of 16 /16
1 8.3 Geometric Sequences DEFINITION OF A GEOMETRIC SEQUENCE A geometric sequence is a sequence of the form The number a is the first term, and r is the common ratio of the sequence. the n th term of a geometric sequence is given by

# 8.3 Geometric Sequences · 2018. 11. 28. · The third term of a geometric sequence is , and the ... 468,750 is the 8th term. 8 PARTIAL SUM OF A GEOMETRIC SEQUENCE For the geometric

others

• View
2

0

Embed Size (px)

### Text of 8.3 Geometric Sequences · 2018. 11. 28. · The third term of a geometric sequence is , and the...

1

8.3 Geometric Sequences

DEFINITION OF A GEOMETRIC SEQUENCEA geometric sequence is a sequence of the form

The number a is the first term, and r is the common ratio of the sequence. the nth term of a geometric sequence is given by

2

Write the first 5 terms and the nth term of the geometric sequence if a = 3 and r = 2

Find r, a and the nth term of the following sequence:

r =      ,   a = 1,   an = 1(  )n ­ 113

13

3

Are the following sequences geometric? If so, find r and the nth term.

2,­10, 50, ­250, 1250,...

3, 6, 9, 12,...

4

an = 4 + 3n an = (­1)n 2n

an = nn

Are the following sequences geometric? If so, state the first 5 terms, the common ratio, & express the nth term in the form an = a(r)n - 1.

terms:

Not geometric

GeometricNot geometric

terms:terms:

5

Find the 8th term of the geometric sequence5, 15, 45,...

6

The third term of a geometric sequence is , and the sixth term is . Find the fifth term.

7

The second and fifth terms of a geometric sequence are 30 & 3750, respectively. Which term of the sequence is 468,750?

468,750 is the 8th term.

8

PARTIAL SUM OF A GEOMETRIC SEQUENCE

For the geometric sequence an=arn­1, the nth partial sum

is given by

This is also called the sum of a finite geometric series.

(proof on page 610 in textbook)

9

Find the sum of the first five terms of the geometric sequence

10

Find the sums:­1

38581

­770243

11

Using a picture and partial sums find

Partial sums: 164+

132+

14+

12 1

8+

116+

12

if

then

We use this to find the actual sum of

If |r|<1, then the value of this term goes to zero as n goes to infinity.

So this is the formula for an infinite geometric series if |r|<1.

Example:

13

SUM OF AN INFINITE GEOMETRIC SERIESIf |r|<1, then the infinite geometric series

converges and has a sum

If |r|>1, the series diverges.

14

Determine whether the infinite geometric series is convergent or divergent. If it is convergent, find the sum.

15

Find the fraction that represents the rational numbers: 0.123123123...

0.123123123...

First write the repeating decimal as a sum:

Next write each decimal as a fraction:

Now plug "a" and "r" into the formula:

16

Assignment:

Section 8.3 on Webassign

Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Technology
Documents
Documents
Education
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents