26
PIONEER document.xls GN OF FOUNDATION & STRUCTURE FOR 400kV BPI TYPE OF STRUCTURE LATTICE BASIC DESIGN DATA 01 Weight of equipment. = 320 02 Weight of connector. = 60 03 LL (man with tool). = 150 04 Short Circuit Forces. = 370 05 Density of steel. = 7.85 06 Increase the foundation load by. = 10 07 Partial safety factor. = 1.5 08 Max. diameter of main bar. = 10 09 Grade of concrete. M 20 10 Grade of steel. Fe 415 Conductor Detail - One Side (Moose Conductor) 01 Maximum conductor span. = 7.00 02 Diameter of Condutor. = 31.70 03 Wt of conductor per meter. = 2.004 04 Type of Conductor. = lexible Conductor Detail - Other Side (Moose Conductor) 01 Maximum conductor span. = 7.00 02 Diameter of Condutor. = 31.70 03 Wt of conductor per meter. = 2.004 04 Type of Conductor. = lexible Detail of Junction Box. 01 Width of Junction Box. = Assumed = 0 02 Height of Junction Box. = Assumed = 0 03 CG ht. of box from base. = = 0 04 CG of box from C/L of structure = Assumed = 0 05 Wt. of Junction Box. = = 0 Wind Pressure 01 Basic Wind speed, Vb. = 50 02 Probability factor, k1. = 1.08 03 Terrain, height and size factor, k2. = 1.03 04 Topography factor, k3. = 1 05 .Vz. =1.08x1.03x1x50 = 55.62 06 Design wind pressure, pz. =0.6x(189.21)^2/9.81 = 189.21 07 Wind pressure considered = 195 08 Wind pressure on Insulators = 48.75 09 Wind on bus = 0.5 x ( 7 x 0.0317 x 195 + 7 x 0.0317 x 195 ) = 43 10 Shpe factor for structure. = 1.5 11 Shpe factor for flat surface. = 1.0 12 Shpe factor for round surface. = 0.5 Earthquake factor 01 Seismic Zone Factor for Zone III 0.16 02 Importance factor, I = 1.5 03 Response reduction factor 5 04 Sa/g = 2.5

400kV stalp

Embed Size (px)

DESCRIPTION

400kV stalp

Citation preview

Page 1: 400kV stalp

PIONEER

document.xls

OF FOUNDATION & STRUCTURE FOR400kVBPITYPE OF STRUCTURE LATTICE

BASIC DESIGN DATA 01 Weight of equipment. = 320 kg.02 Weight of connector. = 60 kg.03 LL (man with tool). = 150 kg.04 Short Circuit Forces. = 370 kg05 Density of steel. = 7.85 kg/sqm/mm.06 Increase the foundation load by. = 10 %07 Partial safety factor. = 1.508 Max. diameter of main bar. = 1009 Grade of concrete. M 2010 Grade of steel. Fe 415Conductor Detail - One Side (Moose Conductor)01 Maximum conductor span. = 7.00 m.02 Diameter of Condutor. = 31.70 mm.03 Wt of conductor per meter. = 2.004 kg/m.04 Type of Conductor. = FlexibleConductor Detail - Other Side (Moose Conductor)01 Maximum conductor span. = 7.00 m.02 Diameter of Condutor. = 31.70 mm.03 Wt of conductor per meter. = 2.004 kg /m.04 Type of Conductor. = Flexible Detail of Junction Box.01 Width of Junction Box. = Assumed = 0 m.02 Height of Junction Box. = Assumed = 0 m.03 CG ht. of box from base. = = 0 m.04 CG of box from C/L of structure = Assumed = 0 m.05 Wt. of Junction Box. = = 0 kg.Wind Pressure01 Basic Wind speed, Vb. = 50 m/s.02 Probability factor, k1. = 1.0803 Terrain, height and size factor, k2. = 1.0304 Topography factor, k3. = 105 .Vz. =1.08x1.03x1x50 = 55.62 m/s.06 Design wind pressure, pz. =0.6x(189.21)^2/9.81 = 189.21 kg/sqm.07 Wind pressure considered = 195 kg/sqm.08 Wind pressure on Insulators = 48.75 kg/sqm.09 Wind on bus

= 0.5 x ( 7 x 0.0317 x 195 + 7 x 0.0317 x 195 ) = 43 kg/sqm.

10 Shpe factor for structure. = 1.5

11 Shpe factor for flat surface. = 1.0

12 Shpe factor for round surface. = 0.5Earthquake factor01 Seismic Zone Factor for Zone III 0.1602 Importance factor, I = 1.503 Response reduction factor 504 Sa/g = 2.5

Page 2: 400kV stalp

PIONEER

document.xls

05 Horizontal Earthquake factor, Alpha(h) = 0.06006 Vertical Earthquake factor, Alpha(v) = 0.03

Page 3: 400kV stalp

PIONEER

document.xls

SUPPORTING ARRANGEMENT

Width/dia. = 0.16 mHt. of Top Tank-C = 1.330 m

Width/dia. (avg.) = 0.294 m.Ht. of Insulator -B = 1.330 m.

Ht. of Ter. Box -A = 0.990 m. Width/dia. = 0.294 m.Top support Pl. = 450 x10 thk

8.000 m. Lth. of supp. Pl. = 0.35 m.Horil. angle supp. = L50505

Ht. of Structure = 4.350 m. Main Leg angle = L65656

Brg.on 'x'/'y' face. = L45455

No of pannels = 11 Bottom pl.Ht. of each pannel = 0.395### 0.15 x 0.15 x 0.012 thk. m.Length of bracing = 0.562###

A

A = B/B of leg angle = 0.40 m

Page 4: 400kV stalp

PIONEER

document.xls

LOAD ON FOUNDATION & STRUCTURE

1.0 VERTICAL LOAD DUE TO DL & LL1.1 Calculation of self weight of structure

Item Member Qty. Length width/dia. Thick Unit wt. Mass m. m. mm. kg/m. kg.

Leg L65656 4 4.35 5.80 100.92Dig. Brac. L45455 44 0.56 3.40 84.15Supp. Pl. 450 x10 thk 1 0.45 0.45 10.00 15.90Top supp. L50505 2 0.40 3.80 3.04Bot.Pl. 12 mm thk. 4 0.15 0.15 12.00 * 8.48Gst plts 8 mm thk. 8 0.15 0.05 8.00 * 3.77

0.00216.25

Add For hardwares etc. 10 % 21.62Total wt. = 237.87

1.2 Summary of vertical load : kg. kN.Weight of equipment & connector. = 380.00 = 3.73Weight of supporting steel structure. = 237.87 = 2.33Weight of conductor = 14.03 = 0.14Weight of Junction Box = 0.00 = 0.00Live Load = 150.00 = 1.47Total Vertical force due to DL Fz = 7.67

2.0 TERMINAL LOAD DUE TO WIND ON BUS & SHORT CIRCUIT.Item Qty Height Load SF Fx/FY Moment My/Mx

m. kg. KN. kNm.Short Ckt. Force 1 8.00 370.00 3.63 29.04Wind Load at Bus Level* 1 8.00 43.00 0.42 3.37

4.05 32.41Summary of terminal loads.SF due to ter. Loads in "x"/"y" Dir. Fx/Fy(KN) : Af = 4.05 kN-mMoment due to ter. Loads in "x"/"x" Dir. My/Mx(KN) : Am = 32.41 kN-m

3.0 WIND LOADWind Pressure considered to be acting on different surfaces :

wind pressure in kg. shape factor

On structure: = 195 x 9.81/1000 1.5 2.87 kN/Sqm.

On flat surface: = 195 x 9.81/1000 1.0 1.91 kN/Sqm.

On insulator. = 49 x 9.81/1000 0.5 0.48 kN/Sqm.

3.1 Wind on equipment partsPart Qty CG Ht./Len Width Area S.F. Moment

Fx/Fy My/Mxm. m. m. sqm. kN. kNm.

Ter. Box (A) 1 4.85 0.99 0.29 0.29 0.56 2.70Round part (B) 1 5.02 1.33 0.29 0.39 0.19 0.94Top Tank (C) 1 7.34 1.33 0.16 0.21 0.10 0.75

Total = 0.85 4.38

Page 5: 400kV stalp

PIONEER

document.xls

LOAD ON FOUNDATION & STRUCTURE

3.2 Wind on junction box/counter.Part Qty CG Ht./Len Width Area S.F. Moment

Fx/Fy My/Mxm. m. m. sqm. kN. kNm.

