2lcms Handouts

Embed Size (px)

Citation preview

  • 8/8/2019 2lcms Handouts

    1/22

  • 8/8/2019 2lcms Handouts

    2/22

    Dr. Shulamit Levin, Medtechnica1

    The LC in LC/MSThe LC in LC/MS

    HHighigh PPerformanceerformance LLiquidiquid CChromatographyhromatography

    Separates compounds based on their chemical

    characteristics (e.g. polar, nonpolar, acidic, basic,

    etc.)

    The MS in LC/MSThe MS in LC/MS

    MMassass SSpectrometrypectrometry

    A process in which ions are generated and analyzed

    according to their mass-to-charge ratio (m/z) and in

    which the number of ions is determined electrically.

    The /The /The Transition in LC/MSThe Transition in LC/MS

    Fact:Fact: Compounds in liquid phase eluting from theHPLC at atmospheric pressure

    Fact:Fact: Mass spectrometer accepts only gas phase ions

    at high vacuum

    Therefore the interfaceinterface must: Remove the solvent

    Leave the analyte

    Charge the analyte

    +

    +

    SAMPLE DESOLVATION

    AND IONIZATION

    EI

    Electrospray

    APCILC/MSLC/MS

    INTERFACEINTERFACE

    SOURCESOURCE

    ANALYSERANALYSERION DETECTORION DETECTOR

    HPLCHPLCMASS SPECTRUM

    SORTING OF IONS

    Quadrapole

    Time of Flight Paul Trap

    +

    ++

    +

    + ++ +

    +

    -

    +

    +

    ++

    ++

    -

    +

    +

    +

    Typical LC/MS System ProgressionTypical LC/MS System Progression

    DATA PROCESSINGDATA PROCESSING

  • 8/8/2019 2lcms Handouts

    3/22

    Dr. Shulamit Levin, Medtechnica

    2

    Transition from LC to MSTransition from LC to MS

    State of Matter: LiquidLiquid to GasGas

    Charge State: NeutralNeutral to IonIon

    Pressure: 760 torr760 torr to 1010--55 to 10to 10--88 torrtorr

    From Raw Data to Mass Spectrum

    Raw Data

    Instrument Basic

    Threshold Parameters

    Instrument Advanced

    Threshold Parameters

    Mass Range

    Data Format

    Scan Time

    Inter-Scan Delay

    Mass Spectrum

    102,1

    103,1

    Scan N

    Centroid

    100 101 102 103

    Intensity

    m/z

    Scan N

    ContinuumN Scans

    MCA

    100 101 102 103

    Intensity

    m/z100 101 102 103

    Intensity

    m/z

    Defining Data Description of Data FormatDefining Data Description of Data Format

    (Spectrum Format)(Spectrum Format)

    Defining Data Description of Data FormatDefining Data Description of Data Format

    CentroidCentroid-- andand ContinousContinous --SpectraSpectra

    15085 15090 15095 15100 15105 15110 15115 15120 15125 15130 15135 15140 15145 15150 15155 15160 15165mass0

    100

    %

    0

    100

    %

    HFN1 1 (2.958) Cn (Top,5, Ar); ME [Ev-43833,It17] (Gs,0.830,980:1400,0.50,L33,R33) Scan ES+1.77e815127

    HFN1 1 (2.958) ME [Ev-43833,It17] (Gs,0.830,980:1400,0.50,L33,R33) Scan ES+6.33e715127

    Continous

    Centroid

    Converted

    All MassAll Mass Spectrometers Must:Spectrometers Must:

    Generate ions

    Separate ions

    Detect ions

    Compute ion intensities

    Interpret Data

    GenerateGenerate ionsions

    SeparateSeparate ionsions

    DetectDetect ionsions

    ComputeCompute ionion intensitiesintensities

    InterpretInterpret DataData

  • 8/8/2019 2lcms Handouts

    4/22

    Dr. Shulamit Levin, Medtechnica3

    Diode Array 3D RunDiode Array 3D Run

    Mixture

    2.00 4.00 6.00 8.00 10.00Time0

    Abs

    1: Diode Array5.054.65

    3.82

    0.74

    8.62

    5.65

    8.02

    10.62

    200 210 220 230 240 250 260 270 280 290 300 310nm0

    Int. 210.00

    246.00

    294.00

    Diode Array Chromatogram

    with poor resolution

    Mass Spectrometer 3D RunMass Spectrometer 3D Run

    Mixture

    2.00 4.00 6.00 8.00 10.00Time0

    Int.

