndergraduate

Programs.”Itdescribesaplacewherestudentteamsaregiveninterestingthingstoinvestigatewhile

theirinstructorroams—askingquestions,sendingoneteamtohelpanother,oraskingwhysomeone

elsegotadifferentanswer.Eveninasciencecourse,thereisusuallynoneedforaseparatelab.Most

ofthe“lectures”areclass‐widediscussions.Thegroupsarecarefullystructuredandgivestudents

manyopportunitiestointeractwitheachotherandtheinstructor.Threeteams(labeledA,B,andC)

sitateachroundtableandhavewhiteboardsnearby.Everygrouphasalaptopforsearchingthe

web.AtNCState,theoriginalsite,classesusuallyhave11tablesofninestudents.Mostofthe50+

schoolsthathaveadoptedtheapproachhavesmallerclasses,whileafewhaveevenlargerones2.

Themajorityofclasstimeisspenton10or15minute“tangibles”and“ponderables.”Essentially

thesearehands‐onactivities,simulations,orinterestingquestionsandproblems.Inscienceclasses

thereareusuallysomelonger,hypothesis‐drivenlabactivitieswherestudentshavetowritedetailed

reports.Occasionallytherewillbelecturing,butthatismostlytoprovidemotivationandaviewof

the“bigpicture,”whichcanbedifficultforstudentstodiscernwhentheyarenotfamiliarwiththe

entirecoursecontent.

Figure1.ThisphotographfromIthacaCollegeshowsthetypicalSCALE‐UPenvironment:roundtablesseatingthreeteamsofthreestudents,surroundedbyscreens,whiteboardsandhandyequipmentstorage.Thereisateacherstationlocatedsomewhereinthemidstoftheaction.(Notethatthesetablesareslightlysmallerthanusual.)PhotocourtesyofMichaelRogers.

‐2‐

Socialinteractionsbetweenstudentsandwiththeirteachersappeartobethe“activeingredient”

thatmakestheapproachwork.Asmoreandmoreinstructionishandledvirtuallyviatheweb,taking

advantageoftherelationship‐buildingcapabilityoftherealpeopleinbrickandmortaruniversities

becomesevenmoreimportant.Themostquotedstudy3inallofhighereducationresearchindicates

thatweprobablyhaveitright:“WhatMattersinCollege”aretherelationshipsstudentsbuildwith

eachotherandwiththeirteachers.TheresearchbasethatsupportsthedesignofSCALE‐UPhas

beenculledfrommanysources.Thefundamentalapproachofactive,collaborative,sociallearning

hasbeenreportedinhundredsofstudies4.Studio‐basedlearningisnotnew,butitsapplicationto

scienceclassesisfairlyrecent5.

Physics,chemistry,math,biology,astronomy,engineering,andevenliteraturecourseshaveutilized

thisapproach.Apoliticalscienceclassisindevelopmentatoneadoptingschool.Theteachercould

picksomecurrenteventtofocusthestudents’attention,forexampleagovernmentofficial’s

Congressionaltestimonyonsomecontroversialtopic.The“A”groupateachtablewouldgotothe

webtoseehowCNNcoveredtheevent.The“B”groupswouldreadtheWashingtonPostcoverage,

whilethe“C”groupscouldfindtheFoxNewswebsite.Thentheywouldcompareandseewhat

aspectswerecoveredbyallthreeandwhichthingsweremissinginsome.Theymightthenbesent

onasearchtofindtheleastbiasedpresentation,perhapsbyaninternationalorganizationlikethe

BBC.Whetherthetopiciscurrenteventsorchemistry,thebasicideaisthesame6.Studentteams

workoninterestingtaskswhileteacherscoach.

Somepeoplethinktheroomslookmorelikerestaurantsthanclassrooms.Likeaneating

establishment,thespacesarecarefullydesignedtofacilitateinteractionsbetweenpeople.Theyare

Figure2.ClassroomsatPittandMITillustratethecommonfeaturesofmostSCALE‐UPclassrooms:7'diameterroundtables,whiteboards,projectionscreens,andonelaptop/team.PhotocourtesyofAdamLeibovich.GraphiccourtesyofJohnBelcher.

‐3‐

definitelynoisyplaces,withlivelyconversationsgoingonnearlyallthetime.Forlargerclasses,a

teachingassistantprovidesadditionalhelp.Theinstructortypicallywearsawirelessmicrophoneto

makeiteasiertogaineveryone’sattentionforclasswidediscussions.Oftenstudentsworkingonan

activitywillskiptheirbreakinthemiddleofatwo‐hourclasssotheycancontinue“pondering”an

intriguingquestion.Adecadeofresearchindicatessignificantimprovementsinlearning.

II. Evidence of Efficacy Rigorousevaluationsoflearninghavebeenconducted,eitherinparallelwithcurriculum

developmentandclassroomdesignwork,orasafollow‐uptosuchefforts.Manyadoptershave

givenconceptuallearningassessments(usingnationally‐recognizedinstrumentsina

pretest/posttestprotocol),andcollectedportfoliosofstudentwork.Severalschoolshaveconducted

studentinterviewsandcollectedinformationfromfocusgroups,supplementinghundredsofhours

ofclassroomvideoandaudiorecordingsmadeatNCStateduringtheearlydevelopmentphases.

Moredetailsoftheresearchbehindtheroomdesignaswellasoutcomesofstudiesofeducational

impactareavailable7.

Concept learning Thereisampleevidence7frommultipleadoptingsitesthatstudentsinSCALE‐UPclassesgaina

betterconceptualunderstandingthantheirpeersintraditionallecture‐basedclasses.AsFigure3

showsforthefirstandsecondsemestersofintroductoryphysics,studentsperformedbetterona

varietyofconceptualsurveys.ThepatternapparentinFig.3(b),wherestudentsinthetopthirdof

theirclassmadethemostprogresstowardperfectscoresontheassessmenttests,isanimportant

counter‐argumenttothosewhocomplainthat“reformcoursesonlybenefittheweakerstudentsand

weareignoringthestarsoftomorrow.”Clearlythatisnotthecase.

Otherschoolshavehadsimilarresults.AtFloridaState,normalizedgainsontheFCIfromthefirst

(Spring2008)andsecond(Summer2008)implementationsofGeneralPhysicswereapproximately

50%8,farsurpassingthetypicallyseen23%fortraditionalcourses9.FloridaInternationalUniversity

notes10,“Thesecourseshavebeenextremelysuccessful,intermsofstudentlearningoutcomes,

facultyassessments,andrecruiting.TheaveragestudentperformanceontheForceConcept

Inventory(FCI)inthemodeling‐based[studiophysics]coursesisroughlyafactorof2.5betterthan

inourtraditionalcourses.”AtPennState‐Erie,over550studentshaveenrolledinSCALE‐UPphysics,

asofthesummerof2008.ScoresontheFCIpost‐testhaveincreasedfromanaveragescoreof46%

‐4‐

correctbeforeSCALE‐UPto74%correctsinceSCALE‐UPbegan11.TheUniversityofPittsburgh

reports12whattheycall“striking”gainsonatest13ofelectricityandmagnetismconcepts.Positive

impactsaremanifestedinotherareasaswell.Chemistryfacultyhavepublished14findingsof

learninggains.Aninternalreport15ontheEngineeringStaticscourseatClemsonreports,“Oneofthe

commonconcernsexpressedbymycolleaguesisthatImustnotbecoveringasmuchmaterialsince

Iamusingclasstimetocompleteactivities.MyresponseisthatIcoverthesameamountofmaterial

asotherinstructors.”NCStatenotes7thesamesituationinPhysics.Biologylearningisbeingstudied

attheUniversityofMinnesota,FloridaGulfCoastUniversity,andtheUniversityofColorado.

MinnesotaBiologyprofessorRobinWrighthasbeensosuccessfulwithherclassesthatshe

believes16theSCALE‐UPapproachwouldworkwithupto250studentsatatime.ElizabethWolfe

completedherUniversityofVictoriaMSthesis17doingastudyoflearninginaSCALE‐UPcomputer

databasesystemscourseandreportsthatthe“evaluationsurpassedexpectationsbothwithregard

tocoursedeliveryandstudentperceptionofteamwork.”TheNCStatestudy7alsoexaminedteacher

effectsattwoschoolsandfoundthatstudentsofteachersinSCALE‐UPsettingshadgreater

conceptuallearninggainsthanstudentsofthosesameteachersinlecturesettings.MIThascarried

outseveralstudiesandreportsimproved18conceptuallearningandsignificantlybetterlong‐term

retention19ofthosegains.

Figure3:(a)SCALE‐UPstudentsdemonstratedbetterimprovementinconceptualunderstandingthanLecture/LabclassesbyachievinghighernormalizedgainsfortheMechanicssemesterpre/postforceandmotionconcepttestsatCoastalCarolinaUniversity(CCU),NorthCarolinaStateUniversity(NCSU),UniversityofCentralFlorida(UCF),UniversityofNewHampshire(UNH),andRochesterInstituteofTechnology(RIT).FCIistheForceConceptInventorydevelopedbyHestenes,et al.20FMCEistheForceandMotionConceptualEvaluationdevelopedbyThorntonandSokoloff.21TheFCInationalaverageisfromHake’s6,000studentstudycomparingInteractiveEngagementclasseswithtraditionalLecture/Laboratoryclasses.9 (b)B,M.andTstandforBottom,Middle,andTopthirdsoftheclass,asmeasuredbyconceptualpretestscores.Studentsinthetopthirdoftheirclasseshadthehighestnormalizedgains,possiblybecausetheywereteachingtheirpeers.CSEMistheConceptualSurveyofElectricity&MagnetismdevelopedbyMaloney,et. al.22ECCEistheElectricCircuitConceptualEvaluation23developedbyThorntonandSokoloff.TheMITE&MtestwasdevelopedatMITfortheirSCALE‐UPimplementation.18