Juction box 1 0 0 0 0.00 0.00 0.00Total = 0.00 0.00

3.2 Wind on supporting structures (LatticeType)Part Qty CG Ht./Len Width Area S.F. Moment

Fx/Fy My/Mxm. m. m. sqm. kN. kNm.

Legs L65656 2 2.18 4.35 0.07 0.57 1.62 3.53Brac,dig L45455 11 2.18 0.56 0.05 0.28 0.80 1.74Supp Plate 450 x10 thk 1 4.35 0.35 0.00 0.00 0.00 0.00

Total= 0.84 2.42 5.273.4 Summary of wind forces.SF due to wind in "x" or "y" direction Fx/ Fy: Bf = 3.27 kNMom. Due to wind in "x" or "y" dir My/Mx Bm = 9.65 kNm

4.0 EARTHQUAKE LOADALPHA (h) = 0.060 ALPHA (v) = 0.030

Part Mass Pt of Appl. hi Wt hi^2 Wi*hi^2 S.F. Moment kg. m. kN (Sqm) (kN) (kN-m)Due to equipmentEqipment 320.0 6.18 3.14 38.13 119.66 0.26 1.60Connector 60.0 8.00 0.59 64.00 37.66 0.08 0.65Total = 380.0 3.73Due to structureFrom cl 1.1 237.9 2.18 2.33 4.73 11.04 0.02 0.05

Total = 6.06 106.86 168.36 0.36 2.304.1 Summary of earthquake forces.Vertical Force Due to Earthquake Cv = 0.18 kN.Horizontal Force due to Earthquake Fx, Fy Cf = 0.36 kN.B.M. due to Earthquake My, Mx Cm = 2.30 kNm.Moment due to Wt of Junction Box = 0 x 0 x 9.81/1000 = 0.00 kNm.

5.0 SUMMARY OF OPERATING FORCES :Shear force in x/y dir due to terminal + wind load. Af+Bf = 7.32 kNShear force in x/y dir due to terminal + earthquake load. Af+Cf = 4.42 kN

Maximum shear force in x/y dir, Fx/Fy = 4.05+3.27 = 7.32 kNMoment about y/x axis due to terminal + wind load Am+Bm = 42.06 kN-mMoment about y/x axis due to terminal + earthquake load Am+Cm = 34.71 kN-m

Maximum Moment in x/y dir, My/Mx = 32.41+9.65+0 42.06 kN-m

Total Vertical force due to DL Fz = 7.67 kNFx/Fy = Fh = 7.32 kN

Page 6: 400kV stalp

PIONEER

document.xls

LOAD ON FOUNDATION & STRUCTURE

My/Mx = M = 42.06 kN-m

Fz = Fv = 7.67 kN

Page 7: 400kV stalp

PIONEER

document.xls

Moment

Page 8: 400kV stalp

PIONEER

document.xls

Moment

Moment

Page 9: 400kV stalp

PIONEER

document.xls

DESIGN OF FOUNDATION

Summary of loadHor. load along 'X' dir., Fx = 8.05 kN.Hor. load along 'Y' dir., Fy = 8.05 kN.Moment along 'X' dir., Mx = 46.27 kNm.Moment along 'Y' dir., My = 46.27 kNm.Vertical load on pedestal, Fz = 8.43 kN.

Basic Data

= 60 kN/sqmBearing capacity in wind = 75 kN/sqm

= 17 kN/cum

= 25 kN/cum

Size of Trial foundation:= 2.00 m.= 2.00 m.= 1.20 m.= 0.20 m.= 0.70 m.= 0.15 m.

1.0 BASE PRESSUREWeight of Concrete.Weight of footing. = L x B x t x wc (wr) = 20.00 KN.Weight of ped. = p x p x(D - t + h)xwc (wp) = 14.087 KN.

Total (A) = 34.09 KN.Weight of Soil.Wt. of total soil = L x B x ( D - t ) x ws = 68.00 KN.Less wt of ped. = p x p x ( D - t ) x wc = ( - ) 8.33 KN.

Total (B) = ( - ) 59.67 KN.Total wt. of Conc. & soil. = A + B, C = ( - ) 93.8 KN.