    1: Mass Chromatogram5.054.65

    3.82

    0.74

    8.62

    5.65

    8.02

    10.62

    Total-Ion-Current Chromatogram

    with poor resolution

    Mix

    60 80 100 120 140 160 180 200 220 240 260 280 300 320 340m/z0

    100

    %

    (10.696) 1: Scan ES+4.34e5262.87

    59.99

    213.90

    195.98

    120.8068.9298.85

    76.87128.82

    170.92

    222.87

    235.87

    240.88

    263.87

    264.85

    267.91 287.01 309.02

    333.84

    Mix

    2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

    100

    %

    1:ScanES+262.874.59e5

    10.60

    Mixture

    2.00 4.00 6.00 8.00 10.00 Time0

    Int. 5.054.65

    3.820.74

    8.625.65

    8.02

    10.62

    SelectivitySelectivity of Mass Spectrometer Detectorof Mass Spectrometer Detector

    Extracted Ion Chromatogram

    of a single Component from

    a mixture of Components

    Ionization ModesIonization Modes

    I. Electron Impact-Ionization (EI)/Chemical Ionization

    (CI)

    II. Atmospheric Pressure Ionization (API)

    Atmospheric Pressure Chemical Ionization (APCI)

    Electrospray (ESI)

  • 8/8/2019 2lcms Handouts

    5/22

    Dr. Shulamit Levin, Medtechnica4

    MS Configuration for IonizationMS Configuration for Ionization

    High Vacuum

    IonSource

    Interfaceto

    VacuumMass

    AnalyzerDetector

    Sample

    Introduction

    API

    High Vacuum

    IonSource

    MassAnalyzer

    Detector

    Sample

    Introduction

    EIInterface

    to Vacuum

    Electron Ionization (EI)Electron Ionization (EI)

    MSample Inlet

    Filament

    Collector Ion FocusingLenses

    Ions

    ToAnalyzer

    -

    -Repeller

    +

    - + -M + e M + 2e.

    F F F1 2 3

    A beam of solute particles (Particle Beam) enter the MS source and

    hits a heated wall where they sublime. Once in vapor phase, the moleculesare ionized by Electron Impact (EI) or Chemical Ionization (CI).

    EI SpectrumEI Spectrum

    Ionization ModesIonization Modes

    I. Electron Impact-Ionization (EI)/Chemical Ionization

    (CI)

    II. Atmospheric Pressure Ionization (API)

    Atmospheric Pressure Chemical Ionization (APCI)

    Electrospray (ESI)

  • 8/8/2019 2lcms Handouts

    6/22

    Dr. Shulamit Levin, Medtechnica5

    APCIAPCI

    Ion formation (Aerosol/Evaporation/Ionization/Evacuation)

    Heat rapidly evaporates both solvent and solutes.

    APCI creates gas-phase ions at atmospheric pressure with the Corona

    discharge.

    Small Gas-phase ions interact with neutrals.

    Volatile salt buffer are recommended.

    APCI MechanismAPCI Mechanism

    Ionization produces

    solvent ions

    The solvent ions react

    w ith analyte m olecules

    form ing clusters

    Corona

    Needle

    X = Solvent M olecules e.g.H 2O, M eCNM = Sam ple M olecule

    Heated Nebulizer

    xx

    xH+ M

    xx

    xH+

    M

    x

    x

    M

    M H+

    xx

    xx

    XH +x

    xH+

    M H+

    APCIAPCI

    Ionization Process

    After evaporations of neutral species ions are formed by the Corona

    discharge process

    All species in the gas phase undergo significant collisions with surrounding

    gases

    SH+ + M ----> MH+ + S (S= solvent, M= molecule)

    APCIAPCI

    General applicability

    Molecule < 2000 amu

    Ionizable, polar and mid-polar molecules

    Available on all MS types

    Extremely sensitive technique for compounds

    with high proton affinity like amines

    Positive and negative ionization modes

  • 8/8/2019 2lcms Handouts

    7/22

    Dr. Shulamit Levin, Medtechnica6

    APCIAPCI

    Advantages Molecular weight information

    Easy to use

    Rugged

    Very efficient ionization

    Accommodates LC flows

    up to 2.0 ml/min

    Good sensitivity

    Good complement to ESI

    (same hardware)

    Disadvantages Thermal degradation may occur

    High chemical noise at low mass

    Not appropriate for compounds

    with MW above m/z 2000

    Volatile buffers required

    I. Electron Impact-Ionization (EI)/Chemical Ionization(CI)

    II. Atmospheric Pressure Ionization (API)

    Atmospheric Pressure Chemical Ionization (APCI)

    Electrospray (ESI)

    Ionization ModesIonization Modes

    ElectrosprayElectrospray IonizationIonizationPositive or Negative?Positive or Negative?

