23
5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Embed Size (px)

Citation preview

Page 1: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5. Newton's Laws Applications

1. Using Newton’s 2nd Law

2. Multiple Objects

3. Circular Motion

4. Friction

5. Drag Forces

Page 2: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Why doesn’t the roller coaster fall its loop-the loop track?

Ans. The downward net force is just enough to make it move in a circular path.

Page 3: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5.1. Using Newton’s 2nd Law

Example 5.1. Skiing

A skier of mass m = 65 kg glides down a frictionless slope of angle = 32. Find

(a)The skier’s acceleration

(b) the force the snow exerts on him.

net g m F n F ax g x x

y g y y

n F m a

n F m a

0 , ynn

sin , cosg m g F

, 0xaa

sinxa a g

sinyn n m g

29.8 / sin 32m s 25.2 /m s

265 9.8 / cos 32kg m s 540 N

Page 4: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.2. Bear Precautions

Mass of pack in figure is 17 kg.

What is the tension on each rope?

0m a1 2net g F T T F 0asince

1 1 cos , sinT T

1 2T T T

2 2 cos , sinT T

2 sin

m gT

1 2cos cos 0T T

0 ,g m g F

1 2sin sin 0T T m g

217 9.8 /

2 sin 22

kg m sT

220 N

Page 5: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.3. Restraining a Ski Racer

A starting gate acts horizontally to restrain a 60 kg ski racer on a frictionless 30 slope.

What horizontal force does the gate apply to the skier?

0m anet h g F F n F 0asince

, 0h hF F

sin , cosn n 0 ,g m g F

sinhF n

cos

m gn

sin 0hF n

cos 0n m g

sincosh

m gF

260 9.8 / tan 30kg m s 340 N

Page 6: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

A roofer’s toolbox rests on a frictionless 45 ° roof,

secured by a horizontal rope.

Is the rope tension

(a)greater than,

(b)less than, or

(c)equal to

the box’s weight?

GOT IT? 5.1.

Page 7: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5.2. Multiple Objects

Example 5.4. Rescuing a Climber

A 70 kg climber dangles over the edge of a frictionless ice cliff.

He’s roped to a 940 kg rock 51 m from the edge.

(a)What’s his acceleration?

(b)How much time does he have before the rock goes over the edge?

Neglect mass of the rope.

rock r g r F T F n

, 0r rTT

r r rT m a

0 ,g c cm g F

r rm a

climber c g c F T F c cm a

c ra a a

0 , nn 0 ,g r rm g F

0 ,c cTT

, 0r raa

0 ,c ca a

0rm g n

c c c cT m g m a

c rT T T

r c cm a m g m a

c

r c

ma g

m m

Page 8: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

c

r c

ma g

m m

2709.8 /

940 70

kgm s

kg kg

20.679 /m s

20 0

1

2x x v t a t

0 51x x m

0 0v

02 x x

ta

2

2 51

0.679 /

m

m s 12 s

Tension

T = 1N throughout

Page 9: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

What are

(a)the rope tension and

(b)the force exerted by the hook on the rope?

1N

1N

GOT IT? 5.1.

Page 10: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5.3. Circular Motion

2nd law:2

net

vF m a m

r

Uniform circular motion

centripetal

Page 11: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.5. Whirling a Ball on a String

Mass of ball is m. String is massless.

Find the ball’s speed & the string tension.

g m T F a

cos , sinT T

0 ,g m g F

cosT m a

, 0aa

sin 0T m g

sin

m gT

cosT

am

cotg

v a r cot cosg L

Page 12: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.6. Engineering a Road

At what angle should a road with 200 m curve radius be banked for travel at 90 km/h (25 m/s)?

g m n F a

sin , cosn n

0 ,g m g F

2

, 0v

r

a

2

sinv

n mr

cos 0n m g

2

tanv

r g

2

2

25 /

200 9.8 /

m s

m m s

0.3189

18

Page 13: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.7. Looping the Loop

Radius at top is 6.3 m.