‐5‐

Skill Development

SincenearlyallSCALE‐UPcoursesacrossthecountryhavebeenintheSTEM(Science,Technology,

Engineering,andMath)fields,mostschoolshavebeenveryinterestedintheimpactoftheapproach

onmeasurementandproblemsolvingskills,aswellascommunicationandteamsmanship.These

havebeenevaluatedatseveralplaces.WorkatNCStateshowedthatSCALE‐UPstudents’lab

measurementskillsimproved24andtheyachievedonelettergradebetterontestswrittenby

lecturersthandidthelecturers’ownstudents7.

Streitmatter25reportedthatfemalestudentsprefer,andachievebetterin,classroomswhere

learningactivitiesarestructuredascooperativeendeavorsratherthanwithinacompetitive

structure.ItisinterestingtonotetheprogressofwomenstudentsatPennState‐Erie,wherethey

“haveSATmathscoresandmathematicsplacementtestscoresthatarewellbelowthoseoftheir

malecounterparts(p<.001andp<.05respectively).Atthetimeofthefirsttestofthesemester,

femalesstillhavesignificantlydifferentscores,withanaverageof62%versusthemalemeanof

74%(p<.001).Bythesecondexamthough,thefemalescatchuptothemales,andmaintainthis

equalityofachievementthroughthefinalexamination(p>.05).Thefinalcoursegradesofmalesand

femalesinSCALE‐UParenotsignificantlydifferent(p>.05),despitethefactthatwomenstartthe

coursewithlowerscoresontestsofprerequisiteskills26.”

Affective outcomes

Atschoolswheretheyhaveachoice,studentsalmostalwayspreferSCALE‐UPbasedclasses

comparedtolecturecourses.AlthoughattitudesofSCALE‐UPstudentsaresometimesstudied

directly14,18,theyaremoreoftenrevealedindirectly;forexample,studentsuniversallyselectthe

SCALE‐UPversionfortheirsecondsemestercourse,theyreporttheirfriendsdirecttheminto

SCALE‐UPclasses,SCALE‐UPsectionsfillbeforelecturesections,etc.NCStatehasafive‐year

averageattendancerateofmorethan90%,eventhoughattendanceisnotrequiredforSCALE‐UP

classes7.Attheveryleast,thisimpliesthatstudentsvalueclasstime.Atbestitmayalsoindicatethey

enjoylearninginthistypeofsetting.Minnesota’sevaluation27oftheirpilotclassroomsnotes,“The

instructorswhowereinterviewedenjoyedteachingintheroomssomuchthattheironlyconcern

wasafearofnotbeingabletocontinuetoteachinthesenewlearningspaces.Similarly,morethan

85percentofstudentsoverwhelminglyrecommendedtheActiveLearningClassroomsforother

classes.”

Retentionratesareasortof“grandtotal”ofeducationaloutcomes,nottheleastofwhichisstudent

motivation.Forexample,theDFWrate(drop,fail,withdraw)forstudio‐basedmodelingclassesat

‐6‐

FloridaInternationalUniversityis“1/4ththeDFWrateintraditionalclasses.Facultyevaluations

andstudentfeedbackhavebeenoverwhelminglypositive,andthecoursesaredrawingroughlyfour

timestheroomcapacityinrequeststoentertheclass.Wealsofind10‐20%ofthestudentspursue

physicsminorsandmajorsaftertakingthecourse,eitheraddingasecondmajor/minororswitching

majors10.”NCStatefoundsimilarresultsfromdata7comparingpass/failratesfornearly16,000

traditionalandSCALE‐UPstudentstakingphysics.Failurerates,especiallyforwomenand

minorities,arereducedbyafactoroffourorfive,asseeninFigure4.Thisisconsistentwith

Colbeck’sfindings28thatwomen’sconfidenceincreaseswhenclearexpectationsarepresentedand

men’sconfidenceincreaseswithincreasedfacultyinteraction.Shealsofoundhighcorrelation

betweencollaborativelearningandstudentconfidenceforbothgenders.Bandura’stheory29ofsocial

cognitionimpliesthatthisincreasedconfidencewillleadtoimprovedperformanceandmore

resilienceinachallengingenvironment.

AtClemson,“beginninginFall2006,allfreshmanCalculusIcoursesweretaughtusingtheSCALE‐UP

model,inordertoaddresshighDFWrates.Historically,theDFWpercentagewas44%,andhadseen

asharpincreasepriortoFall2006inmostfreshmancalculusclasses.ThecurrentDFWrateforall

thesecourses,whichincludesnearly800freshmen,hasdroppedtoapproximately22%inthat

program,whichisencouragingourfacultytoadopttheSCALE‐UPapproachpermanentlyaspartof

ouracademicculture.30”

Figure4:FailureratecomparisonforNCSUPhysicsI&IIclasses.Here,failingmeansreceivingagradelowerthanC–inthemechanicscourseorlessthanaD–intheE&Mcourse,thegradesneededtoreceivecreditfortakingthecourse.NoHispanicSCALE‐UPstudentsfailedduringthefiveyearsofdatacollectionfrom16,000+students,sothatbarishaszerolength.Errorbarsrepresentstandarderrorofthemean,andaremostlytoosmalltobeseen.

0% 5% 10% 15% 20% 25% 30% 35%

Hispanic

AsianAm

NativeAm

AfricanAm

White

Female

Male

Overall

TraditionalSCALE‐UP

Failure Rate 

‐7‐

Adirectwaytomeasurestudentattitudesaboutacourseistosimplyaskthem.Twovisitorstothe

NCStateprojectinterviewedafocusgroupofstudentswhohadcompletedalecturecoursefortheir

firstsemesterofphysicsandaSCALE‐UPsectionforthesecondphysicsclass.Intheirreport,they

noted,They[thestudents] felt they were learning the material at a deeper conceptual level in Scale­Up as compared to 

the  lecture  format,  and  that  there  was  much  less  rote  memorization  on  their  part.    They  felt  that  the 

contributing  factors  to  this  positive  outcome  were  the  hands­on  nature  of  the  classroom  experience,  the 

collaborative work format ("I learn much better from my peers than from my Professors"), and the availability 

of faculty and TA's for interaction during class... 

Other outcomes

Severalschoolshavelookedatstudentperformanceinlatercourses.AtNCState,therehasbeenno

change7intheoverallDFWrateforengineeringstaticscourses,eventhoughtheSCALE‐UPphysics

failurerateisapproximately1/3whatitwaswithtraditionalclasses.Infact,studentsdefinedas“at

risk”(basedonSATmathscores<500)failstaticscourses17%ofthetimeiftheytookaSCALE‐UP

physicscourse,but31%ofthetimeiftheirbackgroundincludedonlylecture‐basedphysicscourses.

Studentsseemtorecognizethevalueofwhattheyarelearning.WhenPennState‐Erieconducted31

anopinionsurveyofformerstudents,theyfoundthattheproblem‐solving,communication,and

teamworkskillslearnedinSCALE‐UPclasseswerebeingutilizedinothercourses.Acomputer&

softwareengineeringstudentnoted,“Teamworkandgroupproblem‐solving…areveryimportant

skillsforengineersandotherfieldsrequiringgroupcollaboration.”Amechanicalengineering

studentstated,“SCALE‐UPphysicshelpedmetolearnthatexploringconceptsonmyown,outsideof

alecture,helpsmetorememberthembetter.”

Faculty,too,areseeingthatchangingtheirfocusfromteachingtolearningisimportant.Asnotedby

PeterDourmashkin,whoteachesphysicsatMIT,“Traditionally,inlargelectures,youdowhatis

possibletodoinfrontof500people,notbecauseit’swhatyoushoulddo.Nowwe’reaskingthe

question:Whatdowereallywantourstudentstolearnaboutelectricityandmagnetism?”

III. Assessment methods Whenstartingonajourney,itisalwaysgoodtoknowwhereyouwanttogo.Similarly,whentaking

onthewholesaleredesignofcollege‐levelinstruction,itisimportanttohaveclearlydelineated

objectives.Obviouslythesewilldependonthetypeofcoursebeingreformed.