    Basic Compounds (-NH2) (M+H)+

    Acidic Compounds (-CO2H, -OH) (M-H)-

    Basic Compounds (-NH2) (M+H)+

    Acidic Compounds (-CO2H, -OH) (M-H)-

  • 8/8/2019 2lcms Handouts

    8/22

    Dr. Shulamit Levin, Medtechnica7

    Recognizing Multiply Charged IonsRecognizing Multiply Charged Ions

    Mass spectrometers operate on the basis of mass-to-charge ratio (m/z).

    Mass assignments are normally made assuming a single charge per ion

    (i.e. m/z = m)

    Single charge Mass = (M+H)

    Double charge Mass = 1/2

    (M+2H)

    n charge Mass = 1/n (M+nH)

    Isotopes of doubly charged ions are separated by 0.5 Da

    Mass spectrometers operate on the basis of mass-to-charge ratio (m/z).

    Mass assignments are normally made assuming a single charge per ion

    (i.e. m/z = m)

    Single charge Mass = (M+H)

    Double charge Mass = 1/2

    (M+2H)

    n charge Mass = 1/n (M+nH)

    Isotopes of doubly charged ions are separated by 0.5 Da

    n = 20

    n = 22

    n = 18

    n = 16, m/z = 1060

    n = 23, m/z = 738

    n = 21

    n = 19

    n = 17

    Horse Heart Myoglobin

    Mass RangeMass RangeMultiply Charged MoleculesMultiply Charged Molecules

    Calculated MassAcquired Mass range

    Hemoglobin SpectrumHemoglobin Spectrum

    Presence of More Than One Charged EnvelopePresence of More Than One Charged Envelope

    1000 1050 1100 1150 1200 1250 1300 1350 1400

    m/z0

    100

    %

    1081.60

    1009.36

    1058.83

    1164.52

    1133.92

    1261.64

    1221.181376.08

    1323.14

    Deconvolution by MaxEntDeconvolution by MaxEnt

    HemoglobinHemoglobin

    15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100mass0

    100

    %

    15125.0

    15857.0

    15149.0

    15866.0

  • 8/8/2019 2lcms Handouts

    9/22

    Dr. Shulamit Levin, Medtechnica8

    Multiply Charged IonsMultiply Charged Ions

    (M+H)+

    (M+H)+

    (M+2H)2+(M+2H)2+

    1 Da1 Da

    0.5 Da0.5 Da

    ESI GeneralESI General applicabilityapplicability

    Small singly charged ions.

    Large ionic molecules.

    Virtually any ion in solution is a candidate for ESI

    (+ or - ions).

    The production of multiple charge ions (proteins) extendsthe mass range detection to no limit.

    Available on all MS types

    Most sensitive LC/MS technique Molecular weight

    Structure with MS/MS or CID

    ElectrosprayElectrospray

    Advantages MW confirmation

    High MW determination

    Volatile & non-volatile solutes

    No limit in MW

    Ionic/polar analytes

    low temperature, no degradation

    Good sensitivity

    Quantitative method

    Suitable for CapLC

    Disadvantages Requires low LC flow rates for best aerosol

    Must form ions in solution

    Ion suppression with high salt condition

    Adduct ions may result

    Limited structural information

    Users must understand chemistry of aqueous

    solution (acid-base equilibrium, redox chemistry..)

    Unknowns should be analyzed in both positive and

    negative ion modes.

    1. The Quadruple

    2. Time of Flight

    3. Ion Trap4. Magnetic sector

    5. Fourier Transform Ion Cyclotron

    Ion Separation AnalyzersIon Separation Analyzers

    T im e Of F l ig h t Mass A n a lyz ersT im e Of F l ig h t Mass A n a lyz ers

    T im e Of F l ig h t Mass A n a lyz ersT im e Of F l ig h t Mass A n a lyz ers

  • 8/8/2019 2lcms Handouts

    10/22

    Dr. Shulamit Levin, Medtechnica9

    190

    ElectronMultiplier

    Inlet

    Ring Electrode,Rf

    End Cap Electrode

    AxialModulation

    IonIon TrapsTraps

    + + ++++ ++

    Types ofTypes of

    Mass SpectrometersMass Spectrometers

    AnalyzersAnalyzers

    S O U R C E

    DETECTOR

    REFLECTRON MODE

    R EF L EC T R ON ONDETECTOR

    LINEAR MODEDRIFT TUBE

    SOURCE

    DETECTOR

    REFLECTRON MODE

    R EF L EC T R ON OF FDETECTOR

    LINEAR MODEDRIFT TUBE

    S O U R C E

    DETECTOR

    REFLECTRON MODE

    R EF L EC T R ON ONDETECTOR

    LINEAR MODEDRIFT TUBE

    SOURCE

    DETECTOR

    REFLECTRON MODE

    R EF L EC T R ON OF FDETECTOR

    LINEAR MODEDRIFT TUBE

    220

    IonSource

    Slit

    Magnetic sector

    Electrostatic Sector

    (ESA)

