64
Radiologic and Nuclear Threats John J. Devlin, MD, FACEP Georgia Poison Center / Emory University / Centers for Disease Control and Prevention

7 Radiologic Threats

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 7 Radiologic Threats

Radiologic and Nuclear ThreatsJohn J. Devlin, MD, FACEPGeorgia Poison Center / Emory University / Centers for Disease Control and Prevention

Page 2: 7 Radiologic Threats

Objectives• At the completion of this presentation,

attendees will be able to: – Discuss the clinical manifestations of

internal contamination and acute radiation syndrome

– Describe the diagnostic evaluation of internal contamination with radionuclides

– Discuss the use of pharmaceutical countermeasures in the management of internal contamination

Page 3: 7 Radiologic Threats

Scenario Presentation

Page 4: 7 Radiologic Threats

Possible Scenarios • Simple radiological device

• Improvised nuclear device (IND)

• Nuclear weapon detonation

• Nuclear power plant accident

• Radioactive dispersal device (RDD) including the “Dirty Bomb” scenario

Photo Credit Sandia National Laboratories and Wikipedia

Page 5: 7 Radiologic Threats

“Dirty Bomb”

• Conventional explosive + radioactive material =“dirty bomb”

• Dispersal pattern variable• Combined blast and burn injuries• External and internal contamination• Potentially large population affected

Page 6: 7 Radiologic Threats

MECHANISM OF DISEASE

Page 7: 7 Radiologic Threats

Ionizing Versus Non‐ionizing Radiation

• Non-ionizing radiation (microwaves, UV): – Does not ionize other atoms or lead to the formation of

free radicals

• Ionizing radiation interacts with human body through direct and indirect effects:– Directly– Indirectly

Page 8: 7 Radiologic Threats

Radiation Damage

• Deterministic– Threshold dose– Local radiation injury– Acute radiation syndrome

• Stochastic– Random– Oncogenensis– Teratogenesis

Page 9: 7 Radiologic Threats

Radiation Physics 101

Page 10: 7 Radiologic Threats

Radioactive Decay

• Atoms decay to reach a more stable state by emitting inonizing radiation in the form of particles or penetrating radiation (Gamma rays).

Page 11: 7 Radiologic Threats

Types of Ionizing Radiation

Page 12: 7 Radiologic Threats

Types of Ionizing Radiation

– Alpha particles• Positively charged, easily stopped

by a thin paper, do not present an external hazard.

• Inhaled/ingested, can result in significant organ damage.

Page 13: 7 Radiologic Threats

Types of Ionizing Radiation

– Beta particles• Negatively charged electrons, can

travel several centimeters through air. Stopped by clothes.

• If internalized will cause problems.

• “beta burn”

Page 14: 7 Radiologic Threats

Types of Ionizing Radiation

– Gamma rays• Electromagnetic waves.• Gamma rays are the same as x-rays -- the

difference is their source from within the atom: nuclear for gamma, extranuclear for X-rays.

• Are a significant hazard (depending on duration of exposure, distance from the source, and type of shielding).

Page 15: 7 Radiologic Threats

Types of Ionizing Radiation

– Neutrons • Neutron irradiation can turn previously

nonradioactive materials radioactive.• Uncharged. Causes whole body irradiation like

Gamma rays.• Emitted from fission reactions.

Page 16: 7 Radiologic Threats

Radiation Units: S.I. Versus USA

S.I. Formula USA1 Gray (Gy) = 100 x RAD1 Sievert (Sv) = 100 x REM

Page 17: 7 Radiologic Threats

2 Different yet Possible Overlapping Entities

• Exposure– Whole body– Partial body

• Contamination– External – Internal

Page 18: 7 Radiologic Threats
Page 19: 7 Radiologic Threats

Some Contaminated Patients are Exposed

Contaminated Victims

Exposed Victims

Page 20: 7 Radiologic Threats

All Internally Contaminated Patients are Potentially Exposed

Internally Contaminated Victims

Exposed Victims

Page 21: 7 Radiologic Threats

Contamination

External

Inhalation Ingestion Injection or Wounds

Routes of Internalization

Page 22: 7 Radiologic Threats

Radiation Protection in Whole Body Exposure

TimeDistance

Shielding

Page 23: 7 Radiologic Threats

WHEN CARING FOR THESE PATIENTS

Pick the Appropriate Personal Protective Equipment (PPE)!

