26
BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 8) FESTIGKEITSLEHRE 1) Allgemeines 2) Spannung und Festigkeit 3) Tragsicherheit, Sicherheitsgrad, Bemessungswerte 4) Zug- und Druckspannungen 5) Formänderungen und Formänderungsgesetze a) Elastizität und Plastizität b) Das Spannungs- Dehnungsdiagramm c) Das Hook'sche Gesetz, Elastizitätsmodul d) Längenänderungen durch Wärmeschwankungen e) Querdehnungen f) Formänderungen durch Schubkraft 6) Biegespannungen 7) Doppelbiegung 8) Biegung mit Längskraft 9) Schubspannungen 10) Zusammenfassung Werte und Formeln g.bettschen

8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

  • Upload
    vutuyen

  • View
    269

  • Download
    4

Embed Size (px)

Citation preview

Page 1: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

BAULEITER HOCHBAU

S T A T I K / F E S T I G K E I T S L E H R E

8) FESTIGKEITSLEHRE

1) Allgemeines

2) Spannung und Festigkeit

3) Tragsicherheit, Sicherheitsgrad, Bemessungswerte

4) Zug- und Druckspannungen

5) Formänderungen und Formänderungsgesetze

a) Elastizität und Plastizität

b) Das Spannungs- Dehnungsdiagramm

c) Das Hook'sche Gesetz, Elastizitätsmodul

d) Längenänderungen durch Wärmeschwankungen

e) Querdehnungen

f) Formänderungen durch Schubkraft

6) Biegespannungen

7) Doppelbiegung

8) Biegung mit Längskraft

9) Schubspannungen

10) Zusammenfassung Werte und Formeln

g.bettschen

Page 2: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 2

1 Allgemeines

In den vorherigen Kapiteln haben wir die am Balken auftretenden Beanspruchungsgrössen Biegemoment, Querkraft und Normalkraft behandelt. Diese Schnittkräfte allein können jedoch noch nichts über die Beanspruchung des untersuchten Bauteils aussagen. Es ist nun Aufgabe der Festigkeitslehre, auf Grund der berechneten Momente, Zug - Druck - und Querkräfte auf die innere Beanspruchung des Bauwerkes zu schliessen.

In der

Festigkeitslehre

wird nachgeprüft, ob

das Bauwerk die

angreifenden Kräfte

aufnehmen kann.

2) Spannung und Festigkeit

Es gilt also jetzt, die Wirkung der Schnittgrössen auf die Querschnittsfläche zu untersuchen.

Betrachten wir zum Beispiel einen Holzpfosten, der durch die Druckkraft F beansprucht wird. Da die Auflagerfläche des Stempels gleich ist wie der Pfostenquerschnitt, wird sich die Kraft gleichmässig über die ganze Fläche verteilen; das heisst, jede einzelne Faser muss einen Teil des Druckes aufnehmen.

Wie die Kräfte selbst, sind auch die Spannungen Vektoren; diese

Spannungsvektoren werden durch Betrag, Richtung und Angriffspunkt festgelegt. Wenn auf den Holzpfosten also z.B. die Druckkraft F = 10 kN wirkt und der Pfosten eine Querschnittsfläche von 120/120 mm aufweist, so wirkt auf ihn eine gleichmässig über die

ganze Fläche verteilte Druckspannung von = F / A = 10'000/14'400 = 0.69 N/mm2.

Wir rechnen nun die Kraft pro Faser aus. Diese Kraft pro Faser darf nicht grösser werden, als eine bestimmte Bruchkraft. Als Bruchkraft bezeichnet man die Kraft bei der die Faser bricht. Es genügt, wenn wir die Kraft für ein kleines Flächenteilchen berechnen. In der Statik hat man den mm2 oder den cm2 als Flächenteilchen gewählt.

Die Kräfte je Flächeneinheit nennt man

Spannungen. Die Summe aller Spannungen ergibt wiederum die Schnittgrösse, welche die Spannungen erzeugt hat.

Die Einheit der Spannung ist N/mm2 ( oder N/cm

2 , kN/cm

2 usw.).

F

Flächenteilchen

Page 3: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3

b

Bauteile können auf verschiedene Weise beansprucht werden.

deshalb unterscheidet man folgende Spannungsarten:

1) Zugspannung 2) Druckspannung 3) Scherspannung

4) Biegespannung 5) Schubspannung 6) Knickspannung

7) Torsionsspannung

8) Zusammengesetzte Beanspruchung

infolge mehrerer Beanspruchungsarten

Jeder Baustoff kann nur Spannungen bis zu einer bestimmten Höchstgrenze

ertragen, wenn diese Grenze überschritten wird tritt Bruch ein.

Die Spannung im Augenblick des Bruchs wird Bruchspannung oder

Bruchfestigkeit genannt.

