87
6: Operational Amplifiers 6: Operational Amplifiers Operational Amplifier Negative Feedback Analysing op-amp circuits Non-inverting amplifier Voltage Follower Inverting Amplifier Inverting Summing Amplifier Differential Amplifier Schmitt Trigger Choosing Resistor Values Summary E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 1 / 12

6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

  • Upload
    lamminh

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

6: Operational Amplifiers

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 1 / 12

Page 2: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Operational Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 2 / 12

An op amp (operational amplifier) is acircuit with two inputs and one output.

Y = A (V+ − V−)

Page 3: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Operational Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 2 / 12

An op amp (operational amplifier) is acircuit with two inputs and one output.

Y = A (V+ − V−)

The gain, A, is usually very large: e.g. A = 105 at low frequencies.

Page 4: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Operational Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 2 / 12

An op amp (operational amplifier) is acircuit with two inputs and one output.

Y = A (V+ − V−)

The gain, A, is usually very large: e.g. A = 105 at low frequencies.

The input currents are very small: e.g. ±1 nA.

Page 5: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Operational Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 2 / 12

An op amp (operational amplifier) is acircuit with two inputs and one output.

Y = A (V+ − V−)

The gain, A, is usually very large: e.g. A = 105 at low frequencies.

The input currents are very small: e.g. ±1 nA.

Internally it is a complicated circuit withabout 40 components, but we can forgetabout that and treat it as an almostperfect dependent voltage source.

Page 6: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Operational Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 2 / 12

An op amp (operational amplifier) is acircuit with two inputs and one output.

Y = A (V+ − V−)

The gain, A, is usually very large: e.g. A = 105 at low frequencies.

The input currents are very small: e.g. ±1 nA.

Internally it is a complicated circuit withabout 40 components, but we can forgetabout that and treat it as an almostperfect dependent voltage source.

Integrated circuit pins arenumbered anti-clockwise fromblob or notch (when lookingfrom above).

Page 7: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.

Page 8: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

Page 9: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Page 10: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Y = A (X − Y )

Page 11: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Y = A (X − Y )

Y (1 + A) = AX

Page 12: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Y = A (X − Y )

Y (1 + A) = AX ⇒ Y = 1

1+1/AX → X for large A

Page 13: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Y = A (X − Y )

Y (1 + A) = AX ⇒ Y = 1

1+1/AX → X for large A

If Y = A(V+ − V−) then V+ − V

−= Y

A which, since A ≃ 105, isnormally very very small.

Page 14: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Negative Feedback

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 3 / 12

In a central heating system, if the temperature falls too low the thermostatturns on the heating, when it rises the thermostat turns it off again.Negative feedback is when the occurence of an event causes something tohappen that counteracts the original event.

If op-amp output Y falls then V−

will fall bythe same amount so (V+ − V

−) will

increase. This causes Y to rise sinceY = A (V+ − V

−).

Y = A (X − Y )

Y (1 + A) = AX ⇒ Y = 1

1+1/AX → X for large A

If Y = A(V+ − V−) then V+ − V

−= Y

A which, since A ≃ 105, isnormally very very small.

Golden Rule: Negative feedback adjusts the output to make V+ ≃ V−

.

Page 15: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

Page 16: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.

Page 17: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

Page 18: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

3. Assume zero input current: in most circuits, the current at the op-ampinput terminals is much smaller than the other currents in the circuit, sowe assume it is zero.

Page 19: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

3. Assume zero input current: in most circuits, the current at the op-ampinput terminals is much smaller than the other currents in the circuit, sowe assume it is zero.

4. Apply KCL at each op-amp input node separately (input currents = 0).

Page 20: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

3. Assume zero input current: in most circuits, the current at the op-ampinput terminals is much smaller than the other currents in the circuit, sowe assume it is zero.

4. Apply KCL at each op-amp input node separately (input currents = 0).5. Do not apply KCL at output node (output current is unknown).

