55
81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet HMC7587 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Conversion gain: 10 dB typical Image rejection: 30 dBc typical Noise figure: 6 dB typical Input power for 1 dB compression (P1dB): −10 dBm typical Input third-order intercept (IP3): −2 dBm typical Input second-order intercept (IP2): 25 dBm typical 6× LO leakage at RFIN: −40 dBm typical Radio frequency (RF) return loss: 10 dB typical Local oscillator (LO) return loss: 20 dB typical Die size: 3.599 mm × 2.199 mm × 0.05 mm APPLICATIONS E-band communication systems High capacity wireless backhauls Test and measurement GENERAL DESCRIPTION The HMC7587 is an integrated, E-band gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), in-phase/ quadrature (I/Q) downconverter chip that operates from 81 GHz to 86 GHz. The HMC7587 provides a small signal conversion gain of 10 dB with 30 dBc of image rejection across the frequency band. The device uses a low noise amplifier followed by an image rejection mixer that is driven by a 6× multiplier. The image rejection mixer eliminates the need for a filter following the low noise amplifier. Differential I and Q mixer outputs are provided for direct conversion applications. Alternatively, the outputs can be combined using an external 90° hybrid and two external 180° hybrids to allow for single-sideband applications. All data includes the effect of a 3 mil wide ribbon wedge bond on the RF port, and a 1 mil gold wire wedge bond on the intermediate frequency (IF) ports. FUNCTIONAL BLOCK DIAGRAM IFIP V GMIX V DAMP2 V GAMP V DAMP1 V DMULT V GX3 V GX2 LOIN IFIN IFQN IFQP 5 4 3 2 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ×6 HMC7587 22 23 24 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 RFIN V GLNA1 V DLNA1 V GLNA2 V DLNA2 V GLNA3 V DLNA3 V GLNA4 V DLNA4 13141-001 Figure 1.

81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

81 GHz to 86 GHz E-Band I/Q Downconverter

Data Sheet HMC7587

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Conversion gain: 10 dB typical Image rejection: 30 dBc typical Noise figure: 6 dB typical Input power for 1 dB compression (P1dB): −10 dBm typical Input third-order intercept (IP3): −2 dBm typical Input second-order intercept (IP2): 25 dBm typical 6× LO leakage at RFIN: −40 dBm typical Radio frequency (RF) return loss: 10 dB typical Local oscillator (LO) return loss: 20 dB typical Die size: 3.599 mm × 2.199 mm × 0.05 mm

APPLICATIONS E-band communication systems High capacity wireless backhauls Test and measurement

GENERAL DESCRIPTION The HMC7587 is an integrated, E-band gallium arsenide (GaAs), monolithic microwave integrated circuit (MMIC), in-phase/ quadrature (I/Q) downconverter chip that operates from 81 GHz to 86 GHz. The HMC7587 provides a small signal conversion gain of 10 dB with 30 dBc of image rejection across the frequency band. The device uses a low noise amplifier followed by an image rejection mixer that is driven by a 6× multiplier.

The image rejection mixer eliminates the need for a filter following the low noise amplifier. Differential I and Q mixer outputs are provided for direct conversion applications. Alternatively, the outputs can be combined using an external 90° hybrid and two external 180° hybrids to allow for single-sideband applications. All data includes the effect of a 3 mil wide ribbon wedge bond on the RF port, and a 1 mil gold wire wedge bond on the intermediate frequency (IF) ports.

FUNCTIONAL BLOCK DIAGRAM

IFIP

V GM

IX

V DA

MP2

V GA

MP

V DA

MP1

V DM

ULT

V GX3

V GX2

LOIN

IFIN

IFQN

IFQP

5

4

3

2

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

×6

HMC7587

22

23

24

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

RFIN

V GLN

A1

V DLN

A1

V GLN

A2

V DLN

A2

V GLN

A3

V DLN

A3

V GLN

A4

V DLN

A4

1314

1-00

1

Figure 1.

Page 2: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 2 of 55

TABLE OF CONTENTS Features .............................................................................................. 1

Applications ....................................................................................... 1

General Description ......................................................................... 1

Functional Block Diagram .............................................................. 1

Revision History ............................................................................... 2

Specifications ..................................................................................... 3

Absolute Maximum Ratings ............................................................ 4

Thermal Resistance ...................................................................... 4

ESD Caution .................................................................................. 4

Pin Configuration and Function Descriptions ............................. 5

Interface Schematics..................................................................... 6

Typical Performance Characteristics ............................................. 7

Upper Sideband Selected, IF = 500 MHz .................................. 7

Upper Sideband Selected, IF = 1000 MHz .............................. 13

Upper Sideband Selected, IF = 2000 MHz .............................. 18

Noise Figure Performance with Upper Sideband Selected ... 23

Amplitude Balance Performance with Upper Sideband Selected ........................................................................................ 24

Phase Balance Performance with Upper Sideband Selected 25

Lower Sideband Selected, IF = 500 MHz ................................ 26

Lower Sideband Selected, IF = 1000 MHz .............................. 31

Lower Sideband Selected, IF = 2000 MHz .............................. 36

Noise Figure Performance with Lower Sideband Selected ... 41

Amplitude Balance Performance with Lower Sideband Selected ........................................................................................ 42

Phase Balance Performance with Lower Sideband Selected . 43

Spurious Performance with Upper Sideband Selected, IF = 500 MHz ...................................................................................... 44

Spurious Performance with Upper Sideband Selected, IF = 1000 MHz .................................................................................... 45

Spurious Performance with Upper Sideband Selected, IF = 2000 MHz .................................................................................... 46

Spurious Performance with Lower Sideband Selected, IF = 500 MHz ...................................................................................... 47

Spurious Performance with Lower Sideband Selected, IF = 1000 MHz .................................................................................... 48

Spurious Performance with Lower Sideband Selected, IF = 2000 MHz .................................................................................... 49

Theory of Operation ...................................................................... 50

Applications Information .............................................................. 51

Biasing Sequence ........................................................................ 51

Image Rejection Downconversion ........................................... 51

Zero IF Direct Conversion ........................................................ 52

Assembly Diagram ..................................................................... 53

Mounting and Bonding Techniques for Millimeterwave GaAs MMICs ............................................................................................. 54

Handling Precautions ................................................................ 54

Mounting ..................................................................................... 54

Wire Bonding .............................................................................. 54

Outline Dimensions ....................................................................... 55

Ordering Guide .......................................................................... 55

REVISION HISTORY 3/16—Revision A: Initial Version

Page 3: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 3 of 55

SPECIFICATIONS TA = 25°C, IF = 500 MHz, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, voltage on the VDLNAx pins (VDLNA) = 3 V, LO = 2 dBm, upper sideband selected. Measurements performed as a downconverter with external 90° and 180° hybrids at the IF ports, unless otherwise noted.