BeforethepilotclassroomatNCStatewasbuilt,theprojectteamsatdownandoutlinedtheirlarge‐

scaleobjectivesforthetwo‐semesterintroductoryphysicssequence,withtheaimoftyingthem

‐8‐

tightlytotheaccreditationcriteriaestablishedrecentlybyABET32,theAccreditationBoardfor

EngineeringandTechnology.TheseobjectivesarereproducedinTable1.Itisimportanttorealize

thateachoftheseoverarchingobjectiveshadnumeroussub‐objectivesthatwerebehavioralin

nature.Inotherwords,theyexplicitlydescribedsomethingthestudentshouldbeabletodo.For

Table1:OverallobjectivesforNCSUSCALE‐UPPhysicsandtheirrelationshiptotheABETcriteria,whichareindicatedby(3a),(3b),etc.inthemiddlecolumn.Pre‐postconcepttestsweretheFCI20,FMCE21,TUG‐K33,CSEM22,BEMA13,andDIRECT34.MPEXstandsforMarylandPhysicsExpectationSurvey35.

example,thefirstobjectivelookedforunderstandingofphysics.Thiscouldbedemonstratedbya

studentwhocould:

A.describeandexplainphysicsconceptsincludingknowingwhereandwhentheyapply

B.applyphysicsconceptswhensolvingproblemsandexaminingphysicalphenomena

C.applyconceptsinnewcontexts(transfer)

D.translatebetweenmultiple‐representationsofthesameconcept(forexample:between

words,equations,graphs,anddiagrams)

E.combineconceptswhenanalyzingasituation

F.evaluateexplanationsofphysicalphenomena

Eachofthesesub‐objectivesthenhadevenfinergrainedobjectivesthatexplicitlyinvokedthe

physicscontent.Thismadeiteasiertoutilizeportfoliosofstudentworktoassesswhetherthe

objectivehadbeenmet.

TheReformedTeacherObservationProtocol(RTOP)hasalsobeenusedtoevaluateSCALE‐UP

classrooms.AsMacIssacandFalconerstate36,“TheRTOPinstrumentisdesignedtoconstructively

critiquedetailsofclassroompracticesincludingcooperativelearning,interactiveengagement,and

NCSU SCALE­UP Objectives for Calculus­based Intro Physics 

ABET 2000 Criterion 3: Program Outcome Requirements 

Assessment Method 

SCALE‐UPstudentsshould: Engineeringprogramsmustdemonstratetheirstudentshave:

developagoodfunctionalunderstandingofphysics.

(3a)anabilitytoapplyknowledgeofmathematics,science,andengineering

Pre/Postconcepttestsonforces,graphs,electromagnetism,circuits

begindevelopingexpert‐likeproblem solvingskills.

(3e)anabilitytoidentify,formulate,andsolveengineeringproblems

Studentportfolios;interviews;testcomparisonstocontrolgroups

developlaboratoryskills. (3b)anabilitytodesignandconductexperiments,aswellastoanalyzeandinterpretdata Practicaltesting;studentportfolios

developtechnologyskills.. (3k)anabilitytousethetechniques,skills,andmoderntoolsnecessaryforengineeringpractice

In‐classobservationsviafieldnotes;practicaltesting;studentportfolios

improvetheircommunication,interpersonal,andquestioningskills.

(3d)anabilitytofunctiononmulti‐disciplinaryteams(3g)anabilitytocommunicateeffectively

In‐classobservationsviafieldnotes,audio,andvideorecording;interviews;focusgroups

developattitudesthatarefavorableforlearningphysics.

(3h)thebroadeducationnecessarytounderstandtheimpactofengineeringsolutionsinaglobalandsocietalcontext(3i)arecognitionoftheneedfor,andanabilitytoengageinlife‐longlearning

MarylandPhysicsExpectations(MPEX)survey;interviews;in‐classobservationsviafieldnotes

haveapositive learning experience. NotintheABETcriteria Courseevaluations;interviews;focus

groups

‐9‐

certaintypesofPER[PhysicsEducationResearch]activities,aswellasfindingscollectivelyknown

aspedagogicalcontentknowledge.”Ithasbeenusedinmorethan400scienceandmathematics

classroomsandfoundtocorrelatestronglywithstudentlearninggains(r=0.70‐0.95).Traditional

universitylecturescoresare20(outof100)whileamedium‐sizedlectureusingPeerInstruction37

withanelectronicstudentresponsesystemscoresfrom65‐75.Saul38usedtheprotocolontwo

lectureclassesandoneSCALE‐UPclassattheUniversityofCentralFloridaandfoundthelecture

classesscored35whiletheSCALE‐UPclassreceivedascoreof80.

AtNCState,wehiredanexternalevaluatortocompareourtraditionallecture‐basedandSCALE‐UP

classes.Aboutalectureclasstaughtbyaveteranprofessorshewrites,Students  did  ask  questions  in  this  class;  however, most  questions were  about  details  of  course  procedures  or 

questions requesting factual information related to physics.  While this instructor attempted to make the large 

lecture section more interactive, the students did not exhibit behaviors that signaled positive intellectual regard 

for the activity.  

However,afterobservingoneoftheSCALE‐UPclasses,theexternalevaluatorreported,…students asked over eight [emphasisinoriginal] questions during the period and all of these questions were 

substantive questions, questions at one of the higher cognitive levels.  In addition, students offered explanations 

about physical phenomena during discussions without being called upon to do so.    It  is worth remarking that 

SCALE­UP students began talking to one another about physics even before class began. 