Page 21: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

Note: The op-amp needs two power supplyconnections; usually +15V and −15V.These are almost always omitted from thecircuit diagram. The currents only sum tozero (KCL) if all five connections areincluded.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

3. Assume zero input current: in most circuits, the current at the op-ampinput terminals is much smaller than the other currents in the circuit, sowe assume it is zero.

4. Apply KCL at each op-amp input node separately (input currents = 0).5. Do not apply KCL at output node (output current is unknown).

Page 22: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Analysing op-amp circuits

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 4 / 12

Nodal analysis is simplified by making some assumptions.

Note: The op-amp needs two power supplyconnections; usually +15V and −15V.These are almost always omitted from thecircuit diagram. The currents only sum tozero (KCL) if all five connections areincluded.

1. Check for negative feedback: to ensure that an increase in Y makes(V+ − V

−) decrease, Y must be connected (usually via other

components) to V−

.2. Assume V+ = V

−: Since (V+ − V

−) = Y

A , this is the same asassuming that A = ∞. Requires negative feedback.

3. Assume zero input current: in most circuits, the current at the op-ampinput terminals is much smaller than the other currents in the circuit, sowe assume it is zero.

4. Apply KCL at each op-amp input node separately (input currents = 0).5. Do not apply KCL at output node (output current is unknown).

Page 23: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Page 24: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

Page 25: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

2. V−= V+ = X

Page 26: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

2. V−= V+ = X

3. Zero input current at V−

means R2 and R1 are in series(⇒ same current) and form a voltage divider. So X = R1

R1+R2

Y .

Page 27: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

2. V−= V+ = X

3. Zero input current at V−

means R2 and R1 are in series(⇒ same current) and form a voltage divider. So X = R1

R1+R2

Y .

So Y =R1+R2

R1

X =(

1 + R2

R1

)

X = +4X .

Page 28: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

2. V−= V+ = X

3. Zero input current at V−

means R2 and R1 are in series(⇒ same current) and form a voltage divider. So X = R1

R1+R2

Y .

So Y =R1+R2

R1

X =(

1 + R2

R1

)

X = +4X .

Non-inverting amplifier because the gain YX is positive.

Consequence of X connecting to V+ input.Can have any gain ≥ 1 by choosing the ratio R2

R1

.

Page 29: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Non-inverting amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 5 / 12

Circuit has input voltage X and output voltage Y . The circuit gain , YX .

Applying steps 1 to 3:

1. Negative feedback OK.

2. V−= V+ = X

3. Zero input current at V−

means R2 and R1 are in series(⇒ same current) and form a voltage divider. So X = R1

R1+R2

Y .

So Y =R1+R2

R1

X =(

1 + R2

R1

)

X = +4X .

Non-inverting amplifier because the gain YX is positive.

Consequence of X connecting to V+ input.Can have any gain ≥ 1 by choosing the ratio R2

R1

.

Cause/effect reversal: Potential divider causes V−= 1

4Y .

Feedback inverts this so that Y = 4V+.

Page 30: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Page 31: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y “follows” input X .

Page 32: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y “follows” input X .

Advantage: Can supply a large current at Y while drawing almost nocurrent from X . Useful if the source supplying X has a high resistance.

Page 33: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y “follows” input X .

Advantage: Can supply a large current at Y while drawing almost nocurrent from X . Useful if the source supplying X has a high resistance.

Without voltage follower: Y = 0.01U .

Page 34: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y “follows” input X .

Advantage: Can supply a large current at Y while drawing almost nocurrent from X . Useful if the source supplying X has a high resistance.

Without voltage follower: Y = 0.01U .

With voltage follower: Y = U .

Page 35: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Voltage Follower

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 6 / 12

A special case of the non-inverting amplifierwith R1 = ∞ and/or R2 = 0.

Gain is 1 + R2

R1

= 1.

Output Y “follows” input X .

Advantage: Can supply a large current at Y while drawing almost nocurrent from X . Useful if the source supplying X has a high resistance.

Without voltage follower: Y = 0.01U .

With voltage follower: Y = U .