Table 1. Parameter Test Conditions/Comments Min Typ Max Unit OPERATING CONDITIONS

RF Frequency Range 81 86 GHz LO Frequency Range 11.83 14.33 GHz IF Frequency Range 0 10 GHz LO Drive Range 2 8 dBm

PERFORMANCE Conversion Gain 8 10 dB Image Rejection 20 30 dBc Input Third-Order Intercept (IP3) −2 dBm Input Second-Order Intercept (IP2) 25 dBm Input Power for 1 dB Compression (P1dB) −10 dBm 6× LO Leakage at RF Input (RFIN) −40 dBm 1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB RF Return Loss LO = 2 dBm at 12 GHz 10 dB LO Return Loss 20 dB IF Return Loss1 25 dB

POWER SUPPLY Supply Current

IDAMP2 175 mA

IDMULT3 Under LO drive 80 mA

IDLNA4 50 mA

1 These measurements were performed without external hybrids at the IF ports. 2 Adjust VGAMP between −2 V and 0 V to achieve the total quiescent current, IDAMP = IDAMP1 + IDAMP2 = 175 mA. 3 Adjust VGX2 and VGX3 between −2 V and 0 V to the achieve the quiescent current, IDMULT = 1 mA to 2 mA. See the Applications Information section for more information. 4 Adjust VGLNAx between −2 V and 0 V to achieve the quiescent current, IDLNA1 + IDLNA2 + IDLNA3 + IDLNA4 = 50 mA.

Page 4: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 4 of 55

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Drain Bias Voltage

VDAMP1, VDAMP2 4.5 V VDMULT 3 V VDLNA1, VDLNA2, VDLNA3, VDLNA4 4.5 V

Gate Bias Voltage VGAMP −3 V to 0 V VGX2, VGX3 −3 V to 0 V VGLNA1, VGLNA2, VGLNA3, VGLNA4 −3 V to 0 V VGMIX −3 V to 0 V

LO Input Power 10 dBm Maximum Junction Temperature (to

Maintain 1 Million Hours Mean Time to Failure (MTTF))

175°C

Storage Temperature Range −65°C to +150°C Operating Temperature Range −55°C to +85°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 3. Thermal Resistance Package Type θJC

1 Unit 40-Pad Bare Die [CHIP] 61.7 °C/W 1 Based on ABLEBOND® 84-1LMIT as die attach epoxy with thermal

conductivity of 3.6 W/mK.

ESD CAUTION

Page 5: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 5 of 55

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

HMC7587

IFIP

V GM

IX

V DA

MP2

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

V GA

MP

V DA

MP1

V DM

ULT

V GX3

V GX2

LOIN

IFIN

IFQN

IFQP

5

4

3

2

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22

23

24

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

RFIN

GND

GND

V GLN

A1

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

GN

D

V DLN

A1

V GLN

A2

V DLN

A2

V GLN

A3

V DLN

A3

V GLN

A4

V DLN

A4

GND

1314

1-00

2

Figure 2. Pad Configuration

Table 4. Pad Function Descriptions Pad No. Mnemonic Description 1, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 25, 27, 29, 31, 33, 35, 37, 39

GND Ground Connect (See Figure 3).

2, 3 IFQP, IFQN Positive and Negative IF Q Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and possible die failure may result (see Figure 4).

4, 5 IFIN, IFIP Negative and Positive IF I Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and possible die failure may result (see Figure 4).

6 VGMIX Gate Voltage for the FET Mixer (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

8, 12 VDAMP2, VDAMP1 Power Supply Voltage for the First and the Second Stage LO Amplifier (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

10 VGAMP Gate Voltage for the First and the Second Stage LO Amplifier (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

14 VDMULT Power Supply Voltage for the LO Multiplier (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

16, 18 VGX3, VGX2 Gate Voltage for the LO Multiplier (See Figure 5). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

20 LOIN Local Oscillator Input. This pad is dc-coupled and matched to 50 Ω (see Figure 6). 23 RFIN RF Input. This pad is ac-coupled and matched to 50 Ω (see Figure 7). 26, 30, 34, 38 VGLNA1, VGLNA2,

VGLNA3, VGLNA4 Gate Voltage for the Low Noise Amplifier (See Figure 8). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

28, 32, 36, 40 VDLNA1, VDLNA2, VDLNA3, VDLNA4

Power Supply Voltage for the Low Noise Amplifier (See Figure 8). External bypass capacitors of 120 pF, 0.01 µF, and 4.7 µF are recommended (see Figure 211).

Die Bottom GND Ground. The die bottom must be connected to RF/dc ground (see Figure 3).