IV. Open questions Oneeffectwehavenoticedbuthavenothadanopportunitytoexploreistherapidincorporationof

membersofunderrepresentedgroupsintostudentteams.Althoughothers39havefoundinputfrom

minoritiesandwomentobedevaluedingroupsettings,thathasnotbeenthecaseinSCALE‐UP

classes.Wewouldliketoknowmoreaboutthedetailsofinteractionstakingplacewithingroups.

Thiswasexaminedduringtheearlypilotphase,butnot(atleastatNCState)sincetheclasseshave

grownto99students.

Othersarebeginningtostudy40whatinfluencesadoptionofreformsandhowtobestapproach

reluctantfaculty.MIThasreportedonpositiveandnegativestudentreactions18toimplementation

ofTEAL,theiradaptationofSCALE‐UP.PundakandRozner41studiedthefactorsthatinfluenced

SCALE‐UPadoptionatacollegeinIsrael.Thisisapromisingandinterestingareathatshouldbe

pursued.

Whilestudyingwhatinfluencesadoption,itwouldalsobefascinatingtotrackhowimplementations

varygenerationbygeneration.Forexample,duringtheearlyphasesoftheproject,NCState

‐10‐

researcherscarefullyexaminedvarioustableshapes,eventuallysettlingonroundtablestobest

facilitatediscussions.(Infact,fourdifferentdiameterswereclassroomtested.)Severaladopters

havetriedothertablegeometries.AlabamahasXandT‐shapedtables.NewHampshirehaslollipop‐

shapedtables,butisnowchangingtorounds.Tokyohas“beanshaped”tables.Itisinterestingto

notethatTokyolearnedaboutSCALE‐UPfromtheTEALprojectatMIT.GeorgiaSouthern,an

institutionthatlearnedaboutSCALE‐UPfromAlabama,hasrectangulartables.Itwouldbeusefulto

seewhythesechangesweremadeandexaminetheirimpactonthelearningenvironment.

Figure5:XandT‐shapedtablesattheUniversityofAlabama,“Lollipop”tablesattheUniversityofNewHampshire,and“Bean”tablesattheUniversityofTokyo.PhotoscourtesyofStanJones,DawnMerideth,andToshioMochizuki.

V. Next steps IcontinuetotraveltocollegesaroundthecountrytodescribetheSCALE‐UPlearningenvironment

andhelpotherswhoareconsideringadoptingtheapproach.Recentlymanyinternationaltripshave

beenmade,includingvisitstoschoolsinAustralia,Canada,Chile,China,Italy,Mexico,Portugal,and

Switzerland.TheSCALE‐UPwebsitehasbeenupdatedsotheimplementingsitescansharetheir

classroomdesigns,instructionalmaterials,anddocumenttheresearchtheyhavedoneonthe

effectivenessoftheirreforms.Nowweneedtobegincollaboratingoneducationalresearchprojects.

Itwouldbeusefultoseehowimplementationstrategies,classroomdesigns,courseoperation,and

effectivenessoftheseadoptionsvariesbysizeandtypeofinstitution,aswellasexaminevariation

duetocontentorstudentdemographicdifferences.

Acknowledgements IwouldberemissifIdidnotthankthehundredsofpeoplewhohavebeeninvolvedofdeveloping,

adopting,andadaptingSCALE‐UPforclassroomsaroundtheworld.Inparticular,Iappreciatethe

supportofmyNCStatecolleaguesPhillipStiles,JerryWhitten,DanSolomon,Jo‐AnnCohen,Chris

Gould,MichaelPaesler,RichFelder,JohnRisley,MariaOliver‐Hoyo,PeterEvans,andEveretteAllen.

JeffSaulgatheredmuchoftheearlydataoninstructionalimpactandcarefullyensureditsquality.

DavidAbbott,RhettAllen,ScottBonham,MelissaDancy,DuaneDeardorff,andJeanneMorsealso

helpedwithdatacollectionfromtheinitialefforts.Forthisreport,severaladoptersprovidedresults

atamoment’snoticeorhadpreviouslypublishedresultswhichtheygenerouslyshared,including

‐11‐

JohnBelcher,JudyDori,AdamLeibovich,MichaelRogers,DanielleGoodwin,andAimeeWhiteside.

ExternalfundingwasprovidedbyFIPSE(PB116B71905,P116B000659)andNSF(DUE‐9752313,

DUE‐0127050,andDUE‐9981107).Ofcourse,noneofthiswouldhavebeenpossiblewithoutthe

cooperationofallthestudentstakingSCALE‐UPclasses,especiallywhilewewere“workingthebugs

out.”Thankstooneandall.