Although the voltage gain is only 1, the power gain is much larger.

Page 36: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Page 37: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

Page 38: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

KCL at V−

node: 0−XR1

+ 0−YR2

= 0 ⇒ Y = −R2

R1

X = −3X .

Page 39: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

KCL at V−

node: 0−XR1

+ 0−YR2

= 0 ⇒ Y = −R2

R1

X = −3X .

Inverting Amplifier because gain YX is negative. Consequence of X

connecting to the V−

input (via R1).Can have any gain ≤ 0 by choosing the ratio R2

R1

.

Page 40: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

KCL at V−

node: 0−XR1

+ 0−YR2

= 0 ⇒ Y = −R2

R1

X = −3X .

Inverting Amplifier because gain YX is negative. Consequence of X

connecting to the V−

input (via R1).Can have any gain ≤ 0 by choosing the ratio R2

R1

.

Negative feedback holds V−

very close to V+.If V+ = 0V, then V

−is called a virtual earth or virtual ground .

Page 41: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

KCL at V−

node: 0−XR1

+ 0−YR2

= 0 ⇒ Y = −R2

R1

X = −3X .

Inverting Amplifier because gain YX is negative. Consequence of X

connecting to the V−

input (via R1).Can have any gain ≤ 0 by choosing the ratio R2

R1

.

Negative feedback holds V−

very close to V+.If V+ = 0V, then V

−is called a virtual earth or virtual ground .

Nodal Analysis: Do KCL at V+ and/or V−

to solve circuit. When analysinga circuit, you never do KCL at the output node of an opamp because itsoutput current is unknown.

Page 42: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 7 / 12

Negative feedback OK.

Since V+ = 0, we must have V−= 0.

KCL at V−

node: 0−XR1

+ 0−YR2

= 0 ⇒ Y = −R2

R1

X = −3X .

Inverting Amplifier because gain YX is negative. Consequence of X

connecting to the V−

input (via R1).Can have any gain ≤ 0 by choosing the ratio R2

R1

.

Negative feedback holds V−

very close to V+.If V+ = 0V, then V

−is called a virtual earth or virtual ground .

Nodal Analysis: Do KCL at V+ and/or V−

to solve circuit. When analysinga circuit, you never do KCL at the output node of an opamp because itsoutput current is unknown. The only exception is if you have already solvedthe circuit and you want to find out what the op amp output current is (e.g.to check it is not too high).

Page 43: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

Page 44: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

Page 45: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

KCL at V−

node: 0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−YRF

= 0

Page 46: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

KCL at V−

node: 0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−YRF

= 0

⇒ Y = −(

RF

R1

X1 +RF

R2

X2 +RF

R3

X3

)

Page 47: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

KCL at V−

node: 0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−YRF

= 0

⇒ Y = −(

RF

R1

X1 +RF

R2

X2 +RF

R3

X3

)

⇒ Y = − (8X1 + 4X2 + 4X3).

Page 48: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

KCL at V−

node: 0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−YRF

= 0

⇒ Y = −(

RF

R1

X1 +RF

R2

X2 +RF

R3

X3

)

⇒ Y = − (8X1 + 4X2 + 4X3).

Y is a weighted sum of the input voltages with the weight of Xi equal to−RF

Ri= −GiRF .

Page 49: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Inverting Summing Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 8 / 12

We can connect several input signals to theinverting amplifier.

As before, V−= 0 is a virtual earth due to

negative feedback and V+ = 0.

KCL at V−

node: 0−X1

R1

+ 0−X2

R2

+ 0−X3

R3

+ 0−YRF

= 0

⇒ Y = −(

RF

R1

X1 +RF

R2

X2 +RF

R3

X3

)

⇒ Y = − (8X1 + 4X2 + 4X3).

Y is a weighted sum of the input voltages with the weight of Xi equal to−RF

Ri= −GiRF .

Input Isolation: The current through R1 equals X1−0

R1

which is not affectedby X2 or X3. Because V

−is held at a fixed voltage, the inputs are isolated

from each other.