Page 6: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 6 of 55

INTERFACE SCHEMATICS

GND

1314

1-00

3

Figure 3. GND Interface

IFIN, IFIP,IFQN, IFQP

200Ω

1314

1-00

4

Figure 4. IFIN, IFIP, IFQN, and IFQP Interface

VDAMP1, VDAMP2,VDMULT

VGMIX, VGAMP,VGX2, VGX3

100Ω

1314

1-00

5

Figure 5. VGMIX, VDAMP1, VDAMP2, VDMULT, VGAMP, VGX2, and VGX3 Interface

LOIN

1314

1-00

6

Figure 6. LOIN Interface

RFIN 1314

1-00

7

Figure 7. RFIN Interface

VDLNA1, VDLNA2,VDLNA3, VDLNA4

VGLNA1, VGLNA2,VGLNA3, VGLNA4

100Ω

1314

1-00

8

Figure 8. VDLNA1, VDLNA2, VDLNA3, VDLNA4, VGLNA1, VGLNA2, VGLNA3, and VGLNA4 Interface

Page 7: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 7 of 55

TYPICAL PERFORMANCE CHARACTERISTICS UPPER SIDEBAND SELECTED, IF = 500 MHz

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-00

9

Figure 9. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, Voltage on the VDLNAx Pins

(VDLNA) = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-01

0

Figure 10. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-01

1

Figure 11. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-01

2

Figure 12. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-01

3

Figure 13. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-01

4

Figure 14. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 8: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 8 of 55

0

–5

–10

–15

–20

–25

–30

–40

–45

–35

–5081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-01

5

Figure 15. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

0

–5

–10

–15

–20

–25

–30

–40

–45

–35

–5081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-01

6

Figure 16. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

0

–50

–45

–40

–35

–30

–25

–20

–15

–10

–5

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-01

7

Figure 17. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

0

–5

–10

–15

–20

–25

–30

–40

–45

–35

–5081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-01

8

Figure 18. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

0

–5

–10

–15

–20

–25

–30

–40

–45

–35

–5081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-01

9

Figure 19. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

0

–5

–10

–15

–20

–25

–30

–40

–45

–35

–5081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-02

0

Figure 20. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 9: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 9 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-02

1

Figure 21. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-02

2

Figure 22. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-02

3

Figure 23. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-02

4

Figure 24. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-02

5

Figure 25. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-02

6

Figure 26. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 10: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 10 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-02

7

Figure 27. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-02

8

Figure 28. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-02

9

Figure 29. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-03

0

Figure 30. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-03

1

Figure 31. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-03

2

Figure 32. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 11: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 11 of 55

0

–2

–4

–6

–10

–12

–8

–1481.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-03

3

Figure 33. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

–30

–70

–55

–40

–50

–65

–35

–60

–45

12.9

13.0

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

14.4

LEA

KA

GE

(dB

m)

1× LO FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-03

4

Figure 34. 1× LO Leakage at IFOUT vs. 1× LO Frequency at Various Temperatures, LO = 2 dBm, VDLNA = 3 V

–30

–70

–55

–40

–50

–65

–35

–60

–45

12.9

13.0

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

14.4

LEA

KA

GE

(dB

m)

1× LO FREQUENCY (GHz)

LO = 2dBmLO = 4dBmLO = 6dBmLO = 8dBm

1314

1-03

5

Figure 35. 1× LO Leakage at IFOUT vs. 1× LO Frequency

at Various LO Powers, VDLNA = 3 V

0

–14

–10

–4

–8

–2

–12

–6

P1dB

(dB

m)

TA = +85°CTA = +25°CTA = –55°C

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0RF FREQUENCY (GHz) 13

141-

036

Figure 36. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

–30

–60

–50

–35

–45

–55

–40

LEA

KA

GE

(dB

m)

TA = +85°CTA = +25°CTA = –55°C

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.06× LO FREQUENCY (GHz) 13

141-

037

Figure 37. 6× LO Leakage at RFIN vs. 6× LO Frequency at Various Temperatures, LO = 2 dBm, VDLNA = 3 V

–30

–60

–50

–35

–45

–55

–40

LEA

KA

GE

(dB

m)

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.06× LO FREQUENCY (GHz)

LO = 0dBmLO = 2dBmLO = 4dBmLO = 6dBmLO = 8dBm

1314

1-03

8

Figure 38. 6× LO Leakage at RFIN vs. 6× LO Frequency at Various LO Powers, VDLNA = 3 V

Page 12: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 12 of 55

0

–2

–4

–6

–12

–16

–8

–14

–18

–10

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-03

9

Figure 39. RF Return Loss vs. RF Frequency at Various Temperatures,

LO = 2 dBm, LO = 12 GHz, VDLNA = 4 V

0

–40

–20

–5

–15

–30

–25

–35

–10

RET

UR

N L

OSS

(dB

)

11.8 12.2 12.6 13.0 13.4 13.8 14.2 14.6LO FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-04

0

Figure 40. LO Return Loss vs. LO Frequency at Various Temperatures,

LO = 2 dBm, VDLNA = 3 V

0

–40

–20

–5

–15

–30

–25

–35

–10

RET

UR

N L

OSS

(dB

)

0.1 1.1 2.1 3.1 4.1 6.1 8.15.1 7.1 9.1 10.1IF FREQUENCY (GHz)

IFQPIFIPIFQNIFQP

1314

1-04

1

Figure 41. IF Return Loss vs. IF Frequency,

LO = 2 dBm at 12 GHz, VDLNA = 3 V

0

–2

–4

–6

–12

–16

–8

–14

–18

–10

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-04

2

Figure 42. RF Return Loss vs. RF Frequency at Various Temperatures,

LO = 2 dBm, LO = 12 GHz, VDLNA = 3 V

0

–40

–20

–5

–15

–25

–30

–35

–10R

ETU

RN

LO

SS (d

B)

11.8 12.2 12.6 13.0 13.4 13.8 14.2 14.6LO FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-04

3

Figure 43. LO Return Loss vs. LO Frequency at Various LO Powers,

VDLNA = 3 V

Page 13: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 13 of 55

UPPER SIDEBAND SELECTED, IF = 1000 MHz 16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-04

4

Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-04

5

Figure 45. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-04

6

Figure 46. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-04

7

Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-04

8

Figure 48. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-04

9

Figure 49. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 14: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 14 of 55

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-05

0

Figure 50. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-05

1

Figure 51. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-05

2

Figure 52. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-05

3

Figure 53. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-05

4

Figure 54. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-05

5

Figure 55. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 15: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 15 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-05

6

Figure 56. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-05

7

Figure 57. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-05

8

Figure 58. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-05

9

Figure 59. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-06

0

Figure 60. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-06

1

Figure 61. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 16: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 16 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-06

2

Figure 62. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-06

3

Figure 63. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-06

4

Figure 64. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-06

5

Figure 65. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-06

6

Figure 66. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-06

7

Figure 67. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 17: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 17 of 55