References 1 Thenamewasoriginally“Student‐CenteredActivitiesforLargeEnrollmentUniversityPhysics.”

Ithasbeenchangedbecausetherearenowavarietyofinstitutionsapplyingtheapproachtoteachmanydifferentcontentareastoclassesofallsizes.

2 MITandMinnesotahaveroomsfor117students.Virginiaisplanningaroomfor162.Minnesotabelievestheycouldmanageaclassof250,iftheycouldjustfindthespaceandmoneytobuildit.

3 AlexanderW.Astin,What Matters in College? Four Critical Years Revisited.(Jossey‐Bass,Inc.,SanFrancisco,CA,1993),1sted.

4 DavidJohnson,GeoffreyMaruyama,RogerJohnson,andDeborahNelson,“Effectsofcooperative,competitive,andindividualisticgoalstructuresonachievement:Ameta‐analysis,”PsychologicalBulletin89,47‐62(1981);MichaelPrince,“Doesactivelearningwork?Areviewoftheresearch,”JournalofEngineeringEducation93(3),223‐231(2004);LevS.Vygotsky,Mind in society:  The development of higher psychological processes.(HarvardUniversityPress,Cambridge,MA,1978).

5 JackWilsoncoinedtheterm“studiophysics”forhisclassroomatRennsaelerPolytechnicInstitute.SeeJ.Wilson,“TheCUPLEphysicsstudio,”Phys.Teach,32,518(1994).AlsoseeP.Laws,WorkshopPhysicsActivityGuide(JohnWiley&Sons,NewYork,1997)and“Adirectcomparisonofconceptuallearningandproblemsolvingabilityintraditionalandstudiostyleclassrooms,”C.Hoellwarth,M.Moelter,andR.Knight,Am.J.Phys.74,374(2005).

6 JonGaffney,EvanRichards,MaryBridgetKustusch,LinDing,andRobertBeichner,“Scalingupeducationreform,”JournalofCollegeScienceTeaching37(5),48‐53(2008).

7 RobertBeichner,JeffSaul,DavidAbbott,JeanneMorse,DuaneDeardorff,RhettAllain,ScottBonham,MelissaDancy,andJohnRisley,“Student‐CenteredActivitiesforLargeEnrollmentUndergraduatePrograms(SCALE‐UP)project”,inPER­Based Reform in University Physics,editedbyE.F.RedishandP.J.Cooney(AmericanAssociationofPhysicsTeachers,CollegePark,MD,2007),Vol.1.

8 Reportedathttp://scaleup.ncsu.edu/groups/adopters/wiki/48252/Florida_State.html.Accessed9/9/2008.

9 RichardHake,“Interactive‐engagementversustraditionalmethods:Asix‐thousand‐studentsurveyofmechanicstestdataforintroductoryphysicscourses,”AmericanJournalofPhysics66(1),64‐74(1998).

10 LairdKramer,EricBrewe,andGeorgeO'Brien,“ImprovingPhysicsEducationthroughaDiverseResearchandLearningCommunityatFloridaInternationalUniversity”,inAPS Forum on Education Newsletter(AmericanPhysicalSociety,CollegePark,MD,2008),pp.29‐32.

11 DanielleGoodwin,internalreportfoundathttp://scaleup.ncsu.edu/groups/adopters/wiki/03ed0/Penn_State_Behrend.html.AccessedSeptember9,2008.

12 Reportedathttp://scaleup.ncsu.edu/groups/adopters/wiki/15c1e/Pittsburgh.html.Accessed9/9/2008.

13 LinDing,RuthChabay,BruceSherwood,andRobertBeichner,“Evaluatinganelectricityandmagnetismassessmenttool:Briefelectricityandmagnetismassessment,”PhysicalReviewSpecialTopics‐PhysicsEducationResearch2(010105),7(2006).

‐12‐

14 MariaOliver‐HoyoandDeeDeeAllen,“EffectsofanActiveEnvironment:TeachingInnovationsataResearchIInstitution,”JournalofChemicalEducation81(3),441‐448(2004).

15 ScottSchiff,internalreportfoundathttp://www.clemson.edu/ese/research/SCALEUP/scaleCiE.pdf.AccessedSeptermber25,2008.

16 Personalcommunication,September18.2008.17 ElizabethJ.Wolfe,“EvaluatingtheuseoftheSCALE‐UPteachingmethodologyforan

undergraduatedatabasesystemscourse,”UniversityofVictoria,2008.18 YehuditJudyDoriandJohnBelcher,“HowDoesTechnology‐EnabledActiveLearningAffect

UndergraduateStudents’UnderstandingofElectromagnetismConcepts?,”JournaloftheLearningSciences14(2),243‐279(2005).

