21
Chapter 5 – Integrals 5.2 The Definite Integral 1 5.2 The Definite Integral Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

Embed Size (px)

Citation preview

Page 1: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

1

Chapter 5 – Integrals

5.2 The Definite Integral

5.2 The Definite IntegralGeorg Friedrich Bernhard Riemann

1826 - 1866

Page 2: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral2

When we find the area under a curve by adding rectangles, the answer is called a Riemann sum.

The width of a rectangle is called a subinterval.

The entire interval is called the partition.

Review - Riemann Sum21

18

V t

subinterval

partition

Subintervals do not all have to be the same size.

Page 3: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral3

a) If you are given the information above, evaluate the Riemann sum with n=6, taking sample points to be right endpoints. What does the Riemann sum illustrate? Illustrate with a diagram.

b) Repeat part a with midpoints as sample points.

Example 1 – pg. 382 # 4

3( ) sin 0 2f x x x

Page 4: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral4

Idea of the Definite Integral

1

limn

in

i

f x x

is called the definite integral of

over .f ,a b

If we use subintervals of equal length, then the length of a subinterval is:

i

b ax x a i x

n

The definite integral is then given by:

1

limn

in

i

f x x

Page 5: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral5

Definite Integral in Leibnitz Notation

1

limn

in

i

f x x

Leibnitz introduced a simpler notation for the definite integral:

1

limn b

i ani

f x x f x dx

Note that the very small change in x becomes

dx.

Page 6: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral6

Explanation of the Notation

b

af x dx

IntegrationSymbol

lower limit of integration

upper limit of integration

integrand

variable of integration(dummy variable)

It is called a dummy variable because the answer does not depend on the variable chosen.

Page 7: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral7

If f is continuous on [a, b], or if f has only a

finite number of jump discontinuities, then f is

integrable on [a, b]; that is, the definite

integral exists.

Theorem (3)

( )b

af x dx

Page 8: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral8

Putting all of the ideas together, if f is differentiable on [a, b], then

where

Theorem (4)

1

limn b

i ani

f x x f x dx

i

b ax x a i x

n

Page 9: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral9

Use the midpoint rule with the given value of n to approximate the integral. Round your answers to four decimal places.

Example 2

/2 4

0cos 4xdx n

Page 10: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral10

1.

2.

3.

4.

5.

6.

7.

Evaluating Integrals using Sums

1

( 1)

2

n

i

n ni

2

1

( 1)(2 1)

6

n

i

n n ni

23

1

( 1)

2

n

i

n ni

1

n

i

c nc

1 1

n n

i ii i

ca c a

1 1 1

n n n

i i i ii i i

a b a b

1 1 1

n n n

i i i ii i i

a b a b

Page 11: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral11

Use the form of the definition of the integral given in Theorem 4 to evaluate the integral.

Example 4 – Page 377 #23

0 2

2x x dx

Page 12: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral12

Use the form of the definition of the integral given in Theorem 4 to evaluate the integral.

Example 5

2 3

1x dx

Page 13: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral13

Express the integral as a limit of Riemann sums. Do not evaluate the limit.

Example 6 – Page 383 # 29

6

52 1

xdx

x

Page 14: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral14

Express the limit as a definite integral on the given interval.

Example 7 – page 383 # 17

2

1

lim ln 1 [2,6]n

i in

i

x x x

Page 15: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral15

Express the limit as a definite integral.

Example 8 – page 385 # 71

4

51

4

lim

Hint: Consider ( )

n

ni

i

n

f x x

Page 16: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral16

1.

2.

3.

4.

Properties of the Integral

( )b

acdx c b a

( ) ( ) ( ) ( )b b b

a a af x g x dx f x dx g x dx

( ) ( )b b

a acf x dx c f x dx

( ) ( ) ( ) ( )b b b

a a af x g x dx f x dx g x dx

Page 17: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral17

5.

6.

7.

8.

Properties Continued

( ) ( ) ( )c b b

a c af x dx f x dx f x dx

If ( ) 0 for then, ( ) 0b

af x a x b f x dx

If ( ) ( ) for then, ( ) ( )b b

a af x g x a x b f x dx g x dx

If ( ) for then,

( ) ( ) ( )b

a

m f x M a x b

m b a f x dx M b a

Page 18: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral18

Use Property 8 to estimate the value of the integral.

Example 9 – page 384 # 62

2 3

03 3x x dx

Page 19: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral19

Evaluate the integral by interpreting it in terms of areas.

Example 10 – page 384 # 37

0 2

31 9 x dx

Page 20: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral20

Work in groups to prove the following:

Example 11 – page 383 # 28

3 32

3

b

a

b ax dx

Page 21: 5.2 The Definite Integral 1 Georg Friedrich Bernhard Riemann 1826 - 1866

5.2 The Definite Integral21

We will be evaluating Leibnitz integrals using the idea of antiderivatives and the fundamental theorem of calculus.

What to expect next…