Die Festigkeitswerte der verschiedenen Baustoffe werden mit Prüfmaschinen an Probekörpern ermittelt. Die Prüfverfahren sind für die meisten Baustoffe genormt, weil sich z.B. die Prüfdauer, die Probegrösse oder die Gestalt des Probekörpers auf die Versuchsergebnisse auswirken können. Die Festigkeiten sind nicht nur für die einzelnen Baustoffe verschieden, sie weichen auch bei ein und demselben Material für die verschiedenen Beanspruchungsarten voneinander ab. Beim Beton ist zum Beispiel die Druckfestigkeit wesentlich höher als die Zugfestigkeit, oder beim Holz ist die Druckfestigkeit parallel zur Faser höher als die Druckfestigkeit senkrecht zur Faser.

Z

D a

K

F

T

M

Page 4: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 4

3) Tragwiderstand, Sicherheitsgrad, Bemessungswerte

Jegliches Bauen, von der Berechnung bis zur Ausführung, ist mit unvermeidlichen Unsicherheiten behaftet. So sind z.B. die Lastannahmen nur Näherungswerte, bei der Annahme des statischen Systems werden Vereinfachungen getroffen und die angenommenen Werkstoffgrössen können von der Wirklichkeit abweichen. Deshalb stimmen in einem Querschnitt die errechneten Schnittgrössen mit den wirklich vorhandenen nicht überein. Anderseits besitzt das erstellte Bauwerk meist nicht genau die erwünschte Tragfähigkeit, weil die verwendeten Baustoffe Streuungen in den Festigkeiten, Fehlstellen oder Massabweichungen aufweisen können. Aus diesen Gründen darf man das Bauwerk nicht bis zur theoretisch errechneten Bruchspannung belasten; man mutet ihm nur einen Teil der Festigkeit zu.

Die Tragsicherheit wird durch den Vergleich des Bemessungswertes der

Beanspruchung mit demjenigen des Tragwiderstandes nachgewiesen :

Ed Rd - Der Bemessungswert Ed der Beanspruchung berechnet sich anhand der in

der Norm enthaltenden Werte der Einwirkungen. Ed muss ein Extremwert der Beanspruchungen sein.

- Der Bemessungswert Rd des Tragwiderstandes ist den verschiedenen Konstruktionsnormen zu entnehmen.

Bemessungswert der Beanspruchung Ed Gemäss den Nutzungsanforderungen werden nach SIA 261 oder projektspezifisch die charakteristischen Werte der Nutzlasten und der ständigen Lasten bestimmt. Die Multiplikation dieser Werte mit den Lastbeiwerten γf ergeben die Bemessungswerte Fd der Einwirkungen. Die Antworten des Tragwerkes auf diese Einwirkungen (Schnittkräfte, Spannungen, Auflagerreaktionen usw.) bezeichnet man als die Bemessungswerte Ed der Auswirkungen.

Beispiele für Lastbeiwerte: (aus Norm Einwirkungen) Lastbeiwert für Nutzlast γQ = 1.5 Lastbeiwert für ständige Last und Eigengewicht γG = 1.35

Bemessungswerte des Tragwiderstandes Rd (Genaue Angaben : siehe entsprechende Normenwerke )

SIA 265) Holzbau

Nadelholz, C24 Biegung fm,d = 14 N/mm2

Zug parallel zur Faser ft,0,d = 8 N/mm2 Druck parallel zur Faser fc,0,d = 12 N/mm2

Druck senkrecht zur Faser fc,90,d = 1.8 N/mm2

Schub fv,d = 1.5 N/mm2

Buche, Eiche, D30 Druck senkrecht zur Faser fc,90,d = 5.3 N/mm2

Page 5: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 5

Brettschichtholz aus Nadelholz, GL24h Biegung fm,d = 16 N/mm2

Zug parallel zur Faser ft,0,d = 12 N/mm2 Druck parallel zur Faser fc,0,d = 14.5 N/mm2

Druck senkrecht zur Faser fc,90,d = 1.9 N/mm2

Schub fv,d = 1.8 N/mm2

SIA 263) Stahlbau

Stahl S235 Biegung und Zug fd = 224 N/mm2

Schub τ,d = 129 N/mm2

Stahl S355 Biegung und Zug fd = 338 N/mm2

Schub τ,d = 195 N/mm2

SIA 262) Betonbau Normalbeton C20/25 Druckfestigkeit fc,d = 13.5 N/mm2

Normalbeton C25/30 Druckfestigkeit fc,d = 16.5 N/mm2

Betonstahl B500 Zugfestigkeit fs,d = 435 N/mm2

Spannstahl z.B.Y1670 Zugfestigkeit fp,d = 1250 N/mm2

Beispiel :

Nachweis einer Stahlstütze gem. Normen SIA Nutzlast Qk = 60 kN (aus statischer Berechnung) Ständige Last und Eigengewicht Gk = 40 kN (aus statischer Berechnung) Lastbeiwerte (aus Norm Einwirkungen ) für Nutzlast γQ = 1.5, für ständige Last und Eigengewicht γG = 1.35 Bemessungswert der Beanspruchung: Ed = γQ ∙ Q + γG ∙ G = 1.5 ∙ 60 + 1.35 ∙ 40 = 144 kN Tragwiderstand der Stütze RK = 158 kN (aus Berechnung oder aus Tabelle) Allgemein wird nach Norm R als Tragwiderstand für alle Arten von Tragwiderständen angegeben.