Page 24: 7 Radiologic Threats

A B

CD

Page 25: 7 Radiologic Threats

Respiratory Protection• Commonly available protective masks are generally sufficient

pre-decontamination• OSHA/NIOSH: Hospital staff taking care of patients in the pre-

decontamination and decontamination areas, PAPRs or HEPA filter negative pressure masks are described as minimum

Page 26: 7 Radiologic Threats

Personal Protection

• Standard Precautions

Page 27: 7 Radiologic Threats

Radiation Detection in the ED

• Victims should be surveyed with Geiger-Muller counters.

• Standard G-M cannot detect radiation exposure; they detect external gamma, some beta, and no alpha unless using a specialized alpha probe.

• They can detect internal gamma, less beta, and no alpha regardless of the probe.

Page 28: 7 Radiologic Threats

Radiation Detection in the ED 

Survey patient for radiological contamination and mark areas on body diagram.

Remove contaminated clothes and label them.

Except for an instance ofhighly-radioactive shrapnel, contamination should NOT deter medical staff from treating life-threatening injuries.

Page 29: 7 Radiologic Threats

Radiation Survey in the ED and Decontamination

Page 30: 7 Radiologic Threats
Page 31: 7 Radiologic Threats

Radiation Detection

• Pocket dosimeters• Film badges• Thermoluminescent dosimeters (TLD)

Page 32: 7 Radiologic Threats

DIAGNOSIS OF INTERNAL CONTAMINATION

Page 33: 7 Radiologic Threats

Nasal Swabs

• A swab is collected from each nostril of individuals who have potentially inhaled radionuclides in the form of particulate matter.

• Each swab gets tested for the detection of radiation.

• The radiation present in the nasal cavities will reflect the presence of radionuclides in lower air spaces and subsequent internal contamination.

Page 34: 7 Radiologic Threats

Nasal Swabs

• Not feasible in a mass casualty setting• The negative and positive predictive values of

radioactive nasal swabs in the case of 238Pu relative to the CEDE was 41 and 59% respectively. For 239Pu, these values are 74 and 54% respectively.

Guilmette RA et al. Technical basis for using nose swab bioassay data for early internal dose assessment. Radiation Protection Dosimetry

(2007), Vol. 127, No. 1–4, pp. 356–360

Page 35: 7 Radiologic Threats

In Vivo Measurements

• Whole body counters• Chest counters for Plutonium and

Uranium • Wound monitoring instruments

Page 36: 7 Radiologic Threats

Whole Body Dosimetry

• Using whole body counters or scanners that are potentially available at nuclear medicine departments.

• It is crucial to know when the contamination occurs as well as which radionuclide is involved.

www.bt.cdc.gov/radiation/clinicians/evaluation/index.asp

Page 37: 7 Radiologic Threats

Diagnosis By Excretion (Bioassay) Sampling

• Collect urine or feces to measure excretion rates• Challenging interpretation

– Time when contaminationoccured– Charcteristics of inhaled or internalized radionuclides

Page 38: 7 Radiologic Threats

“Radiological Laboratory”: Future Goals

• To rapidly (≤30 minutes per sample) analyze urine for the 22 priority radionuclides (alpha, beta and gamma emitters)

• To be able to achieve the analytical goals using a volume of ≤50 mL of urine

• To analyze the 22 priority radionuclides (e.g. 60Co, 137Cs, 241Am, etc.)

• To provide accurate and precise results in a short amount of time (>2000/day)

• CLIA’88 compliant

Page 39: 7 Radiologic Threats

CDC’s Urine Radionuclide Screen

Gamma RadionuclideQuantification

Urine Sample “Spot”

Alpha/Beta Radionuclide Screen/Quantification Alpha (Long Lived) ICP-MS Screen

Mass SpectroscopyQuantification

High ResolutionMass Spectroscopy

Quantification

Alpha SpectroscopyQuantification

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 00

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 00

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 00

2 5 0 0 0

5 0 0 0 0

7 5 0 0 0

U

T h

P uA m

N p

Cou

nts

T i m e ( s )

N p ( V )

P u ( I V )

N p ( V I )P u ( V I )

N p ( I V )

Gamma Radionuclide Screen

Page 40: 7 Radiologic Threats

CDC Emergency Operations Center

Page 41: 7 Radiologic Threats

CLINICAL IMPACT AND CONSEQUENCES

Internal ContaminationAcute Radiation Syndrome

Page 42: 7 Radiologic Threats

Clinical Consequences of Internal Contamination

• Acute and subacute– End organ dammage– Acute Radiation Syndrome– Multiorgan failure

• Chronic– Solid tumors– Leukemias

Page 43: 7 Radiologic Threats

Radionuclides of Concern

• Transuranics• Cesium-137• Strontium• Cobalt-60• Polonium-210

Page 44: 7 Radiologic Threats

Management Strategies

• Supportive care• Decreasing absorption• Decorporation and enhance elimination• Long term monitoring

Page 45: 7 Radiologic Threats

Decorporation*

Displace Element

•Potassium Iodide

•Ammonium Cl/Ca gluconate

ChelateElement

•DTPA•EDTA•Prussian

Blue

Enhance Elimination

•Sodium Bicarbonate

•Forced Diuresis

*No true radiation antidotes!