Load at footing LevelBending moment = M+F x (D + h) = Mb = ( - ) 57.14 kNm.Vertical load = V + A + B = P = ( - ) 102.2 KN.

Check for overturningRestoting moment. = P x (min of B or L)/2 Mr = ( - ) 102.2 kNm.Overturning Momen= Mb Mb = ( - ) 57.1 kNm.FOS against OT = Mr / Mb FOS = 1.79 >1.5,O.K.

Check for Maxm. PressureEccentricity, e = Mb/P= 0.56 m, is > (min of L or B) / 6 = 0.33 mHence the type of pressure diagram applicable from above fig = Type IISlope of pressure diagram s = pmax/3*B(B/2-e) = 29.2 kN/sqm/mMax. gross pressure, p gross = 2*P/3*B*(B/2-e) = 77.3 kN/sqm.

Bearing capacity of soil, bc

Unit weight of soil, ws

Unit weight of concrete, wc

Length of foundation, LBredth of foundation, BDepth of foundation, DThickness of foundation, tSize of pedestal, pHt. of ped. above ground, h

Page 10: 400kV stalp

PIONEER

document.xls

DESIGN OF FOUNDATION

Less Press.due to soil & footing = (wr + B) / (L x B) = (-) 19.92 kN/sqm.Maximum net pressure, pnet = 57.3 is < 75.00 kN/sqm. O.K.2.0 DESIGN OF FOUNDATION

2.1 Pressure at outer edge of pedestal (edge 1-1)

= p gros -(B - p) x s / 2 = 58.28 kN/sqm.Less due to soil & footing = (wr + B) / (L x B) = ( - ) 19.92 kN/sqm.

= 38.36 kN/sqm.

Moment at outer edge (edge 1-1) of pedestal due to soil pressure from bottom

M = = 10.78 kNm/m.

Mu = load factor x M = 1.5 x 10.78 = 16.17 kNm/m.

= 77 mm.

= 145 mm.Mu / b * d'^2 = 0.77 N/sqmm

= 0.223 %= 3.24 sqcm/m

Reinforcement = 10 mm dia tor @ 242.509 c/c.Provide 10 mm dia @ 175 c/c B/W at bottom. ( Ast = 4.49 sqcm.)

2.2 Design of Pedestal

= = 8.43 KN.= = 14.09 KN.

Total load, P = V + wp = 22.52 KN.= F x (D-t+h ) = 9.26 kNm.= 1.5 x P = 33.78 kN.= 1.5 x Mp = 13.89 kNm.

Proposed size of bar (max) = 12 mm.d' = clear cover + half of bar dia = 40 + 12 / 2 = 46 mm.d' / D = 46 / ( p x 1000 ) = 0.066Mpu / fck x b x D^2 = 0.002Pu / fck x b x D = 0.003pt / fck = 0.00 % **Percentage of reinforcement, pt = 0.15Area of reinforcement reqd., Ast pt x 100 x p^2 = 7.35 sqcm.Provide 8 Nos 12 mm dia bars equally distrbuted on all sides.Ast. provided = 9.05 sqcm.Rings - Provide 8 dia tor at 200 c/c.

** Refer Chart 44 of SP-16, as the value of Pu/fck*b*D & Mu/fck*b*D^2 are very low, minimum steel equal to .15% of gross area governs.

Gross Pressure, p1

Net Pressure, p'1

p'1*((L-p)/2)2/2+(p'max-p'1)*((L-p)/2)2/3

Min eff depth reqd., dmin

Eff depth provided, d'

% of steel reqd., pt Area of steel reqd., Ast

Load from struc. & eqpt., Vself wt of pedestal, wp

B.M on pedestal, MpFactored load, PuFactored moment, Mpu

Page 11: 400kV stalp

PIONEER

document.xls

DESIGN OF FOUNDATION BOLTS

Summary of load

Horizontal load along 'X' dir., Fx = 7.32 kN.Horizontal load along 'Y' dir., Fy = 7.32 kN.Moment along 'X' dir., Mx = 42.06 kNm.Moment along 'Y' dir., My = 42.06 kNm.Vertical load on pedestal, Fz = 7.67 kN.