    Detector

    SlitNier-Johnson-Geometry (EB)

    SectorSector Mass SpectrometersMass Spectrometers

    199

    FTFT--ICRICR--SpectrometerSpectrometer

    DCDC

    DC

    Source

    Filament

    Transferoptic

    TrappingPlates

    TransmitterPlates

    Receiver Plates

    Sender

    Elektroden Electrodes

    Y

    ZX

    Magnetic Fielt B

    77

    Ion Source

    Detector

    nonres onant Ion

    resonantIon

    dcandRf Voltages

    TheThe Quadrupole AnalysatorQuadrupole Analysator

    Starting with theStarting with the quadrupolequadrupole

    Source

    DetectorNonresonant Ion

    Resonant Ion

    dc and Rf voltages

    V(t) = -V dc -Vrfcost

    V(t) = V dc + Vrfcost

    Fragmentation of Molecules forFragmentation of Molecules forIdentificationIdentification Triple Quadrupole (MS/MS)Triple Quadrupole (MS/MS)

    Precursor ions and product ions are created and analyzed indifferent physical spaces.

    Ions must be moved from "source" to analyzer (differentphysical regions) where different functions take place.

    Q1 Q3Q2

    CID

    Region

    IonSource

    Tandem-in-Space

    T i lT i l S ifi tiS ifi ti

  • 8/8/2019 2lcms Handouts

    11/22

    Dr. Shulamit Levin, Medtechnica1

    TypicalTypical SpecificationsSpecifications

    Mass Range: 2-4000 u

    Resolution: Unit Resolution

    Mass Accuracy: ca 0.1 u

    Scan Speed: 4000 u/s (in practice

    500 - 1000 u/s)

    Vakuum: 10-4 up to 10-5 Torr

    Quantification:best choice for solving

    quantification problems.

    Variations: single QuadSIR/scanning

    Triple Quad-SRM/scanning Hybrids, Q-

    TOF

    Positive and negative Ions

    References: Miller, P.E., Denton, M.B.,

    J.Chem Educ. 7, 617, (1986).

    TimeTime ofofFlight Mass AnalyzersFlight Mass Analyzers

    SOURCE

    SOURCE

    DETECTOR

    REFLECTRON MODE

    DETECTOR

    REFLECTRON MODE

    REFLECTRON OFF

    REFLECTRON ONDETECTOR

    LINEAR MODE

    DETECTOR

    LINEAR MODE

    DRIFT TUBE

    DRIFT TUBE

    TimeTime ofofFlightFlight

    A package of ions is accelerated by a potential Vinto a field free flight tube.

    The time tfight needed for ions to reach a detector placed at distance dismeasure:

    m/z = [k V/d2] t

    2fight

    Small ions have higher velocity than large mass ions therefore their time of flightin the tube are different and related to m/z ratio.

    A high percentage of the generated ions is detected thereforethis technology provides very high sensitivity.

    Fast scanning capabilities (>106 dm/dt) and no limit in mass range.

    However it requires very high vacuum (10-7 torr).

    TypicalTypical Specifications TOFSpecifications TOF

    Mass Range: 2-15000, high

    sensitivity

    Resolution: 10000 (Reflectron)

    Mass Accuracy: 5 ppm

    Scan Speed: very high 106 u/s,

    sampling rates 300-500 MHz.

    Vakuum: 10-7 Torr

    Quantification: low dynamic range

    Variations: Linear and Reflectron, Tandem

    with quads and sectors

    Positive and negative Ions : ESI, APCI,MALDI

    References: Cotter, R.J., Time-of-Flight:

    Instrumentation and Applications in

    Biological Research, ACS: Washington, D.C.

    1994.

  • 8/8/2019 2lcms Handouts

    12/22

    Dr. Shulamit Levin, Medtechnica1

    WhereWhere Exact MassExact Mass becomes reallybecomes really

    interesting...interesting...

    2 organic molecules may have the same nominal mass but differentelemental composition

    An exact mass measurement may be able to show this

    This becomes useful in

    metabolism studies

    impurity studies

    environmental analysis

    synthetic chemistry industrial applications

    ...

    CO = 27.9949

    N2 = 28.0061

    C2H4 = 28.0313

    These have the same nominal mass but

    different exact mass

    5ppm5ppm -- So What?So What?

    Differentiation of nominally isobaric metabolites

    For example

    Dehydroxylation followed by methylation...

    R-CH2-OH R-CH3(-O)

    R-OH R-OCH3(+CH2) (-O+CH2 = -1.9793 Da)

    Alcohol to Aldehyde .

    R-CH2-OH R-CH=O (-H2 = -2.0157 Da)

    Difference in m/z between the 2 metabolites is 0.0364 Da

    At m/z 500 this is a 73ppm difference

    5ppm will allow you to correctly ID the metabolite

    Component Calculated

    m/z

    Measured

    m/z

    +/- mDa +/- ppm

    Parent 360.1382 360.1366 1.6 4.4

    Sulphide 344.1433 344.1424 0.9 2.6

    Sulphone 376.1331 376.1330 0.1 0.3

    Desmethyl 346.1225 346.1218 0.7 2.0

    S-Desmethyl 330.1276 330.1265 1.1 3.3

    Aldehyde 344.1069 344.1074 0.5 1.5

    S-Pyridone 272.0858 272.0867 0.9 3.3

    Mass Measurement AccuracyMass Measurement Accuracy Power and Limitations of Exact MassPower and Limitations of Exact Mass

    For C0-100 H3-74 O0-4N0-4

    Mass 118 : closest neighbour at 34ppm

    Mass 500 : 5 compounds within 5ppm Mass 750.4 : 626 compounds within 5ppm

    Note 5ppm at m/z 500 means m/z 500 0.0025

    (reference J. Am. Soc. Mass Spectrom.)

    Ion TrapIon Trap

  • 8/8/2019 2lcms Handouts

    13/22

    Dr. Shulamit Levin, Medtechnica1

    QQ--TOF HybridTOF Hybrid Mass SpectrometerMass Spectrometer

    PUSHER DETECTOR

    ESI PROBE

    SAMPLING CONESKIMMER

    QUADRUPOLE

    RF HEXAPOL

    REFLECTRON

    HEXAPOLE

    COLLISION CELL

    QTofQTofQTofQTof:::: Quadrupole-TOF Tandem"

    Ion TrapIon Trap

    Accumulation

    Isolation

    Excitation

    Fragmentation

    Fragment

    Accumulation

    Detection

    Ion TrapIon Trap MS/MS/MSMSnn TypicalTypical Specifications ITSpecifications IT

    Mass Range: 20-2000 u

    Resolution: Unit Resolution

    Mass Accuracy: ca 0.1 u

    Scan Speed: 4000 u/s

    Vakuum: 10-3 Torr

    Quantification: possible, but not very

    accurate

    Variations: MS/MS, Sources- Internal and

    External, Resonance Excitations

    Positive and negative Ions

    References: March, R.E., Huges, R.J.

    Quadrupole Storage MS, John Wiley and

    Sons: New York, 1989.

    S tSector M S t tMass Spectrometers

    TypicalTypical SpecificationsSpecifications SectorSector

  • 8/8/2019 2lcms Handouts

    14/22

    Dr. Shulamit Levin, Medtechnica1

    IonSource

    Slit

    Magnetic sector

    Electrostatic Sector

    (ESA)

    Detector

    SlitNier-Johnson-Geometry (EB)

    SectorSectorMass SpectrometersMass Spectrometers

    Magnet

    Ion beam

    Incr

    ease

    d m/z

    1234

    The radius con be obtained from:

    r = m (2 V/z B2)

    V = accelerating potential applied to ions leaving the source

    B = magnetic field strength

    TypicalTypical SpecificationsSpecifications -- SectorSector

    Mass Range: 20000u Resolution:

    with double focusing: 100000

    Mass Accuracy: 1 ppm

    Scan Speed: slow

    Vakuum: 10-7 Torr

    Variations: 1-, 2,-, 3-, 4-Sectors

    Tandem with quads and TOF

    Positive and negative Ions : ESI, APCI, EI,

    CI, PB, Continuos flow FAB

    References: Dass, Chhabil Chapter 1

    Instrumentation and Techniques, IN: Mass

    Spectrometry: Clinical and Biomedical

    Applications; Desidero, D.M. (Ed.), Plenum,

    New York (1994).

    FTFT--ICRICR--SpectrometerSpectrometer

    DCDC

    DCSource

    Filament

    Transferoptic

    TrappingPlates

    Transmitter Plates

    Receiver Plates

    Sender

    Elektroden Electrodes

    Y

    ZX

    Magnetic Field B

    TypicalTypical SpecificationsSpecificationsFTFT--ICRICR

    Mass Range: > 15000

    Resolution: High, 106

    Mass Accuracy: up to 100 ppb

    Scan Speed: fast ms Vakuum: 10-

    7 - 10-9 Torr

    Quantification: possible, but not very

    accurate

    Variations: MS/MS, Sources- Internal and

    External, SWIFT: Stored Waveform Inverse

    FT

    Positive and negative Ions

    References: Buchanan, M.V. (Ed.), Fourier

    Transform MS: American Chemical

    Society: Washington D.C, 1987.