What’s the minimum speed for a roller-coaster car to stay on track there?

g m n F a

0 , n n

0 ,g m g F

2

0 ,v

r

a

Minimum speed n = 0

2vn m g m

r

v g r 29.8 / 6.3m s m 7.9 /m s

Page 14: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5.4. Friction

Some 20% of fuel is used to overcome friction inside an engine.

The Nature of Friction

Page 15: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Frictional Forces

Pushing a trunk:

1.Nothing happens unless force is great enough.

2.Force can be reduced once trunk is going.

Static friction s sf n

s = coefficient of static friction

0v

Kinetic friction k kf n

k = coefficient of kinetic friction

0v

k s

k : < 0.01 (smooth), > 1.5 (rough)

Rubber on dry concrete : k = 0.8, s = 1.0

Waxed ski on dry snow: k = 0.04

Body-joint fluid: k = 0.003

Page 16: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Application of Friction

Walking & driving require static friction.

No slippage:

Contact point is momentarily at rest

static friction at work

foot pushes ground

ground pushes you

Page 17: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.8. Stopping a Car

k & s of a tire on dry road are 0.61 & 0.89, respectively.

If the car is travelling at 90 km/h (25 m/s),

(a) determine the minimum stopping distance.

(b) the stopping distance with the wheels fully locked (car skidding).

g f m n F f a

0 , nn 0 ,g m g F

, 0aa

, 0f n f

n m a 0n m g

na

m

g

2 20 02v v a x x

20

2

vx

a 0v

(a) = s : 20

2 s

vx

g

2

2

25 /

2 0.89 9.8 /

m s

m s 36 m

(b) = k : 20

2 k

vx

g

2

2

25 /

2 0.61 9.8 /

m s

m s 52 m

Page 18: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Application: Antilock Braking Systems (ABS)

Skidding wheel:kinetic friction

Rolling wheel:static friction

Page 19: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.9. Steering

A level road makes a 90 turn with radius 73 m.

What’s the maximum speed for a car to negotiate this turn when the road is

(a) dry ( s = 0.88 ).

(b) covered with snow ( s = 0.21 ).

g f m n F f a

0 , nn 0 ,g m g F

2

, 0v

r

a

, 0f s nf

2

s

vn m

r 0n m g

s r nvm

s r g

(a)

20.88 73 9.8 /v m m s 25 /m s 90 /km h

(b)

20.21 73 9.8 /v m m s 12 /m s 44 /km h

Page 20: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.10. Avalanche!

Storm dumps new snow on ski slope.

s between new & old snow is 0.46.

What’s the maximum slope angle to which the new snow can adhere?

g f m n F f a

0 , nn

sin , cosg m g F

0a

, 0f s n f

sin 0sm g n cos 0n m g

tan s

1tan s 1tan 0.46 25

Page 21: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Example 5.11. Dragging a Trunk

Mass of trunk is m. Rope is massless. Kinetic friction coefficient is k.

What rope tension is required to move trunk at constant speed?

g f m n F f T a

0 , nn

0 ,g m g F

0a

, 0f k n f

cos 0k n T sin 0n m g T

cos , sinT T

cosk

Tn

cos sin 0

k

Tm g T

cossin

k

m gT

cos sin

k

k

m g

Page 22: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

Is the frictional force

(a)less than, (b) equal to , or (c) greater than

the weight multiplied by the coefficient of friction?

GOT IT? 5.4

Page 23: 5. Newton's Laws Applications 1. Using Newton’s 2 nd Law 2. Multiple Objects 3. Circular Motion 4. Friction 5. Drag Forces

5.5. Drag Forces

Terminal speed: max speed of free falling object in fluid.

Drag force: frictional force on moving objects in fluid.

Depends on fluid density, object’s cross section area, & speed.

Parachute: vT ~ 5 m/s.

Ping-pong ball: vT ~ 10 m/s.

Golf ball: vT ~ 50 m/s.

Ski-diver varies falling speed by changing his cross-section.

Drag & Projectile Motion