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-06

8

Figure 68. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-07

1

Figure 69. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 18: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 18 of 55

UPPER SIDEBAND SELECTED, IF = 2000 MHz 16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-07

4

Figure 70. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-07

5

Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-07

6

Figure 72. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-07

7

Figure 73. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-07

8

Figure 74. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-07

9

Figure 75. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 19: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 19 of 55

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-08

0

Figure 76. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-08

1

Figure 77. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-08

2

Figure 78. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-08

3

Figure 79. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-08

4

Figure 80. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-08

5

Figure 81. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 20: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 20 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-08

6

Figure 82. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-08

7

Figure 83. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-08

8

Figure 84. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-08

9

Figure 85. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-09

0

Figure 86. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-09

1

Figure 87. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 21: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 21 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-09

2

Figure 88. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-09

3

Figure 89. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-09

4

Figure 90. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-09

5

Figure 91. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-09

6

Figure 92. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-09

7

Figure 93. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 22: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 22 of 55

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-09

8

Figure 94. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-10

1

Figure 95. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 23: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 23 of 55

NOISE FIGURE PERFORMANCE WITH UPPER SIDEBAND SELECTED 10

0

4

9

6

2

8

3

5

1

7

NO

ISE

FIG

UR

E (d

B)

TA = +85°CTA = +25°CTA = –55°C

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0RF FREQUENCY (GHz) 13

141-

104

Figure 96. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-10

5

Figure 97. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-10

6

Figure 98. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

10

0

4

9

6

2

8

3

5

1

7

NO

ISE

FIG

UR

E (d

B)

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-10

7

Figure 99. Noise Figure vs. RF Frequency at Various LO Powers,

IF = 500 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-10

8

Figure 100. Noise Figure vs. RF Frequency at Various LO Powers,

IF = 1000 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-10

9

Figure 101. Noise Figure vs. RF Frequency at Various LO Powers,

IF = 2000 MHz, VDLNA = 3 V

Page 24: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 24 of 55

AMPLITUDE BALANCE PERFORMANCE WITH UPPER SIDEBAND SELECTED 1.0

–2.0

–1.5

–1.0

–0.5

0

0.5

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

0

Figure 102. Amplitude Balance vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

1

Figure 103. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-1 1

2

Figure 104. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

3

Figure 105. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

4

Figure 106. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

5

Figure 107. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 25: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 25 of 55

PHASE BALANCE PERFORMANCE WITH UPPER SIDEBAND SELECTED 10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

6

Figure 108. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

–10

2

–6

–2

6

–8

4

–4

0

8

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

7

Figure 109. Phase Balance vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

8

Figure 110. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-11

9

Figure 111. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-12

0

Figure 112. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-12

1

Figure 113. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 26: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 26 of 55

LOWER SIDEBAND SELECTED, IF = 500 MHz 16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-12

2Figure 114. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-12

3

Figure 115. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-12

4

Figure 116. Conversion Gain vs. RF Frequency at Various IDLNA RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-12

5

Figure 117. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-12

6

Figure 118. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-12

7

Figure 119. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 27: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 27 of 55

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-12

8

Figure 120. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-12

9

Figure 121. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-13

0

Figure 122. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-13

1

Figure 123. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

–1

–5

–9

–13

–17

–21

–25

–33

–37

–41

–29

–4581.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-13

2

Figure 124. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-13

3

Figure 125. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 28: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 28 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-13

4

Figure 126. Input IP3 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-13

5

Figure 127. Input IP3 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-13

6

Figure 128. Input IP3 vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-13

7

Figure 129. Input IP3 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-13

8

Figure 130. Input IP3 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-13

9

Figure 131. Input IP3 vs. RF Frequency at Various IDLNA RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 29: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 29 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-14

0

Figure 132. Input IP2 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-14

1

Figure 133. Input IP2 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-14

2

Figure 134. Input IP2 vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-14

3

Figure 135. Input IP2 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-14

4

Figure 136. Input IP2 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-14

5

Figure 137. Input IP2 vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 30: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 30 of 55

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1d

B (

dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-14

6

Figure 138. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1d

B (

dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-14

9

Figure 139. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

Page 31: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 31 of 55

LOWER SIDEBAND SELECTED, IF = 1000 MHz 16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-15

2

Figure 140. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-15

3

Figure 141. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-15

4

Figure 142. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-15

5

Figure 143. Conversion Gain vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-15

6

Figure 144. Conversion Gain vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NV

ER

SIO

N G

AIN

(d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-15

7

Figure 145. Conversion Gain vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 32: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 32 of 55

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-15

8

Figure 146. Image Rejection vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-15

9

Figure 147. Image Rejection vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-16

0

Figure 148. Image Rejection vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-16

1

Figure 149. Image Rejection vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-16

2

Figure 150. Image Rejection vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

RE

JEC

TIO

N (

dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-16

3

Figure 151. Image Rejection vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 33: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 33 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-16

4

Figure 152. Input IP3 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-16

5

Figure 153. Input IP3 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-16

6

Figure 154. Input IP3 vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-16

7

Figure 155. Input IP3 vs. RF Frequency at Various Temperatures, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-16

8

Figure 156. Input IP3 vs. RF Frequency at Various LO Powers, RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-16

9

Figure 157. Input IP3 vs. RF Frequency at Various IDLNA Values, RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 34: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 34 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-17

0

Figure 158. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-17

1

Figure 159. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-17

2

Figure 160. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-17

3

Figure 161. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-17

4

Figure 162. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 1000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-17

5

Figure 163. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 35: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 35 of 55

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-17

6

Figure 164. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-17

9

Figure 165. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

Page 36: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 36 of 55

LOWER SIDEBAND SELECTED, IF = 2000 MHz 16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-18

2

Figure 166. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-18

3

Figure 167. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-18

4

Figure 168. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-18

5

Figure 169. Conversion Gain vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

16

14

12

10

8

6

4

2

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-18

6

Figure 170. Conversion Gain vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

20

16

12

8

4

0

–8

–16

–4

–12

–2081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-18

7

Figure 171. Conversion Gain vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 37: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 37 of 55