    Ph l i liPh t lti li

  • 8/8/2019 2lcms Handouts

    15/22

    Dr. Shulamit Levin, Medtechnica1

    Electron MultiplierElectron Multiplier

    +

    + ++--

    -Electron Multiplier

    (voltage setting lower thanDynode)

    Conversion Dynode

    (Voltage 1- 20 kV)

    Current is measured

    ++

    Mass Analyser

    A conversion dynode is used to convert either negative or

    positive ions into electrons. Higher potentials on the conversion

    dynodes are used to accelerate high mass ions and thereby

    enhance sensitivity.

    PhotomultiplierPhotomultiplier

    high voltage conversion dynode (converts either positive or negative

    ions into electrons)

    electrons impinge onto light emmitting phosphor that is optically

    coupled to a photomultiplier

    photomultiplier permanently sealed in its own glass envelope. The

    detector is protected from contamination and thus longer lifetimes are

    achieved.

    The photomultiplier has a 10 year maintenance-free lifetime.

    dynodedynode

    phosphorphosphorphotomultiplierphotomultiplier

    MassMass

    Nominal Mass

    The mass of an ion with a given empirical formula calculated using the integer

    mass numbers of the most abundant isotope of each element

    Ex : M=249 C20H9+ or C19H7 N+ or C13H19N3O2+

    Exact Mass

    The mass of an ion with a given empirical formula calculated using the exact

    mass of the most abundant isotope of each element

    Ex : M=249 C20H9+ 249.070

    C19H7N+ 249.0580

    C13H19N3O2+ 249.1479

    ElectrosprayElectrospray Produces Multiple ChargingProduces Multiple Charging

    (consequently high(consequently high MWsMWs can be measured)can be measured)

    Ion SeriesIon m/zM+ X/1M2+ X/2

    M3+ X/3M/4+ X/4M5+ X/5

    M+M2+M3+

    M4+

    M5+

    XX/2X/3X/4X/5

    Mass/ChargeMultiply charged ion series is the key to determining molecular mass with Electrospray MS

    Resolution

  • 8/8/2019 2lcms Handouts

    16/22

    Dr. Shulamit Levin, Medtechnica1

    Mass RangeMass RangeMultiply Charged MoleculesMultiply Charged Molecules

    650 700 750 800 850 900 950 1,0000

    2,000

    4,000

    6,000

    8,000

    m/z

    Intensity

    [M+18H]18+

    [M+17H]17+

    [M+16H]16+

    [M+15H]15+

    [M+14H]14+

    [M+13H]13+

    Positive ion mode,ESI, 2 ul/min,50% MeOH:49%H2O:1% HOAc

    5 uM Cytochrome c (horse heart)

    MW = 12,360.9

    Resolution

    Resolution, equally called Resolving Power, of a massspectrometer is a measure of its ability to separate

    adjacent ions.

    At higher resolution, small may differences may be detected.

    249 249.0700 249.0580 249.1479

    3 different compounds

    Same nominal mass

    Low resolution

    3 different compounds

    3 different exact masses

    High resolution

    C20H9+

    C19H7N+

    C13H19N3O2+ C20H9+ C19H7N+ C13H19N3O2+

    Determining Resolution

    2 adjacent ion peakswith a 10% valley max

    Double Ion method

    R =mave

    mr

    Full Width at Half Maximum(FWHM)

    or at 5% of the peak height

    Single Ion method

    R =m

    m

    mr

    mavePPG 2000 Resolut ion

    2007 2008 2009 2010 2011 2012 2013 2014 2015 2016mass0

    10 0

    %

    0

    10 0

    %

    ppg (0.517) Cu (0.25); Is (1 .00,1.00) C 102H210O 35N Scan ES +

    3.40e122010.47

    2009.47

    2011.47

    2012.47

    2013.472014.47

    ppg (0.517) Cu (0.50); Is (1 .00,1.00) C 102H210O 35N Scan ES +

    3.42e122010.47

    2009.47

    2011.47

    2012.47

    2013.47

    50%

    Defining Mass ResolutionDefining Mass Resolution

    FWHM Resolution ExampleFWHM Resolution Example

    50%

    m=0.5 amu

    m=0.25 amu

    FWHM~8040

    FWHM~4020

    Mass Accuracy M A R l ti

  • 8/8/2019 2lcms Handouts

    17/22

    Dr. Shulamit Levin, Medtechnica

    1

    Mass Accuracy

    Ability of a mass analyzer to assign the mass

    of an ion close to its true value (exact mass)

    m accuracy = mreal - mmeasured

    ppm = 106 * m accuracy / mmeasured

    High mass accuracy (exact mass measurement)

    is usually associated to high resolution analyzers

    Goals :