Spacing of Fdn Bolts, d = 0.3638 m Bolt diameter, Bd = M 20Permissible Bond stress, bs = 0.8 MpaUlt tensile stress for Bolt, Ftb = 194 MPaUlt shear stress for Bolt, Fsb = 218 MPaNo of bolts/leg, n = 2 NosFactor of safty considered, F = 1.5Root area of bolt, Ar = = = 245 sqmm = 0.78 x PIE x 20 ^2/ 4Max tensile force / bolt = ( M / (d x 2 ) - Fv / 4 )

Ta = [ 42.06 / ( 0.3638 x 2 ) - 7.67 / 4 ] / 2 = 27.945 kNMax shear force/ bolt = Fh / (4 x n) = 7.32 /( 4 x 2 ) = 0.915 kNMax tensile stress / bolt = F x 27.95 x 1000 / 245 = 171.1 MpaMax shear stress / bolt = F x 0.91 x 1000 / 245 = 5.600 MpaStress ratio = 171.06 / 194 + 5.60 / 218 = 0.9

is <= 1.4, hence OK.Max load Capacity of each bolt = Ar x Ftb / 1000 = Tb = 47.54 kNEmbedded length of bolt required = Ta x 1000 /1.33* (PIE x Bd x bs) = 418 mmBolt length required = 418 + 100 = 518 mm long

Provide fondation bolt per leg 2 M 20 x 600 Long

Page 12: 400kV stalp

PIONEER

document.xls

DESIGN OF SUPPORTING STRUCTURESummary of loadVertical load on pedestal, Fz = 7.67 kN. Material SpecificationsHor. load along 'X' & 'Y' dir., Fx/Fy = 7.32 kN. Perm. axial stress in steel Fy = 255 MpaMoment along 'X' & 'Y' dir., Mx/My = 42.06 kNm. Fs = 218 Mpa

Fb = 436 Mpa

Cc = 124.43 MpaDesign of MemebrForces due to Main Leg Bracings X Bracing YMoment = 42.06/(2 x 0.364 ) = = 57.81Vertical Force = 7.67/ 4 = 1.92Horizontal Force = 7.32x0.562/ (2x0.4 )= 5.146 = 7.32x0. 5.146Compression pc = Tr+(Wd or Eq)+Dl = 59.73 kN. 5.146 kN. 5.146 kN.Tension pt = Tr+(Wd or Eq)-Dl = 55.89 kN. 5.146 kN. 5.146 kN.Effective length. le = .791 m .562 m .562 mConnectivity(1,2,3 or 4)* 1 2 2* 1= main leg member, 2=not restrained, 3=restrained on 1 side,4=restrained on both sides.Trial Section* L65656 L45455 L45455* write in Lxxx xxx xx format, where 1st xxx is conn.fl., 2nd xxx is unconn.fl. and last xx is thick.Gross Area. Ag = 7.44 sqcm 4.28 sqcm 4.28 sqcmrxx/rvv . r = 1.98 cm .87 cm .87 cml / r le x 100 / r = 39.9 64.65 64.65l/r range* 1 1 1( * =1 if 0<l/r<120, =2 if 120<l/r<=200, =3 if 200<l/r<=225, =4 if 225<l/r<= 250 )Curve No 1 3 3kl/r l / r = 39.9 60+0.5*l/r = 92.33 60+0.5*l/r = 92.33b/t = 9.833 8 8Fcr = 255 255 255Fa = 241.9 184.8 184.8Section capacity in Comp. Pc = Ag*Fa/10 = 179.94 kN 79.094 kN 79.094 kNF.O.S. against Compression Pc / pc = 3.01 15.37 15.37A1 1.375 sqcm 1.375 sqcmA2 2 sqcm 2 sqcmk 3*A1/(3A1+A2) .673 .673Net area An = Ag-2*17.5*t = 5.34 sqcm 2.722 sqcm 2.722 sqcmSection capacity(Tension) Pt =An*Fy/10 = 136.17 kN 69.409 kN 69.409 kNF.O.S. against tension = 2.44 13.49 13.49Bolt cap.in shear (M16) Pi()xd^2/4xFs = 43.83 kN 43.83 kN 43.83 kN

PI*sqrt(2*E/Fy)

Page 13: 400kV stalp

PIONEER

document.xls

DESIGN OF SUPPORTING STRUCTUREBolt cap.in bearing (M16) t x d x Fb = 41.856 kN 34.88 kN 38.15 kNNo of M16 bolts 2 1 1

Page 14: 400kV stalp

PIONEER

document.xls

ARRANGEMENT OF BASE PLATE AND BOLTS

480 C/C of Outer Bolt

400 B/B of Structure

320 C/C of Inner Bolt

480

C/C

of

Out

er B

olt

400

B/B

of

Str

uctu

re

320

C/C

of

Inne

r B

olt

C of Str.