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-18

8

Figure 172. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-18

9

Figure 173. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-19

0

Figure 174. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-19

1

Figure 175. Image Rejection vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–32

–36

–28

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-19

2

Figure 176. Image Rejection vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

0

–4

–8

–12

–16

–20

–24

–28

–36

–32

–4081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IMA

GE

REJ

ECTI

ON

(dB

c)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-19

3

Figure 177. Image Rejection vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 38: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 38 of 55

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-19

4

Figure 178. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-19

5

Figure 179. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-19

6

Figure 180. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-19

7

Figure 181. Input IP3 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-19

8

Figure 182. Input IP3 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

10

8

6

4

2

0

–2

–6

–8

–4

–1081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP3

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-19

9

Figure 183. Input IP3 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 39: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 39 of 55

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-20

0

Figure 184. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-20

1

Figure 185. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-20

2

Figure 186. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-20

3

Figure 187. Input IP2 vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-20

4

Figure 188. Input IP2 vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 2000 MHz, VDLNA = 3 V

50

45

40

35

30

25

20

10

5

15

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

IP2

(dB

m)

RF FREQUENCY (GHz)

IDLNA = 5mAIDLNA = 10mAIDLNA = 15mAIDLNA = 20mAIDLNA = 25mA

IDLNA = 30mAIDLNA = 35mAIDLNA = 40mAIDLNA = 45mAIDLNA = 50mA

1314

1-20

5

Figure 189. Input IP2 vs. RF Frequency at Various IDLNA Values,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 40: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 40 of 55

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-20

6

Figure 190. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

0

–2

–4

–6

–10

–12

–8

–16

–14

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

P1dB

(dB

m)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-20

9

Figure 191. Input P1dB vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 41: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 41 of 55

NOISE FIGURE PERFORMANCE WITH LOWER SIDEBAND SELECTED 10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–55°C

1314

1-21

2

Figure 192. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–55°C

1314

1-21

3

Figure 193. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–55°C

1314

1-21

4

Figure 194. Noise Figure vs. RF Frequency at Various Temperatures,

LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-21

5

Figure 195. Noise Figure vs. RF Frequency at Various LO Powers,

IF = 500 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-21

6

Figure 196. Noise Figure vs. RF Frequency at Various LO Powers,

RFIN = −20 dBm, IF = 500 MHz, VDLNA = 3 V

10

9

8

7

6

5

4

3

2

1

081.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

LO = –4dBmLO = –2dBmLO = 0dBmLO = +2dBmLO = +4dBmLO = +6dBmLO = +8dBm

1314

1-21

7

Figure 197. Noise Figure vs. RF Frequency at Various LO Powers, IF = 2000 MHz, VDLNA = 3 V

Page 42: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 42 of 55

AMPLITUDE BALANCE PERFORMANCE WITH LOWER SIDEBAND SELECTED 1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-21

8

Figure 198. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-21

9

Figure 199. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

0

Figure 200. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

1

Figure 201. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

2

Figure 202. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

1.0

0.5

–0.5

–2.0

–1.5

0

–1.0

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

AM

PLIT

UD

E B

ALA

NC

E (d

B)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

3

Figure 203. Amplitude Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 43: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 43 of 55

PHASE BALANCE PERFORMANCE WITH LOWER SIDEBAND SELECTED 10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

4

Figure 204. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 4 V

10

–10

–8

0

–4

–6

–2

2

6

8

4

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

5

Figure 205. Phase Balance vs. RF Frequency at Various Temperatures

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 4 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

6

Figure 206. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 4 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

7

Figure 207. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 500 MHz, VDLNA = 3 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

8

Figure 208. Phase Balance vs. RF Frequency at Various Temperatures

RFIN = −20 dBm, LO = 2 dBm, IF = 1000 MHz, VDLNA = 3 V

10

8

4

–10

–8

0

6

–4

–6

–2

2

81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

PHA

SE B

ALA

NC

E (D

egre

es)

RF FREQUENCY (GHz)

TA = +85°CTA = +25°CTA = –55°C

1314

1-22

9

Figure 209. Phase Balance vs. RF Frequency at Various Temperatures,

RFIN = −20 dBm, LO = 2 dBm, IF = 2000 MHz, VDLNA = 3 V

Page 44: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 44 of 55

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = 500 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.416 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 29.2 N/A N/A N/A N/A

3 N/A N/A N/A 39 N/A N/A N/A

4 N/A N/A N/A N/A 57 N/A N/A

5 N/A N/A N/A N/A N/A 59.7 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.75 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 25 N/A N/A N/A N/A

3 N/A N/A N/A 36.6 N/A N/A N/A

4 N/A N/A N/A N/A 49.3 N/A N/A

5 N/A N/A N/A N/A N/A 53.9 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.25 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 29.6 N/A N/A N/A N/A

3 N/A N/A N/A 43.1 N/A N/A N/A

4 N/A N/A N/A N/A 61.2 N/A N/A

5 N/A N/A N/A N/A N/A 63.5 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.416 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 30.3 N/A N/A N/A N/A

3 N/A N/A N/A 41.5 N/A N/A N/A

4 N/A N/A N/A N/A 59.4 N/A N/A

5 N/A N/A N/A N/A N/A 64 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.75 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26 N/A N/A N/A N/A

3 N/A N/A N/A 38.7 N/A N/A N/A

4 N/A N/A N/A N/A 52.1 N/A N/A

5 N/A N/A N/A N/A N/A 57.2 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.25 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 30.1 N/A N/A N/A N/A

3 N/A N/A N/A 45.4 N/A N/A N/A

4 N/A N/A N/A N/A 62.9 N/A N/A

5 N/A N/A N/A N/A N/A 67.3 N/A

Page 45: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 45 of 55

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = 1000 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.333 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.4 N/A N/A N/A N/A

3 N/A N/A N/A 38.9 N/A N/A N/A

4 N/A N/A N/A N/A 56.5 N/A N/A

5 N/A N/A N/A N/A N/A 59.3 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.666 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26.5 N/A N/A N/A N/A