Page 46: 7 Radiologic Threats

Internal ContaminationRadionuclide Medication

Iodine KI (potassium iodide)

Transuranics such asPlutonium& Americium

Zn-DTPACa-DTPA

Uranium Bicarbonate

CesiumRubidiumThallium

Prussian Blue*[Ferrihexacyano- Ferrate (II)]

Tritium Water

Page 47: 7 Radiologic Threats

Transuranics

• Used for Transuranics such as Plutonium and Americium.

• First dose should be Calcium DTPA followed by Zinc DTPA.

• Duration of therapy will be guided by urine or feces transuranic concentrations.

Page 48: 7 Radiologic Threats

DTPA Treatment of 239Pu

Retention(% of Uptake)

Control Treated with DTPA

Liver 14.0 0.47

Skeleton 57.0 5.9

Page 49: 7 Radiologic Threats
Page 50: 7 Radiologic Threats

Cesium‐137

• 46 Goiania pts contaminated with Cs-137 treated with Prussian Blue.

• Less than 1% is absorbed.• Exchanges a cation and binds

Cesium or Thallium.• Decreases GI absorption and

interrupts enterohepatic circulation.

Page 51: 7 Radiologic Threats

Radiogardase®

• Insoluble form FDA approved in 2004. Available in CA or REAC/TS.

• Dosage is 3 g orally every 8 hours.• Duration of therapy guided by feces Cs content• AE: Constipation and blue stools, sweat, teeth

Page 52: 7 Radiologic Threats

Radioactive Iodine Exposure

• Iodine Prophylaxis and Treatment– Potassium iodide (KI) is an effective,

inexpensive thyroid-blocking agent.

Page 53: 7 Radiologic Threats

Saturate the Critical Organ with the Stable Isotope

THYROID131I

131I131I

131I

I

Radioactive Iodine Exposure

Page 54: 7 Radiologic Threats

Efficacy of KI is time dependent

0

15

306 12 18 24

Time of administrationpost-exposure, hours

Page 55: 7 Radiologic Threats

ACUTE RADIATION SYNDROME (ARS)

Page 56: 7 Radiologic Threats

Acute Radiation Syndrome (ARS)

• Deterministic effect• Prodrone phase• Hematopoetic

syndrome• Gastrointestinal

syndrome• CV/CNS syndrome

Page 57: 7 Radiologic Threats

Approximate Time Course of Clinical Manifestations

Waselenko et al. Annals of Internal Med 140(12)

Page 58: 7 Radiologic Threats

Prodrome

• Vague Sx: nausea, vomiting, headache.

• Help predict the dose: the higher the absorbed dose the earlier and the more frequent the Sx occur.

15 June 2004 Annals of Internal Medicine Volume 140 • Number 12

Page 59: 7 Radiologic Threats

Hematopoetic Syndrome (2‐6 Gy)

Page 60: 7 Radiologic Threats

Lymphocyte Depletion Kinetics

• Andrew’s nomogram helps estimate the dose of radiation.

• WBC with differential every6 hrs for first 24-48 hours.

Page 61: 7 Radiologic Threats

Cytogenetics

• Rate of dicentric chromosomes in peripheral lymphocytes.

• Available at REAC/TS.

• Takes a few days.

Page 62: 7 Radiologic Threats

Management of the Hematopoetic Syndrome

• Complications: infection and bleeding.• Treatment is supportive:

– Reverse isolation– IVF– Blood products– Antibiotics – Colony stimulating factors such as filgrastim or G-

CSF (300 mcg s/c per day)– Stem cell transplant

Page 63: 7 Radiologic Threats

G‐CSF: Animal Studies

1

10

100

1000

10000

100000

Neu

trop

hils

per

mm

3

0 5 10 15 20 25 30 35 40 45 50

- G-CSF+ G-CSF

Days

- G-CSF

+ G-CSF

Enhanced Survival of AcutelyIrradiated (4Gy) Canines Following

G-CSF Cytokine Treatments

3.6

71.4

0 10 20 30 40 50 60 70 80

Control

G-CSF

Gro

up

Percent Survival

G-CSFControl

Reference: Schuening et al. Blood 74: 108, 1989

Page 64: 7 Radiologic Threats

Questions?

• Radiologic Threats• Time, Distance, and Shielding• Exposure versus Contamination• Acute Radiation Syndrome