Tragwiderstandsbeiwert für Stahl γR = 1.05 (aus Norm SIA 263 Stahlbauten) Bemessungswert des Tragwiderstandes: Rd = R / γR = 158 / 1.05 = 150 kN

Nachweis:

Ed = 144 kN Rd = 150 kN

→ Die Tragsicherheit ist also gewährleistet

Q

G

Page 6: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 6

4) Zug- und Druckspannungen

Zugspannung z : Zugspannungen kommen bei Ankern, Zugstangen, Fachwerken, Stahleinlagen im Stahlbetonbau, Spanngliedern und dgl. vor.

Zugspannungen sind sogenannte Normalspannungen, denn sie stehen auf der Querschnittsfläche senkrecht, sie weisen von der Querschnittsfläche weg und erhalten

meist positive Vorzeichen.

Die Zugspannung im Augenblick des Bruches wird als Zugfestigkeit z bezeichnet.

Druckspannung D : Druckspannungen treten z.B. bei Wänden, Stützen, Auflagern und Fundamenten auf.

Druckspannungen sind auch wie die Zugspannungen Normalspannungen, sie weisen

aber auf die Querschnittsfläche hin und erhalten meist negative Vorzeichen.

Die Druckspannung im Augenblick des Bruches wird als die Druckfestigkeit D bezeichnet.

Will man infolge einer Normalkraft F in einem Querschnitt A die auftretende Spannung kennen, so rechnet man :

= F / A ( Spannung = Kraft / Fläche )

Oft kennt man den Bemessungswert der Normalkrafteinwirkung Fd und den Bemessungswert der Zugspannung f,d des Materials und will daraus die erforderliche Fläche A rechnen :

A erforderlich = Fd / fd oder Fd / σd

Diese Formeln gelten aber nur, wenn folgende Voraussetzungen erfüllt sind :

F F

- Die Bauteile haben eine gerade Achse - Die gedrückten Körper sind so kurz und gedrungen, dass ein Ausknicken nicht in Frage kommt. - Die äusseren Kräfte greifen in den Schwerpunkten der Querschnitte und in Richtung der Stabachse an. - Es treten keine plötzlichen Querschnittsänderungen auf.

Schwerpunkt S

Fläche A

Page 7: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 7

Übungen zu Druck- und Zugspannungen

a: Tragfähigkeit eines Zugstabes aus Baustahl Gesucht: Bemessungswert der Zugkraft von einem Rundstahl Durchmesser 16 mm aus Baustahl S235 ?

Lösung:

b: Druckspannung in Betonpfeiler Auf einen gedrungenen Betonpfeiler aus Normalbeton C25/30 von 40/40 cm Querschnittsfläche wirkt eine Druckkraft Fd = 1’800 kN. Genügen diese Abmessungen ? (Bemessungswert der Druckfestigkeit fc,d = 16.5 N/mm2 )

Lösung

Page 8: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 8

c : Fundament bei zentrischer Belastung Auf ein Einzelfundament wirkt eine zentrische Druckkraft von Nd = 910 kN. Wie gross muss die Fundamentfläche sein, wenn der Bemessungswert der zulässigen

Bodenpressung mit σd = 240 kN/m2 angenommen wird?

Lösung

d : Zugarmierung in einem Unterzug In einem Unterzug muss die Zugkraft durch die Bewehrung aus B500 aufgenommen werden. Wie viele Armierungsstäbe mit Durchmesser 16 mm sind erforderlich, wenn der gerechnete Bemessungswert der Zugkraft Zd = 340 kN beträgt?.

Lösung

Page 9: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 9

5) Formänderung und Formänderungsgesetze

a) Elastizität und Plastizität

Ein Körper wird durch eine Zugkraft gedehnt und durch eine Druckkraft gestaucht.

Ein Stoff verhält sich elastisch, wenn er nach der Entlastung seine ursprüngliche Gestalt

und damit seine ursprüngliche Länge wieder einnimmt. Die Eigenschaft der Elastizität besitzen die Baustoffe vielfach nur bis zu einer je nach Material verschiedener Grenze der Belastung. Bei darüber hinausgehenden Belastungen treten auch Formänderungen auf, die nach der

Entlastung als bleibende oder plastische Formänderungen bestehen bleiben. Der Baustoff verhält sich in diesem Belastungsbereich teils elastisch, teils plastisch.