3 N/A N/A N/A 37.1 N/A N/A N/A

4 N/A N/A N/A N/A 52.8 N/A N/A

5 N/A N/A N/A N/A N/A 56.7 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.9 N/A N/A N/A N/A

3 N/A N/A N/A 42 N/A N/A N/A

4 N/A N/A N/A N/A 60.2 N/A N/A

5 N/A N/A N/A N/A N/A 62.7 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.333 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 29.7 N/A N/A N/A N/A

3 N/A N/A N/A 41.7 N/A N/A N/A

4 N/A N/A N/A N/A 58.7 N/A N/A

5 N/A N/A N/A N/A N/A 63.4 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.666 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.5 N/A N/A N/A N/A

3 N/A N/A N/A 39.3 N/A N/A N/A

4 N/A N/A N/A N/A 55.1 N/A N/A

5 N/A N/A N/A N/A N/A 60.4 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.8 N/A N/A N/A N/A

3 N/A N/A N/A 44.2 N/A N/A N/A

4 N/A N/A N/A N/A 62.1 N/A N/A

5 N/A N/A N/A N/A N/A 66.6 N/A

Page 46: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 46 of 55

SPURIOUS PERFORMANCE WITH UPPER SIDEBAND SELECTED, IF = 2000 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.1 N/A N/A N/A N/A

3 N/A N/A N/A 42 N/A N/A N/A

4 N/A N/A N/A N/A 56.3 N/A N/A

5 N/A N/A N/A N/A N/A 61.1 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.5 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.8 N/A N/A N/A N/A

3 N/A N/A N/A 38.5 N/A N/A N/A

4 N/A N/A N/A N/A 55.6 N/A N/A

5 N/A N/A N/A N/A N/A 60.8 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14 GHz at LOIN = 2 dBm

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 25.1 N/A N/A N/A N/A

3 N/A N/A N/A 38.5 N/A N/A N/A

4 N/A N/A N/A N/A 52.9 N/A N/A

5 N/A N/A N/A N/A N/A 52.3 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 29.6 N/A N/A N/A N/A

3 N/A N/A N/A 45.1 N/A N/A N/A

4 N/A N/A N/A N/A 58.7 N/A N/A

5 N/A N/A N/A N/A N/A 65.5 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.5 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.8 N/A N/A N/A N/A

3 N/A N/A N/A 41 N/A N/A N/A

4 N/A N/A N/A N/A 58.6 N/A N/A

5 N/A N/A N/A N/A N/A 64.7 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14 GHz at LOIN = 2 dBm

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26 N/A N/A N/A N/A

3 N/A N/A N/A 40.7 N/A N/A N/A

4 N/A N/A N/A N/A 56.5 N/A N/A

5 N/A N/A N/A N/A N/A 54.2 N/A

Page 47: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 47 of 55

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = 500 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.583 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.6 N/A N/A N/A N/A

3 N/A N/A N/A 38.5 N/A N/A N/A

4 N/A N/A N/A N/A 52.8 N/A N/A

5 N/A N/A N/A N/A N/A 55.9 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.916 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 25.4 N/A N/A N/A N/A

3 N/A N/A N/A 38.3 N/A N/A N/A

4 N/A N/A N/A N/A 49.2 N/A N/A

5 N/A N/A N/A N/A N/A 55.1 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.416 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.9 N/A N/A N/A N/A

3 N/A N/A N/A 44.8 N/A N/A N/A

4 N/A N/A N/A N/A 59.1 N/A N/A

5 N/A N/A N/A N/A N/A 64.8 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.583 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.5 N/A N/A N/A N/A

3 N/A N/A N/A 40.6 N/A N/A N/A

4 N/A N/A N/A N/A 55.6 N/A N/A

5 N/A N/A N/A N/A N/A 59.8 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 13.916 MHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26.3 N/A N/A N/A N/A

3 N/A N/A N/A 40 N/A N/A N/A

4 N/A N/A N/A N/A 52.1 N/A N/A

5 N/A N/A N/A N/A N/A 58.3 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.416 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.8 N/A N/A N/A N/A

3 N/A N/A N/A 46.5 N/A N/A N/A

4 N/A N/A N/A N/A 61.6 N/A N/A

5 N/A N/A N/A N/A N/A 68.5 N/A

Page 48: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 48 of 55

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = 1000 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.666 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26.5 N/A N/A N/A N/A

3 N/A N/A N/A 37.1 N/A N/A N/A

4 N/A N/A N/A N/A 51 N/A N/A

5 N/A N/A N/A N/A N/A 55.6 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 26.5 N/A N/A N/A N/A

3 N/A N/A N/A 40 N/A N/A N/A

4 N/A N/A N/A N/A 50.8 N/A N/A

5 N/A N/A N/A N/A N/A 59.4 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.5 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.7 N/A N/A N/A N/A

3 N/A N/A N/A 42.8 N/A N/A N/A

4 N/A N/A N/A N/A 56.9 N/A N/A

5 N/A N/A N/A N/A N/A 68.1 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.666 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.6 N/A N/A N/A N/A

3 N/A N/A N/A 39.2 N/A N/A N/A

4 N/A N/A N/A N/A 53.4 N/A N/A

5 N/A N/A N/A N/A N/A 59.1 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.4 N/A N/A N/A N/A

3 N/A N/A N/A 41.8 N/A N/A N/A

4 N/A N/A N/A N/A 54.9 N/A N/A

5 N/A N/A N/A N/A N/A 62.9 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.5 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.1 N/A N/A N/A N/A

3 N/A N/A N/A 45.2 N/A N/A N/A

4 N/A N/A N/A N/A 60.3 N/A N/A

5 N/A N/A N/A N/A N/A 73.2 N/A

Page 49: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 49 of 55

SPURIOUS PERFORMANCE WITH LOWER SIDEBAND SELECTED, IF = 2000 MHz TA = 25°C, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LOIN = 2 dBm.

Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO). N/A means not applicable.