M20 Fdn Bolt 500mmEmbedment Length

###

###

C of Str.

40 40

Page 15: 400kV stalp

Section Size (mm) Thickness Sectional Unit weight Centre of Gravity (cm) Radii of Gyration (cm)

Designation Long side Short side (mm) (kg/ m)

1 2 3 4 5 6 7 8 9 10

L40405 40 40 5 3.78 3 1.16 1.16 1.2 1.2

L45454 45 45 4 3.47 2.7 1.25 1.25 1.37

L45455 45 45 5 4.28 3.4 1.29 1.29 1.36

L50504 50 50 4 3.88 3 1.37 1.37 1.53

L50505 50 50 5 4.79 3.8 1.41 1.41 1.52

L50506 50 50 6 5.68 4.5 1.45 1.45 1.51

L55555 55 55 5 5.27 4.1 1.53 1.53 1.67

L55556 55 55 6 6.26 4.9 1.57 1.57 1.66

L60605 60 60 5 5.75 4.5 1.65 1.65 1.82

L60606 60 60 6 6.84 5.4 1.69 1.69 1.82

L65655 65 65 5 6.25 4.9 1.77 1.77 1.99

L65656 65 65 6 7.44 5.8 1.81 1.81 1.98

L65658 65 65 8 9.76 7.7 1.89 1.89 1.96

L70705 70 70 5 6.77 5.3 1.89 1.89 2.15

L70706 70 70 6 8.06 6.3 1.94 1.94 2.14

L70708 70 70 8 10.56 8.3 2.02 2.02 2.12

L75755 75 75 5 7.27 5.7 2.02 2.02 2.31

L75756 75 75 6 8.66 6.8 2.06 2.06 2.3

L75758 75 75 8 11.38 8.9 2.14 2.14 2.28

L80806 80 80 6 9.29 7.3 2.18 2.18 2.46

L80808 80 80 8 12.21 9.6 2.27 2.27 2.44

L90906 90 90 6 10.47 8.2 2.42 2.42 2.77

L90908 90 90 8 13.79 10.8 2.51 2.51 2.75

L909010 90 90 10 17.03 13.4 2.59 2.59 2.73

L1001006 100 100 6 11.67 9.2 2.67 2.67 3.09

L1001008 100 100 8 15.39 12.1 2.76 2.76 3.07

L10010010 100 100 10 19.03 14.9 2.84 2.84 3.05

L10010012 100 100 12 22.59 17.7 2.92 2.92 3.03

L1101108 110 110 8 17.08 13.4 3.00 3.00 3.38

L11011010 110 110 10 21.12 16.6 3.09 3.09 3.36

L11011012 110 110 12 25.08 19.7 3.17 3.17 3.34

L1301308 130 130 8 20.28 15.9 3.50 3.50 4.03

L13013010 130 130 10 25.12 19.7 3.59 3.59 4.01

L13013012 130 130 12 29.88 23.5 3.67 3.67 3.99

L13013016 130 130 16 39.16 30.7 3.82 3.82

L15015010 150 150 10 29.21 22.9 4.08 4.08

L15015012 150 150 12 34.77 27.3 4.16 4.16

L15015016 150 150 16 45.65 35.8 4.31 4.31

L15015020 150 150 20 56.21 44.1 4.46 4.46

L20020012 200 200 12 46.94 36.9 5.39 5.39

L20020016 200 200 16 61.82 48.5 5.56 5.56

L20020020 200 200 20 76.38 60.0 5.71 5.71

0

Sol. Ratio Cf

0.1 3.8

0.2 3.3

0.3 2.8

0.4 2.3

0.5 2.1

Area (cm2) Cxx Cyy rxx ryy

( f )

Page 16: 400kV stalp

Radii of Gyration (cm)