Plastisches Verhalten wird auch als Plastizität bezeichnet.

Elastisches Verhalten

Plastisches Vehalten

Page 10: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 10

b) Das Spannungs- Dehnungsdiagramm

Um die Zusammenhänge zwischen Belastung und Dehnung anzugeben, kann man für jeden Baustoff ein Spannungs- Dehnungsdiagramm aufstellen. Wenn zum Beispiel ein Probestab auf der Zerreissmaschine geprüft wird, zeichnet eine sich drehende Trommel selbständig auf der Ordinatenachse die Kraft F und auf der

Abszissenachse die Verlängerung l auf. Um nun allgemeingültige, von der Querschnittsfläche des Probestabes unabhängige, Ergebnisse zu erhalten, geht man von Kraft und Verlängerung auf bezogene Grössen über. Man teilt die Kraft durch die ursprüngliche Querschnittsfläche Ao und erhält dadurch

auf der Ordinatenachse die Spannung = F / Ao ; die Verlängerung wird durch die

ursprüngliche Länge l geteilt, wodurch sich die einheitslose Dehnung = l / l ergibt. Sie ist bei gezogenen Körpern positiv, bei gedrückten negativ, ihr Vorzeichen entspricht also

dem Vorzeichen der Normalspannung.

Spannungs - Dehnungsdiagramm

Bis zum Punkt P verläuft die Linie geradlinig. Es besteht auf dieser Strecke zwischen den Dehnungen und Spannungen Verhältnisgleichheit ( Proportionalität).

Die Spannungen im Punkt P bezeichnet man als Proportionalitätsgrenze. Bis zum Punkt E wachsen die Dehnungen etwas schneller als die Spannungen, die Linie krümmt sich leicht, und bei einer Entlastung ergeben sich bereits kleine bleibende Formänderungen. Bis zu einer Dehnung von 0.01 % kann aber noch praktisch elastisches Verhalten

angenommen werden, deshalb wird dieser Punkt E als Elastizitätsgrenze bezeichnet. Nach Erreichen des Punktes S dehnt sich der Körper ohne das eine weitere Laststeigerung nötig ist. Der Stab streckt sich, der Stahl zum Beispiel fliesst.

Man nennt die Spannung an dieser Stelle S Fliessgrenze ( beim Zugversuch Streckgrenze, beim Druckversuch Quetschgrenze). In diesem Bereich gehen die Dehnungen nicht mehr ganz zurück, der Stab ist plastisch verformt worden. Beim Stahl kann nach einer gewissen Streckung die Last noch einmal gesteigert werden ( Wiederverfestigung). Im Punkt B ist die Höchstlast erreicht, an irgendeiner schwachen Stelle wird sogar bei jetzt etwas sinkender Last der Stab zerrissen.

Die Bruchspannung berechnet man nach der Höchstlast z = Fmax / Ao.

Die bis zum Bruch eintretende plastische Verformung nennt man die Bruchdehnung .

Z =

F m

ax /

A o

Bru

ch

0

S E

P

Bruchdehnung

elast

isch

er

Ber

eich

pla

stis

cher

Ber

eich

0

.01

S

= l / lo (

)

=

F

/ A

Page 11: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 11

Das Spannungs- Dehnungsdiagramm sagt sehr viel über das Verhalten eines Baustoffes aus. 'Weiche' Materialien haben grosse Bruchdehnung und verformen sich stark bevor sie die Bruchgrenze erreichen. Sehr spröde Stoffe anderseits können eventuell sehr grosse Fliessgrenzen aufweisen, dann aber fast ohne weitere Dehnung sofort zerreißen. ( Sprödbruch).

c) Das Hook'sche Gesetz und der Elastizitätsmodul

Die Spannungs- Dehnungslinie verläuft bis zur Proportionalitäts-grenze geradlinig, aus der Ähnlichkeit der entstehenden Dreiecke gilt die Beziehung :

Die Dehnungen sind den Spannungen proportional.

Dieser zuerst vom englische Physiker Hooke ( 1678 ) ausgesprochene Satz wird nach ihm das Hook’sche Gesetz genannt.

Das Verhältnis tg = / wird als Elastizitätsmodul E bezeichnet.

E = / oder = / E ( Dehnung = Spannung / E-Modul )

Der Elastizitätsmodul ist eine Werkstoffkenngrösse mit der Einheit einer Spannung. Das Hook’sche Gesetz gilt nur bis zur Proportionalitätsgrenze. Wegen seiner einfachen Form wird es zur Vereinfachung der Berechnungen fast allgemein

benutzt. Es bildet die Grundlage der Elastizitätstheorie.