    - Unknown compound determination

    Exact mass helps to define its atomic composition

    - Target analysisExact mass proves the presence of a particular

    ion in a mixture

    maccuracy

    Mass Accuracy vs Resolution

    SensitivitySensitivity

    Term used to describe the ability of the MS to respond to a given amount ofsample analyte at a given mass to charge ratio (compound dependent)

    Mass Spectrometers are mass-flow sensitive device.Sensitivity = Area( or height)

    Cmax x flow rate

    The sensitivity of your LC/MS system is directly relatedto the efficiencies of all the processes of the entire system :

    - LC separation and flow

    - Interface

    - Ionization

    - Mass transmission

    - Detection

    Cmax = 4 M (N)1/2

    d2 L (1+k) (2)1/2

    Scan Speed (or rate)Scan Speed (or rate)

    The rate at which we can acquire a mass spectrum, (mass units/sec).

    Is an essential acquisition parameter for MS

    Will affect the amount of information (qualitative and quantitative) thatcan reasonably be attained with a given mass analyzer.

    Minimum Scan Rate:

    dm/dt 10 points = 10macquisition / WLC peak

    Triple QuadrupoleTriple Quadrupole

  • 8/8/2019 2lcms Handouts

    18/22

    Dr. Shulamit Levin, Medtechnica1

    Triple QuadrupoleTriple Quadrupole

    MS/MSSRM

    MS/MS

    ProductIon Mode

    SIM

    Full ScanMS

    Q1 Q2 Q3

    [email protected]

    A Typical BioA Typical Bio--Analytical Quantitative Study Using TripleAnalytical Quantitative Study Using Triple

    QuadrupolesQuadrupoles::

    Measurement of Amphetamines in Human SalivaMeasurement of Amphetamines in Human Saliva

    by LCby LC--MS/MSMS/MS

    HO

    ONH

    CH3

    C3

    M/Z

    MS Scan of Ecstasy (MDMA)MS Scan of Ecstasy (MDMA)

    O

    O

    CH3

    Product ion Scan ofm/z194

    Collision energy = 12eV, Argon = 2.5x10-3

    mbar

    NH

    CH3

    Specificity = MRM

    Parent 194 Daughter 163

    Signal:Noise forSignal:Noise for CarbosulfanCarbosulfan Calibration Graph forCalibration Graph for CarbosulfanCarbosulfan

  • 8/8/2019 2lcms Handouts

    19/22

    Dr. Shulamit Levin, Medtechnica1

    g

    (0.25pg/L std)Compound name: Carbosulfan

    Coefficient o f Determination: 0.999380

    Calibration curve: 2736 92 * x + 6294.89

    Response type: External Std, Area

    Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

    0.0 5.0 10.0 15.0 20.0 25.0pg/l0

    6926597

    Response

    pp

    QQ--TOF HybridTOF Hybrid Mass SpectrometerMass Spectrometer--

    Peptide & Protein SequencingPeptide & Protein Sequencing

    PUSHER DETECTOR

    ESI PROBE

    SAMPLING CONESKIMMER

    QUADRUPOLE

    RF HEXAPOL

    REFLECTRON

    HEXAPOLE

    COLLISION CELL

    QTofQTofQTofQTof:::: Quadrupole-TOF Tandem"

    Nominally isobaric metabolitesNominally isobaric metabolites --

    rabeprazolerabeprazole

    N

    N

    SN

    O

    O

    O

    H

    Aldehyde

    [M+H]+

    344.1069

    N

    N

    SN

    O

    O

    H

    O

    H

    Sulphide

    [M+H]+ 344.1433

    N

    N

    SN

    O

    O

    H

    Difference = 36 mDa

    Will MS/MS help?Will MS/MS help?

    Exact mass chromatogramsExact mass chromatograms

  • 8/8/2019 2lcms Handouts

    20/22

    Dr. Shulamit Levin, Medtechnica1

    m/z 119.0609

    ( 7.5 ppm)

    m/z 226.0902

    ( 4.1 ppm)

    H

    N

    N

    H+

    S+

    N

    O

    O

    m/z 226.0538

    ( 2.7 ppm)

    m/z 119.0609

    ( 5.9 ppm)