11

0.77

0.87

0.87

0.97

0.97

0.96

1.06

1.06

1.16

1.15

1.26

1.26

1.25

1.36

1.36

1.35

1.46

1.46

1.45

1.56

1.55

1.75

1.75

1.74

1.95

1.95

1.94

1.94

2.14

2.14

2.13

2.55

2.54

2.54

rvv

Page 17: 400kV stalp

Section Size (mm) Thickness Sectional Unit weight Centre of Gravity (cm) Radii of Gyration (cm)

Designation Long side Short side (mm) (kg/ m)

1 2 3 4 5 6 7 8 9 10

L40405 40 40 5 3.78 3 1.16 1.16 1.2 1.2

L45454 45 45 4 3.47 2.7 1.25 1.25 1.37

L45455 45 45 5 4.28 3.4 1.29 1.29 1.36

L50504 50 50 4 3.88 3 1.37 1.37 1.53

L50505 50 50 5 4.79 3.8 1.41 1.41 1.52

L50506 50 50 6 5.68 4.5 1.45 1.45 1.51

L55555 55 55 5 5.27 4.1 1.53 1.53 1.67

L55556 55 55 6 6.26 4.9 1.57 1.57 1.66

L60605 60 60 5 5.75 4.5 1.65 1.65 1.82

L60606 60 60 6 6.84 5.4 1.69 1.69 1.82

L65655 65 65 5 6.25 4.9 1.77 1.77 1.99

L65656 65 65 6 7.44 5.8 1.81 1.81 1.98

L65658 65 65 8 9.76 7.7 1.89 1.89 1.96

L70705 70 70 5 6.77 5.3 1.89 1.89 2.15

L70706 70 70 6 8.06 6.3 1.94 1.94 2.14

L70708 70 70 8 10.56 8.3 2.02 2.02 2.12

L75755 75 75 5 7.27 5.7 2.02 2.02 2.31

L75756 75 75 6 8.66 6.8 2.06 2.06 2.3

L75758 75 75 8 11.38 8.9 2.14 2.14 2.28

L80806 80 80 6 9.29 7.3 2.18 2.18 2.46

L80808 80 80 8 12.21 9.6 2.27 2.27 2.44

L90906 90 90 6 10.47 8.2 2.42 2.42 2.77

L90908 90 90 8 13.79 10.8 2.51 2.51 2.75

L909010 90 90 10 17.03 13.4 2.59 2.59 2.73

L1001006 100 100 6 11.67 9.2 2.67 2.67 3.09

L1001008 100 100 8 15.39 12.1 2.76 2.76 3.07

L10010010 100 100 10 19.03 14.9 2.84 2.84 3.05

L10010012 100 100 12 22.59 17.7 2.92 2.92 3.03

L1101108 110 110 8 17.08 13.4 3.00 3.00 3.38

L11011010 110 110 10 21.12 16.6 3.09 3.09 3.36

L11011012 110 110 12 25.08 19.7 3.17 3.17 3.34

L1301308 130 130 8 20.28 15.9 3.50 3.50 4.03

L13013010 130 130 10 25.12 19.7 3.59 3.59 4.01

L13013012 130 130 12 29.88 23.5 3.67 3.67 3.99

L13013016 130 130 16 39.16 30.7 3.82 3.82

L15015010 150 150 10 29.21 22.9 4.08 4.08

L15015012 150 150 12 34.77 27.3 4.16 4.16

L15015016 150 150 16 45.65 35.8 4.31 4.31

L15015020 150 150 20 56.21 44.1 4.46 4.46

L20020012 200 200 12 46.94 36.9 5.39 5.39

L20020016 200 200 16 61.82 48.5 5.56 5.56

L20020020 200 200 20 76.38 60.0 5.71 5.71

0

Area (cm2) Cxx Cyy rxx ryy

Page 18: 400kV stalp

Radii of Gyration (cm)

11

0.77

0.87

0.87

0.97

0.97

0.96

1.06

1.06

1.16

1.15

1.26

1.26

1.25

1.36

1.36

1.35

1.46

1.46

1.45

1.56

1.55

1.75

1.75

1.74

1.95

1.95

1.94

1.94

2.14

2.14

2.13

2.55

2.54

2.54

rvv