Einige der wichtigsten, aus Versuchen ermittelten und bei statischen Berechnungen

zu berücksichtigende Elastizitätsmodule sind :

Baustahl E = 210’000 N/mm2

Grauguss E = 100’000 N/mm2

Nadelholz C24 und Brettschichtholz GL24h

II - Faser E = 11’000 N/mm2

┴ - Faser E = 300 N/mm2

bewehrter Beton E = 21’000 - 33’000 N/mm2

Mauerwerk aus Backsteinen E = 3’000 - 20’000 N/mm2

Mauerwerk aus natürlichen Steinen E = 6’000 - 50’000 N/mm2

S

Bru

ch

tg = / = E

2 1

2

1

Page 12: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 12

Zusammenfassung Formeln

Beispiele:

b) Zug auf Rundstab

Ein Rundstahl S235 mit Durchmesser 16 mm (RND 16 mm) von 8.00 m Länge wird durch eine Zuglast von 28 kN gezogen.

Wie gross wird die Längenänderung?

EA

lFll

l

l

ModulE

Spannung

E

E

Fläche

Kraft

A

F

:rungLängenände

)(:Dehnung

)nstanteMaterialko(:tsmodulElastizitä

)(:Spannung

Page 13: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 13

d) Längenänderungen durch Wärmeschwankungen Temperaturänderungen können bei grösseren Bauwerken beträchtliche Längenänderungen bewirken ( bei Abkühlung Verkürzung, bei Erwärmung Verlängerung). Durch bewegliche Auflager kann erreicht werden, dass nicht hohe Zusatzspannungen entstehen.

Die bei 1 Grad Temperaturänderung eintretende Längenänderung pro Längeneinheit

wird durch die Temperaturdehnzahl oder den Wärmeausdehnungskoeffizient T

angegeben.

Längenänderung:

Dehnung:

Ausdehnungskoeffizenten : Einheit für T = 1 / ..

Grad

Baustahl : T = 0.000’012 ( meist T 10 -5 )

Armierungstahl + Beton : T = 0.000’010 = 10 -5

Mauerwerk aus Backstein : T = 0.000’006 = 0.6 10 -5

Holz in Faserrichtung : T = 0.000’003 bis 0.000’009

Annahmen für Temperaturschwankungen

Bauten in Stahl und Leichtmetall : + 30 C bis - 30 C

Stahlbetonbauten : + 15 C bis - 25 C

Holzbauten - reine Holzbauten : + / - 0 C

Holzbauten - gemischte Bauweise : + 10 C bis - 5 C

Bauten aus Beton und Mauerwerk : + 10 C bis - 20 C Ähnliche Längenänderungen wie eine Temperaturabnahme bewirkt das Schwinden von Beton und Mörtel.

Beispiele:

a) Längenänderung durch Temperaturschwankung Eine Betonbrücke von 30,0 m Länge erhält eine Temperaturänderung

von - 25 C bis + 15 C. Wie gross ist der Verschiebungsweg vom beweglichen Auflager ?

tl

l

ltl

TT

T

TT

Page 14: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 14

b) Längenänderungen eines Stahlstabes

Gesucht: (Antworten auf 1/10 mm genau angeben!) a) An den ursprünglich 4.0 m langen Stab wird eine Last von 17 kN angehängt

(Temperatur + 10 Grad C). Wie lang ist der Stab nach dem Anhängen der Last? b) Im laufe des Tages erwärmt sich der belastete Stab von 10 Grad C auf + 30 Grad C.

Wie lang ist der Stab jetzt?

c) Druckkraft durch behinderte Wärmeausdehnung Ein Walzprofil HEB 300 ( A= 18’100 mm

2 ) von 6.0 m Länge erwärmt sich bei einem

Brande um 50 C. Welche Kraft wirkt auf das Auflager, wenn der Träger beidseitig fest verankert ist ?

L = 4.0 m

Rundstab Durchmesser 12 mm, Baustahl S235

Durchmesser 20 mm

F = 17 kN

Page 15: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 15

e) Querdehnungen

Bei Zugbeanspruchungen beobachtet man nicht nur Verlängerungen in Richtung der Stabachse, es lassen sich rechtwinklig dazu auch Querzusammenziehungen, Querkürzungen feststellen. Ein gezogener Stab wird nicht nur länger, sondern gleichzeitig dünner. Umgekehrt tritt bei Druck neben der Verkürzung eine Querschnittsvermehrung, eine Querdehnung auf, ein gedrückter Körper wird kürzer und dicker.

Querdehnzahlen Beton bei Zug : = 0.10 bis 0.125 Beton bei Druck: = 0.16 bis 0.20

Stahl und Eisen: = 0.30 Blei : = 0.43

Mit zunehmender Spödigkeit nimmt ab.

elastische Stoffe : 0 < < 0.5 plastische Stoffe : = 0.5

Volumenänderung : V = ± l / l (1- 2) V

( Bei Zug Volumenvermehrung, bei Druck Volumenverminderung)

Für plastische Stoffe ( = 0.5) wird V = 0.

f) Formänderungen durch Schubkraft

Wie wir bei den Dehnungen eine lineare Abhängigkeit von den Normalspannungen

feststellen konnten ( = / E ), lässt sich bei den Gleitungen Proportionalität zu den Spannungen beobachten.