Page 50: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Page 51: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Page 52: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0.

Page 53: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0.

Page 54: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Page 55: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0.

Page 56: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar:

Page 57: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar: apotential divider followed by a non-inverting amplifier.

Page 58: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar: apotential divider followed by a non-inverting amplifier.R3 and R4 are a potential divider (since current into V+ equals zero), soV+ = R4

R3+R4

Y = 3

4Y .

Page 59: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar: apotential divider followed by a non-inverting amplifier.R3 and R4 are a potential divider (since current into V+ equals zero), soV+ = R4

R3+R4

Y = 3

4Y .

The non-inverting amplifier has a gain of R1+R2

R1

= 4.

Page 60: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar: apotential divider followed by a non-inverting amplifier.R3 and R4 are a potential divider (since current into V+ equals zero), soV+ = R4

R3+R4

Y = 3

4Y .

The non-inverting amplifier has a gain of R1+R2

R1

= 4.

The combined gain is b = R4

R3+R4

× R1+R2

R1

= 3

4× 4 = +3.

Page 61: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Differential Amplifier

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 9 / 12

A 2-input circuit combining invertingand non-inverting amplifiers.

Linearity ⇒ Z = aX + bY .

Use superposition to find a and b.

Find a: Set Y = 0. KCL at V+ node ⇒ V+ = 0. We now have aninverting amplifier, so Z = −R2

R1

X = −3X ⇒ a = −3.

Find b: Set X = 0. We can redraw circuit to make it look more familiar: apotential divider followed by a non-inverting amplifier.R3 and R4 are a potential divider (since current into V+ equals zero), soV+ = R4

R3+R4

Y = 3

4Y .

The non-inverting amplifier has a gain of R1+R2

R1

= 4.

The combined gain is b = R4

R3+R4

× R1+R2

R1

= 3

4× 4 = +3.

Combining the two gives Z = 3 (Y −X). The output of a differentialamplifier is proportional to the diffference between its two inputs.

Page 62: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

Page 63: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4.

Page 64: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,(V+ − V

−) > 0 so the output stays at +14V.

Page 65: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,(V+ − V

−) > 0 so the output stays at +14V.

If X > 4, then (V+ − V−) < 0, Y will rapidly

switch to its minimum value (e.g. −14V).

Page 66: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,(V+ − V

−) > 0 so the output stays at +14V.

If X > 4, then (V+ − V−) < 0, Y will rapidly

switch to its minimum value (e.g. −14V).Now Z = −4 and Y will only switch back to +14when X falls below −4.

Page 67: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,(V+ − V

−) > 0 so the output stays at +14V.

If X > 4, then (V+ − V−) < 0, Y will rapidly

switch to its minimum value (e.g. −14V).Now Z = −4 and Y will only switch back to +14when X falls below −4.

Negative feedback stabilizes the output to makeV+ ≃ V

−.

Positive feedback adjusts the output to maximize|V+ − V

−|.

Page 68: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Schmitt Trigger

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 10 / 12

Positive feedback: If op-amp output Y rises then(V+ − V

−) will increase. This causes Y to rise

even more up to its maximum value (e.g. +14V).

If Y = +14V, then Z = 4. For any X < 4,(V+ − V

−) > 0 so the output stays at +14V.

If X > 4, then (V+ − V−) < 0, Y will rapidly

switch to its minimum value (e.g. −14V).Now Z = −4 and Y will only switch back to +14when X falls below −4.

Negative feedback stabilizes the output to makeV+ ≃ V

−.

Positive feedback adjusts the output to maximize|V+ − V

−|. Output will switch between its

maximum and minimum values, e.g. ±14V(slightly less than the ±15V power supplies).

Switching will happen when V+ = V−

.

Page 69: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Page 70: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Small resistors cause large currents.If X = ±1V, then Y = ∓3V,and so I = Y−0

R2

= ∓1A.However typical op-amps can only supply±5mA, so the circuit will not work.