    H

    N

    N

    H+

    S

    +

    N

    O

    O

    H

    O

    Aldehydem/z 344.1069

    N

    N

    SN

    O

    O

    H

    O

    H

    Sulphide

    m/z 344.1433

    N

    N

    SN

    O

    O

    H

    1 Da window

    0.03 Da window

    0.03 Da window

    Sulphide

    Aldehyde

    SulphideSulphide ++ AldehydeAldehyde MetabolitesMetabolites

    N

    NS

    N

    O

    O

    H

    N

    NS

    N

    O

    O

    H

    O

    H

    Sulphide

    m/z 344.1433 ( 2.6 ppm)

    Sulphide

    m/z 344.1433 ( 2.6 ppm)

    Aldehyde

    m/z 344.1069 ( 2.0 ppm)

    Aldehyde

    m/z 344.1069 ( 2.0 ppm)

    Exact Mass is important to Multiply Charged IonsExact Mass is important to Multiply Charged Ions

    (M+H)+(M+H)+

    (M+2H)2+(M+2H)2+

    +/- 1 Da+/- 1 Da

    +/- 0.5 Da+/- 0.5 Da

    Monoisotopic M/ZMonoisotopic M/Z

    Monoisotopic M/ZMonoisotopic M/Z

    Peptide and Protein Sequencing Strategy Followed in Protein Identification using MassStrategy Followed in Protein Identification using Mass

  • 8/8/2019 2lcms Handouts

    21/22

    Dr. Shulamit Levin, Medtechnica2

    Nomenclature of PeptideNomenclature of Peptide

    Fragment IonsFragment Ions

    R1R

    1 R2R

    2 R3R3 R4R4

    COOCOOHCHCH NHNHCOCOH2NH2N CHCH CHCHCHCHNHNHNHNH COCOCOCO

    y1y1

    +2H+2H

    b3b3

    y2y2

    +2H+2H

    b2b2

    y3y3

    +2H+2H

    b1b1

    a2a2 a3a3

    Peptide and Protein Sequencing gy ggy gSpectrometrySpectrometry

    COMPLEX

    PROTEIN

    MIXTURE

    UNKNOWN

    INTACT

    PROTEIN

    PEPTIDE ESI-MS

    ANALYSIS

    e.g. nanoflow

    IDENTIFICATION OF

    PROTEIN

    FRACTIONATION

    OF PROTEIN

    MIXTURE

    e.g. by gel

    electrophoresis

    CHEMICAL OR

    ENZYMATIC

    DIGESTION

    e.g. tryptic

    digest

    PEPTIDE

    SAMPLECLEAN-UP

    e.g. by LC

    Computer search of

    the experimentally

    determinedmolecular weights

    against a database of

    peptide fragments

    Drug Discovery ProcessDrug Discovery Process

    Identification of TargetIdentification of Target

    ADH 250fmoles inj.

    0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00Time0

    100

    %

    HV001 1: TOF MS ES+BPI779

    28.38

    13.81

    27.1118.92

    17.41

    15.24

    16.51

    17.50

    24.66

    19.32

    21.63

    20.10

    21.09

    22.17

    22.8726.30

    31.73

    31.02

    ADH 250fmoles inj.

    100 200 300 400 500 600 700 800 900 1000 1100 1200m/z0

    100

    %

    HV001 78 (22.825) Cm (78:81) 2: TOF MSMS 536.34ES+112487

    240

    228

    222

    201147129

    355260

    341

    327

    456

    440

    373385

    428

    412

    815586

    555527

    510

    699587

    695667

    701

    794713

    816

    816

    943926

    824

    Nanoscale LCNanoscale LC--ESIESI--MSMS--MSMS

    ChromatogramChromatogram

    MS-MS spectrumMS-MS spectrum

    D t Di t d A l i (DDA)D t Di t d A l i (DDA)

    Unit mass MS/MSUnit mass MS/MS

  • 8/8/2019 2lcms Handouts

    22/22

    Dr. Shulamit Levin, Medtechnica2

    Data Directed Analysis (DDA)Data Directed Analysis (DDA)

    100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400m/z0

    100

    %

    0

    100

    %

    DG020118_03 7 (0.616) TOF MSMS 1465.80LD+311465.84

    355.19

    200.11159.10

    158.10

    325.20

    315.16

    298.13

    211.15

    483.25

    386.20

    424.26

    581.36

    554.30

    535.29

    598.39

    868.43

    652.30 691.40 740.38

    1448.821266.721080.60912.52

    DG020118_02 94 (8.118) TOF MSMS 1464.70LD+261464.79

    323.16

    305.15

    175.13

    159.10

    110.08

    225.11

    296.17

    780.41667.31649.32

    509.24

    355.19 481.25371.22

    458.25

    424.25

    572.30

    596.28 685.38

    763.38 956.58798.48 869.51 1446.79

    1279.651142.621080.641057.85 1265.25

    1465.84

    1464.81464.8 -- MSMSMSMSSearching over the InternetSearching over the Internet