Die Proportionalitätskonstante wird Schubmodul G genannt. Der Schubmodul G ist eine Werkstoffkenngrösse, die den Zusammenhang zwischen

Schubspannung und Winkeländerung angibt.

Durch Schubkräfte entstehen nur Verschiebungen benachbarter Querschnitte gegeneinander. Das Ausmass dieser Schiebung oder Gleitung

wird durch die Grösse der Winkeländerung im Bogenmass (Radiant) ausgedrückt.

= Δz / Δ x

Page 16: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 16

6) Biegespannungen

Dieser Balken wird sich unter Belastung durchbiegen, d.h. er wird durch ein Moment beansprucht.

Am oberen Rand wird der Balken zusammengedrückt, am unteren Rand gezogen; dazwischen befindet sich eine Faser, die weder gezogen noch gedrückt wird, man nennt

sie die neutrale Achse oder die Spannungsnulllinie.

Um die Biegespannungen (Zug-und Druckspannungen) bei Trägern und Balken zu berechnen, müssen wir folgende Voraussetzungen und Annahmen treffen : - Die Höhe des Trägers ist klein gegenüber der Länge. - Die Durchbiegungen sind so klein, dass sie auf den Gleichgewichtszustand der

äusseren Kräfte keinen Einfluss haben ( Theorie I.Ordnung). - Die Kräfte wirken senkrecht zur geraden Stabachse des Trägers und verursachen

reine Biegung (Biegung mit Längskraft wird später behandelt). - Der Träger weist einen mindestens einfachen symmetrischen Querschnitt auf. - Die Wirkungslinien der angreifenden Kräfte liegen in der Ebene, die durch Trägerachse und Symmetrieachse bestimmt wird.

Nach der Hypothese von Bernoulli bleiben ebene Querschnitte auch nach der Verformung

eben. Diese Formänderungsbedingung wurde durch Versuche nachgewiesen und stimmt besonders gut für schlanke Stäbe.

Als Resultat der Ableitungen und Theorie zum Berechnen der Biegespannungen erhält man die folgenden einfachen Formeln: (Auf Ableitungen und Theorie wird hier verzichtet)

My = Iy / z → omentTrägheitsm

NullinievonFaserabsttBiegemomen .

Diese Gleichung ergibt die Biegespannung mit dem richtigen Vorzeichen, wenn die lotrechte Koordinate z nach unten positiv, nach oben negativ eingeführt wird.

Als weitere Vereinfachung setzt man Iy / zo = Wyo und Iy / zu = Wyu, man nennt Wyo das

obere und Wyu das untere Widerstandsmoment des Querschnittes.

Widerstandsmoment

Berechnung von Widerstandsmomenten: Siehe Kapitel 7/4

Mit den Widerstandsmomenten können wir nun auf einfache Weise die

Biegerandspannungen berechnen:

Bei symmetrischen Querschnitten bezüglich der y - Achse ist Wyo = Wyu = Wy.

also:

Wyo = Iy /zo; Wyu = Iy /zu (mm3)

= My z / Iy

o = My / Wyo u= My / Wyu

o = u = M / Wy

Zugspannungen

Druckspannungen

neutrale Achse

Page 17: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 17

Die Biegegleichung gilt nicht für Stahlbetonträger, da der Baustoff Beton dem Hook’schen Gesetz nicht folgt und die Zugspannungen nur den Stahleinlagen zugewiesen werden.

Beispiele zu Biegespannungen

a) Verteilung der Biegespannungen über den ganzen Querschnitt.

M

Armierungsstahl

D

Z

z

Page 18: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 18

b) Minimal erforderlicher Träger

a) Holzbalken (C24) mit Breite b = 16 cm b) Walzprofil IPE - Reihe (S235)

c) Erlaubte Last auf Holzbalken Ein Holzbalken (Nadelholz, C24) mit 12 / 24 cm Querschnitt wird auf zwei Stützen im Abstand l = 3.50 m aufgelegt. Mit welcher gleichmässig verteilten Last darf er belastet werden, wenn er a) hochkant und b) liegend versetzt wird ?

2.50 m

qd = 15 kN / m’

Page 19: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 19

7) Doppelbiegung

In vielen Fällen haben Träger ausser einer lotrechten Belastung auch waagrechte Lasten aufzunehmen ( Erdbeben, Kranlasten, Windkräfte, Dachpfetten).