Page 71: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Small resistors cause large currents.If X = ±1V, then Y = ∓3V,and so I = Y−0

R2

= ∓1A.However typical op-amps can only supply±5mA, so the circuit will not work.

Large resistors increase sensitivity tointerference and to op-amp input currents.

Page 72: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Small resistors cause large currents.If X = ±1V, then Y = ∓3V,and so I = Y−0

R2

= ∓1A.However typical op-amps can only supply±5mA, so the circuit will not work.

Large resistors increase sensitivity tointerference and to op-amp input currents.If the bias current into V

−is IB = 1nA,

then KCL at V−

gives

0−YR2

+ 0−XR1

+ IB = 0

Page 73: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Small resistors cause large currents.If X = ±1V, then Y = ∓3V,and so I = Y−0

R2

= ∓1A.However typical op-amps can only supply±5mA, so the circuit will not work.

Large resistors increase sensitivity tointerference and to op-amp input currents.If the bias current into V

−is IB = 1nA,

then KCL at V−

gives

0−YR2

+ 0−XR1

+ IB = 0 ⇒ Y = −R2

R1

X + IBR2 = −3X + 3

instead of Y = −3X .

Page 74: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Choosing Resistor Values

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 11 / 12

The behaviour of an op-amp circuit depends on the ratio of resistor values:gain = −R2/R1. How do you choose between 3Ω/1Ω, 3 kΩ/1 kΩ , 3MΩ/1MΩ

and 3GΩ/1GΩ?

Small resistors cause large currents.If X = ±1V, then Y = ∓3V,and so I = Y−0

R2

= ∓1A.However typical op-amps can only supply±5mA, so the circuit will not work.

Large resistors increase sensitivity tointerference and to op-amp input currents.If the bias current into V

−is IB = 1nA,

then KCL at V−

gives

0−YR2

+ 0−XR1

+ IB = 0 ⇒ Y = −R2

R1

X + IBR2 = −3X + 3

instead of Y = −3X .

Within wide limits, the absolute resistor values have little effect.However you should avoid extremes.

Page 75: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties:

Page 76: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current

Page 77: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain

Page 78: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

Page 79: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Page 80: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

Page 81: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

Page 82: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier

Page 83: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier⊲ Differential Amplifier

Page 84: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier⊲ Differential Amplifier

• Positive feedback circuits: VOUT = ±Vmax (no good for an amplifier)

Page 85: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier⊲ Differential Amplifier

• Positive feedback circuits: VOUT = ±Vmax (no good for an amplifier) Schmitt Trigger: switches when V+ = V

−.

Page 86: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier⊲ Differential Amplifier

• Positive feedback circuits: VOUT = ±Vmax (no good for an amplifier) Schmitt Trigger: switches when V+ = V

−.

• Choosing resistors: not too low or too high.

Page 87: 6: Operational Amplifiers - Imperial College · PDF fileOperational Amplifier 6: Operational Amplifiers •Operational Amplifier •Negative Feedback •Analysing op-amp circuits

Summary

6: Operational Amplifiers

• Operational Amplifier

• Negative Feedback

• Analysing op-amp circuits

• Non-inverting amplifier

• Voltage Follower

• Inverting Amplifier

• Inverting SummingAmplifier

• Differential Amplifier

• Schmitt Trigger

• Choosing Resistor Values

• Summary

E1.1 Analysis of Circuits (2017-10110) Operational Amplifiers: 6 – 12 / 12

• Ideal properties: Zero input current Infinite gain Do not use KCL at output (except to determine output current).

• Negative Feedback circuits: Assume V+ = V

−and zero input current

Standard amplifier circuits:⊲ Non-inverting gain = 1 + R2/R1

⊲ Inverting gain = −R2/R1

⊲ Summing amplifier⊲ Differential Amplifier

• Positive feedback circuits: VOUT = ±Vmax (no good for an amplifier) Schmitt Trigger: switches when V+ = V

−.

• Choosing resistors: not too low or too high.

For further details see Hayt Ch 6 or Irwin Ch 4.