19 YehuditJudyDori,ErinHult,LoriBreslow,andJohnW.Belcher,“Howmuchhavetheyretained?MakingunseenconceptsseeninafreshmanelectromagnetismcourseatMIT”JournalofScienceEducationandTechnology,16(4),299‐323(2007).

20 DavidHestenes,MalcolmWells,andGreggSwackhamer,“Forceconceptinventory,”PhysicsTeacher30(3),141‐158(1992).

21 RonaldK.ThorntonandDavidR.Sokoloff,“AssessingstudentlearningofNewton'slaws:TheForceandMotionConceptualEvaluationandtheEvaluationofActiveLearningLaboratoryandLectureCurricula,”AmericanJournalofPhysics66(4),338‐352(1998).

22 DavidP.Maloney,ThomasL.O'Kuma,CurtisJ.Hieggelke,andAlanVanHeuvelen,“Surveyingstudents'conceptualknowledgeofelectricityandmagnetism,”AmericanJournalofPhysics69(S1),S12‐23(2001).

23 TheECCEandotherassessmentinstrumentsareavailableattheWorkshopPhysicswebsite,http://physics.dickinson.edu/%7Ewp_web/wp_resources/wp_assessment.html.

24 DavidScottAbbott,“Assessingstudentunderstandingofmeasurementanduncertainty,”PhD,NorthCarolinaStateUniversity,2003;DuaneDeardorff,“IntroductoryPhysicsStudents'TreatmentofMeasurementUncertainty,”PhD,NorthCarolinaStateUniversity,2001.

25 JaniceStreitmatter,Toward Gender Equity in the Classroom: Everyday Teachers’ Beliefs and Practices.(StateUniversityofNewYorkPress,Albany,NY,1994).

26 DanielleGoodwin,internalreportfoundathttp://scaleup.ncsu.edu/groups/adopters/wiki/03ed0/Penn_State_Behrend.html.AccessedSeptember9,2008.

27 DebAlexander,BradleyA.Cohen,SteveFitzgerald,PaulHonsey,LindaJorn,JohnKnowles,PeterOberg,JeremyTodd,J.D.Walker,andAimeeWhiteside,“ActiveLearningClassroomsPilotEvaluation”,(UniversityofMinnesota,Minneapolis,MN,2008),pp.6.

28 CarolL.Colbeck,AlbertoF.Cabrera,andPatrickT.Terenzini,“Learningprofessionalconfidence:Linkingteachingpractices,students'self‐perceptions,andgender,”ReviewofHigherEducation2,173‐191(2001).

29 ArthurBandura,Social foundations of thought and action: A social cognitive theory.(PrenticeHall,EngelwoodCliffs,NJ,1986).

30 S.BiggersL.Benson,W.Moss,M.Ohland,M.Orr,S.Schiff,“AdaptingandImplementingtheSCALE‐UPApproachinStatics,Dynamics,andMultivariableCalculus”,inASEE Annual Conference and Exposition(Honolulu,HI,2007).

31 DanielleGoodwin,internalreportfoundathttp://scaleup.ncsu.edu/groups/adopters/wiki/03ed0/Penn_State_Behrend.html.AccessedSeptember9,2008.

32 Standardsforseveraldifferenttypesofprogramsareavailableathttp://www.abet.org.AccessedSept.10,2008.

33 R.J.Beichner,“Testingstudentinterpretationofkinematicsgraphs,”AmericanJournalofPhysics62(8),750‐762(1994).

‐13‐

34 PaulaVetterEngelhardtandRobertJ.Beichner,“Students'understandingofdirectcurrentresistiveelectricalcircuits,”AmericanJournalofPhysics72(1),98‐115(2004).

35 EdwardF.Redish,JeffreyM.Saul,andRichardN.Steinberg,“Studentexpectationsinintroductoryphysics,”AmericanJournalofPhysics66(3),212‐224(1998).

36 DanielMacIssacandKathleenFalconer,“ReformingphysicsteachingviaRTOP,”PhysicsTeacher40,479‐485(2002).

37 EricMazur,Peer Instruction: A User's Manual.(Prentice‐Hall,UpperSaddleRiver,NJ,1997).38 Privatecommunication39 LindaL.Carli,“Genderandsocialinfluence,”JournalofSocialIssues57(4),725‐741(2001).40 CharlesHendersonandMelissaH.Dancy,“Barrierstotheuseofresearch‐basedinstructional

strategies:Theinfluenceofbothindividualandsituationalcharacteristics,”PhysicalReviewSpecialTopics‐PhysicsEducationResearch3(2),020102(2007).

41 DavidPundakandShmaryahuRozner,“Empoweringengineeringcollegestafftoadoptactivelearningmethods,”JournalofScienceEducationandTechnology17(2),152‐163(2007).