Im Allgemeinen werden sie nach zwei senkrecht zueinander stehenden Hauptachsen

doppelt auf Biegen, d.h. auf Doppelbiegung beansprucht.

Bei der Berechnung der zugehörigen Spannungen dürfen wir auf die einfache Biegung zurückgreifen. Es gilt nämlich das Superpositionsgesetz. Die Belastung qz verursacht ein Moment um die y -Achse, das wir wie gewohnt mit My bezeichnen, die Belastung qy erzeugt ein Moment Mz um die z -Achse.

Unter Beachtung der Vorzeichen tritt grösste Zugspannung im obigen Beispiel in der linken unteren Ecke c, die grösste Druckspannung in der rechten oberen Ecke a auf. Bei dem hier betrachteten doppelsymmetrischen Querschnitt sind beide Spannungen dem Betrage nach gleich gross, und es gilt die Formel :

Für einen beliebigen Punkt P (y,z) des Querschnittes erhalten wir die Spannung mit Hilfe der Trägheitsmomente :

( Momente und Koordinaten mit Vorzeichen einsetzen)

cb = - da = My / Wy

cd = - ab = Mz / Wz

c = - a = My / Wy+ Mz / Wz

p = My z / Iy+ Mz y / Iz

y

z

qz

qy

c b

a d

+

+

-

-

Page 20: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 20

8) Biegung mit Längskraft

Oft kommt es vor, dass eine Normalkraft nicht in der Stabachse angreift, oder das ein Balken durch Biegemomente und Normalkraft beansprucht wird. Beide Zustände können gemeinsam betrachtet werden.

Greift eine Kraft aussermittig (exzentrisch) an, dann darf nicht mehr vorausgesetzt werden, dass die Spannungen sich gleichmässig über die Querschnittsfläche verteilen. Betrachten wir zum Beispiel einen Stab, der durch eine exzentrisch angreifende Zugkraft N belastet wird. Dieser Belastungszustand lässt sich zerlegen in den mittig belasteten und den nur mit einem Moment belasteten Stab. Für die Gesamtbelastung gelten dann auch die Summen der Spannungszustände.

Page 21: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 21

9) Schubspannungen

Wenn zwei lose aufeinander liegende Balken belastet werden, biegt sich jeder von ihnen für sich allein durch. Ihre Berührungsflächen verschieben sich dabei gegeneinander, weil die Fasern mit entgegengesetzter Beanspruchung aufeinander treffen.

Die untersten Fasern des oberen Balkens erhalten die grössten Zugspannungen des jeweiligen Querschnittes und verlängern sich daher am meisten; sie liegen auf den obersten Fasern des unteren Balkens, die die grössten Druckspannungen erhalten und sich deshalb am stärksten verkürzen. Die gegenseitige Verschiebungen der Balken sind an den Auflagern am grössten und nehmen bis zur Stelle des Maximalmomentes allmählich auf Null ab.

Um die Tragfähigkeit dieser zwei einzelnen Balken zu erhöhen, können sie miteinander zu einem einzigen Balken verbunden werden. Die Verbindung aus Nägeln, Dübeln, Bolzen oder Leim muss dann eine in Richtung der

Stabachse wirkende Längsschubkraft T aufnehmen. Diese Längsschubkräfte sind aber auch bei einheitlichen Balken vorhanden. In den

Längsfasern entstehen jetzt die Längsschubspannungen n, die die Schubfestigkeit des betreffenden Baustoffes nicht überschreiten dürfen, damit keine Trennung der Fasern eintritt.

Page 22: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 22

Gleichheit der Schubspannungen auf horizontalen und vertikalen Schnitten

Wenn man einen sehr kleinen Würfel aus einem Balken auf der Höhe der Nulllinie herausschneidet, so ergibt sich zunächst aus den beiden Gleichgewichtsbedingungen Summe H = 0 und Summe V = 0, dass die Schubspannungen in den gegenüberliegenden Flächen entgegengesetzt gleich gross sein müssen. Aus der Bedingung Summe M = 0 folgt weiter, dass die Momente der Kräftepaare

entgegengesetzt gleich sind und also h = v ist.

In jedem Punkt eines Balkens ist also die waagrechte Längsschubspannung h gleich der

lotrechten Querschubspannung v.

Die Querschubspannungen sind wie die Längsschubspannungen nicht

gleichmässig über die Querschnittsfläche verteilt; sie erreichen bei konstanter

Querschnittsbreite in der Nulllinie ihren Grösstwert und nehmen bis zu den

äussersten Fasern auf Null ab.

Bezogen auf die Würfelkante haben h und v immer dieselbe Richtung; entweder weisen sie zur betreffenden Kante hin oder sind von ihr weggerichtet.