M × N Spurious Outputs, VDLNA = 4 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.833 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 25.1 N/A N/A N/A N/A

3 N/A N/A N/A 38.3 N/A N/A N/A

4 N/A N/A N/A N/A 48 N/A N/A

5 N/A N/A N/A N/A N/A 56.5 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 27.9 N/A N/A N/A N/A

3 N/A N/A N/A 43.2 N/A N/A N/A

4 N/A N/A N/A N/A 56.2 N/A N/A

5 N/A N/A N/A N/A N/A 65.4 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.666 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 22.3 N/A N/A N/A N/A

3 N/A N/A N/A 40.1 N/A N/A N/A

4 N/A N/A N/A N/A 48.1 N/A N/A

5 N/A N/A N/A N/A N/A 63 N/A

M × N Spurious Outputs, VDLNA = 3 V

RF = 81 GHz at RFIN = −10 dBm, LO frequency = 13.833 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 25.9 N/A N/A N/A N/A

3 N/A N/A N/A 39.5 N/A N/A N/A

4 N/A N/A N/A N/A 51.8 N/A N/A

5 N/A N/A N/A N/A N/A 59.5 N/A

RF = 83 GHz at RFIN = −10 dBm, LO frequency = 14.166 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 28.9 N/A N/A N/A N/A

3 N/A N/A N/A 45.6 N/A N/A N/A

4 N/A N/A N/A N/A 60 N/A N/A

5 N/A N/A N/A N/A N/A 63.9 N/A

RF = 86 GHz at RFIN = −10 dBm, LO frequency = 14.666 GHz at LOIN = 2 dBm.

N × LO 0 1 2 3 4 5 6

M × RF

0 N/A N/A N/A N/A N/A N/A N/A

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A 23.2 N/A N/A N/A N/A

3 N/A N/A N/A 42.3 N/A N/A N/A

4 N/A N/A N/A N/A 51 N/A N/A

5 N/A N/A N/A N/A N/A 67 N/A

Page 50: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 50 of 55

THEORY OF OPERATION The HMC7587 is a GaAs low noise I/Q downconverter with an integrated LO buffer and a 6× multiplier. See Figure 210 for a functional block diagram of the downconverter circuit architecture.

The RF input is internally ac-coupled and matched to 50 Ω. The input passes through four stages of low noise amplification. The preamplified RF input signal then splits and drives two singly balanced passive mixers.

Quadrature LO signals drive the two I and Q mixer cores. The LO path provides a 6× multiplier that allows the use of a lower frequency range LO input signal, typically between 11.83 GHz and 14.33 GHz. The 6× multiplier is implemented using a cascade of 3× and 2× multipliers. The LO buffer amplifiers are included on-chip to allow a typical LO drive level of only 2 dBm for full performance.

VDAMP2 VGAMP VDAMP1 VGX3VDMULT LOINVGX2

×2 ×3

AC COUPLING,MATCHING ELEMENTS,AND GND BOND PADS NOT ILLUSTRATED.

IFIP IFIN

IFQN IFQP

VGMIX

RFIN

VDLNA4 VGLNA4 VDLNA3 VGLNA3 VDLNA2 VGLNA2 VDLNA1 VGLNA1 1314

1-23

0

Figure 210. Downconverter Circuit Architecture

Page 51: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 51 of 55

APPLICATIONS INFORMATION BIASING SEQUENCE The HMC7587 uses several amplifier and multiplier stages. The active stages all use depletion mode pseudomorphic high electron mobility transistors (pHEMTs). To ensure transistor damage does not occur, use the following power-up bias sequence:

1. Apply a −2 V bias to VGAMP, VGLNA1, VGLNA2, VGLNA3, VGLNA4, VGX2, and VGX3.

2. Apply a −1 V bias to VGMIX. 3. Apply 4 V to VDAMP1, VDAMP2, VDLNA1, VDLNA2, VDLNA3, and

VDLNA4, and apply 1.5 V to VDMULT. 4. Adjust VGAMP between −2 V and 0 V to achieve a total

amplifier drain current (IDAMP1 + IDAMP2) of 175 mA. 5. Adjust VGLNA1, VGLNA2, VGLNA3, and VGLNA4 to achieve a total

LNA drain current (IDLNA1 + IDLNA2 + IDLNA3 + IDLNA4) of 50 mA. 6. Apply the LO input signal with a power level of 2 dBm and

adjust VGX2 and VGX3 between −2 V and 0 V to achieve 80 mA of drain current on VDMULT.

To power down the HMC7587, follow the procedure in reverse.

For additional guidance on general bias sequencing, see the MMIC Amplifier Biasing Procedure application note.

IMAGE REJECTION DOWNCONVERSION A typical image rejection downconversion application circuit is shown in Figure 211. For image rejection downconversions, external 180°and 90° hybrid couplers are typically used. The 180° hybrids or baluns convert the differential I and Q output signals to unbalanced waveforms. The 90° hybrid then combines the outputs in quadrature to form a classic Hartley image rejection receiver with a typical image rejection of 30 dBc.

IFIP

V GM

IX

V DA

MP2

V GA

MP

V DA

MP1

V DM

ULT

V GX3

V GX2

LOIN

IFIN

IFQN

IFQP

5

4

3

2

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

×6

HMC7587

22

23

24

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

RFIN

V GLN

A1

V DLN

A1

V GLN

A2

V DLN

A2

V GLN

A3

V DLN

A3

V GLN

A4

V DLN

A4

LOIN

180°HYBRID

180°HYBRID

90°HYBRID

IFOUTPUT

VGAMP120pF 0.01µF 4.7µF

VDMULT120pF 0.01µF 4.7µF

VGX2, VGX3120pF 0.01µF 4.7µF

VGLNA1, VGLNA2120pF 0.01µF 4.7µF

VDLNA1, VDLNA2120pF 0.01µF 4.7µF

VDAMP1, VDAMP24.7µF 0.01µF 120pF

VGMIX4.7µF 0.01µF 120pF

RFINPUT

VDLNA3, VDLNA44.7µF 0.01µF 120pF

VGLNA3, VGLNA44.7µF 0.01µF 120pF

1314

1-23

1

Figure 211. Typical Image Rejection Downconversion Application Circuit

Page 52: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 52 of 55

ZERO IF DIRECT CONVERSION A typical zero IF direct conversion application circuit is shown in Figure 212. It is important to ac couple the IFIP, IFIN, IFQP, and IFQN pads to the ADC inputs. Most ADCs are designed to operate with a common-mode voltage that is above ground.