Als Resultat der Ableitungen und Theorie zum Berechnen der Schubspannungen

erhält man die folgenden einfachen Formeln: (Auf die Ableitungen und Theorie wird hier verzichtet)

IbSV

V = Querkraft

S = statisches Moment (Statisches Moment siehe Kap. 7/5)

B = Breite b

I = Trägheitsmoment

A ho

hu vl

vr

H = 0 = hoxy+huxy = 0

ho = hu

H = 0 : vl= vr

MA = 0 :

=y huxy- x vrzy = 0

hu = vr

h =

v

τmax h

b

Page 23: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 23

Verteilung der Schubspannungen im Rechteckquerschnitt

allgemein : Gegeben : V , Gesucht

im Punkt B :

V S

b I

im Punkt A : S = 0 = 0 Also, für uns wichtig:

Schubspannungen beim Rechteckquerschnitt

Beispiel: Brettschichtträger 120/300mm, A = 36‘000mm2

Querkraft Vd = 19.2 kN = 19‘200 N

Maximale Schubspannung

beim Rechteckquerschnitt

τd max = 1.5 • Vd / A

Schubspannungen beim Walzprofil

Beispiel: HEA 160 S235, Schubfläche AV = 1‘321mm2 (aus Tabelle)

Querkraft Vd = 50 kN = 50‘000 N

Maximale Schubspannung beim Walzprofil Wegen dem plastischen Verhalten vom Baustahl darf bei Walzprofilen mit einer gleichmässigen

Verteilung der Schubspannungen über die gesamte Schubfläche gerechnet werden

τd = Vd / Av Früher (ältere Norm) Τd = Vd / Aw

τmax h

b

A

B

Speziell beim Rechteckquerschnitt:

12842

32 hbI

hbhb

hS

max3

2

5.12

3

8

12

A

V

hb

V

hbb

hbV

Max. Schubspannung beim Rechteckquerschnitt max5.1 A

V

Page 24: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 24

Beispiel: Doppel –T- Querschnitt V = 19.2 kN Dieses Beipiel dient nur zur Information und gehört nicht zum Pflichtstoff

Page 25: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 25

10) Zusammenfassung Werte und Formeln aus Kapitel 8:

Beispiele für Lastbeiwerte: (aus Norm Einwirkungen) Lastbeiwert für Nutzlast γQ = 1.5 Lastbeiwert für ständige Last und Eigengewicht γG = 1.35

Bemessungswerte des Tragwiderstandes Rd (Genaue Angaben : siehe entsprechende Normenwerke )

SIA 265) Holzbau

Nadelholz, C24 Biegung fm,d = 14 N/mm2

Zug parallel zur Faser ft,0,d = 8 N/mm2 Druck parallel zur Faser fc,0,d = 12 N/mm2

Druck senkrecht zur Faser fc,90,d = 1.8 N/mm2

Schub fv,d = 1.5 N/mm2

Buche, Eiche, D30 Druck senkrecht zur Faser fc,90,d = 5.3 N/mm2

Brettschichtholz aus Nadelholz, GL24h Biegung fm,d = 16 N/mm2

Zug parallel zur Faser ft,0,d = 12 N/mm2 Druck parallel zur Faser fc,0,d = 14.5 N/mm2

Druck senkrecht zur Faser fc,90,d = 1.9 N/mm2

Schub fv,d = 1.8 N/mm2

SIA 263) Stahlbau

Stahl S235 Biegung und Zug fd = 224 N/mm2

Schub τ,d = 129 N/mm2

Stahl S355 Biegung und Zug fd = 338 N/mm2

Schub τ,d = 195 N/mm2

SIA 262) Betonbau Normalbeton C20/25 Druckfestigkeit fc,d = 13.5 N/mm2

Normalbeton C25/30 Druckfestigkeit fc,d = 16.5 N/mm2

Betonstahl B500 Zugfestigkeit fs,d = 435 N/mm2

Spannstahl z.B.Y1670 Zugfestigkeit fp,d = 1250 N/mm2

Elastizitätsmodule:

Baustahl E = 210’000 N/mm2

Grauguss E = 100’000 N/mm2

Nadelholz C24 und Brettschichtholz GL24h

II - Faser E = 11’000 N/mm2

┴ - Faser E = 300 N/mm2

bewehrter Beton E = 21’000 - 33’000 N/mm2

Mauerwerk aus Backsteinen E = 3’000 - 20’000 N/mm2

Mauerwerk aus natürlichen Steinen E = 6’000 - 50’000 N/mm2

EA

lFll

l

l

ModulE

Spannung

E

E

Fläche

Kraft

A

F

:rungLängenände

)(:Dehnung

)nstanteMaterialko(:tsmodulElastizitä

)(:Spannung

Page 26: 8) FESTIGKEITSLEHRE - goepf.bettschen.orggoepf.bettschen.org/Statik8.pdf · Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 3 b Bauteile können auf

Grundlagen Statik/Festigkeitslehre - Festigkeitslehre - göpf bettschen - Seite 26