The HMC7587 I/Q outputs are ground referenced and dc coupling to a differential signal source with a common-mode output voltage other than 0 V can cause degraded RF performance and possible device damage due to electrical overstress.

IFIP

VG

MIX

VD

AM

P2

VG

AM

P

VD

AM

P1

VD

MU

LT

VG

X3

VG

X2

LO

IN

IFIN

IFQN

IFQP

5

4

3

2

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

×6

HMC7587

22

23

24

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

RFIN

VG

LN

A1

VD

LN

A1

VG

LN

A2

VD

LN

A2

VG

LN

A3

VD

LN

A3

VG

LN

A4

VD

LN

A4

LOIN

VGAMP120pF 0.01µF 4.7µF

VDMULT120pF 0.01µF 4.7µF

VGX2, VGX3120pF 0.01µF 4.7µF

VGLNA1, VGLNA2120pF 0.01µF 4.7µF

VDLNA1, VDLNA2120pF 0.01µF 4.7µF

VDAMP1, VDAMP24.7µF 0.01µF 120pF

VGMIX4.7µF 0.01µF 120pF

RFINPUT

VDLNA3, VDLNA44.7µF 0.01µF 120pF

VGLNA3, VGLNA44.7µF 0.01µF 120pF

I ADC

Q ADC

1314

1-23

2

Figure 212. Typical Zero IF Direct Conversion Application Circuit

Page 53: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 53 of 55

ASSEMBLY DIAGRAM

0.01µF

120pF

0.01µF

120pF

1milGOLD WIRE

(WEDGE BOND)

3mil WIDEGOLD RIBBON(WEDGE BOND)1mil

GOLD WIRE(WEDGE BOND)

50ΩTRANSMISSION

LINE

3milNOMINAL GAP

VGMIX

4.7µF

VDLNA4

4.7µF

VGLNA4

4.7µF

VDLNA1, VDLNA2,VDLNA3

4.7µF

VGLNA1, VGLNA2,VGLNA3

4.7µF

VDAMP1,VDAMP2

4.7µF

VGAMP

4.7µF

VDMULT

4.7µF

VGX2,VGX3

4.7µF

1314

1-23

4

LO

IN

IFIP

IFIN

IFQN

IFQP

RFIN

Figure 213. Assembly Diagram

Page 54: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

HMC7587 Data Sheet

Rev. A | Page 54 of 55

MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS Attach the die directly to the ground plane eutectically or with conductive epoxy.

To bring RF to and from the chip, use 50 Ω microstrip trans-mission lines on 0.127 mm (5 mil) thick alumina thin film substrates (see Figure 214).

1314

1-23

5

RF GROUND PLANE

0.05mm (0.002") THICK GaAs MMIC

WIRE BOND

0.127mm (0.005") THICK ALUMINATHIN FILM SUBSTRATE

0.076mm(0.003")

Figure 214. Routing RF Signals

To minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil).

HANDLING PRECAUTIONS To avoid permanent damage, adhere to the following precautions.

Storage

All bare die ship in either waffle or gel-based ESD protective containers, sealed in an ESD protective bag. After opening the sealed ESD protective bag, all die must be stored in a dry nitrogen environment.

Cleanliness

Handle the chips in a clean environment. Never use liquid cleaning systems to clean the chip.

Static Sensitivity

Follow ESD precautions to protect against ESD strikes.

Transients

Suppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables.

General Handling

Handle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers.

MOUNTING The chip is back metallized and can be die mounted with gold/ tin (AuSn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat.

Eutectic Die Attach

It is best to use an 80%/20% gold/tin preform with a work surface temperature of 255°C and a tool temperature of 265°C. When hot 90%/10% nitrogen/hydrogen gas is applied, maintain the tool tip temperature at 290°C. Do not expose the chip to a temperature greater than 320°C for more than 20 sec. No more than 3 sec of scrubbing is required for attachment.

Epoxy Die Attach

ABLEBOND 84-1LMIT is recommended for die attachment. Apply a minimum amount of epoxy to the mounting surface so that upon placing it into position, a thin epoxy fillet is observed around the perimeter of the chip. Cure epoxy per the schedule provided by the manufacturer.

WIRE BONDING RF bonds made with (3 mil (0.0762 mm) × 0.5 mil (0.0127 mm) gold ribbon are recommended for the RF ports and wedge bonds with 1 mil (0.0254 mm) diameter gold wire are recommended for the IF and LO ports. These bonds must be thermosonically bonded with a force of 40 g to 60 g. DC bonds of 1 mil (0.0254 mm) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds at 18 g to 22 g. Create all bonds with a nominal stage temperature of 150°C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as possible, less than 12 mils (0.31 mm).

Page 55: 81 GHz to 86 GHz E-Band I/Q Downconverter Data Sheet ......1× LO Leakage at IF Output (IFOUT) −50 dBm Amplitude Balance 1 −0.5 dB Phase Balance1 ±4 Degrees Noise Figure 6 dB

Data Sheet HMC7587

Rev. A | Page 55 of 55

OUTLINE DIMENSIONS

2.199

3.599

1.055

04-1

0-20

15-A

TOP VIEW(CIRCUIT SIDE)

1

2

3

4

56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22

23

24

25262728293031323334353637383940

0.15

0.15 0.150.150.150.150.150.150.15 0.150.150.150.150.150.15

0.151

0.162

0.15 0.150.15 0.15 0.150.150.150.150.150.150.150.15 0.150.15

0.274

0.130

0.130

0.307

0.058

0.2900.510

0.307

0.648

0.500

0.085 0.318

0.210

0.095

0.114

0.474

Figure 215. 40-Pad Bare Die [CHIP]

(C-40-1) Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option2 HMC7587 −55°C to +85°C 40-Pad Bare Die [CHIP] C-40-1 HMC7587-SX −55°C to +85°C 40-Pad Bare Die [CHIP] C-40-1 1 The HMC7587-SX consists of two pairs of the die in a gel pack for sample orders. 2 This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options.

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13141-0-3/16(A)