42
24 GHz to 44 GHz, Wideband, Microwave Downconverter Data Sheet ADMV1014 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Wideband RF input frequency range: 24 GHz to 44 GHz 2 downconversion modes Direct conversion from RF to baseband I/Q Image rejecting downconversion to complex IF LO input frequency range: 5.4 GHz to 10.25 GHz LO quadrupler for up to 41 GHz Matched 50 Ω, single-ended RF input, and complex IF outputs Option between matched 100 Ω balanced or 50 Ω single- ended LO inputs 100 Ω balanced baseband I/Q output impedance with adjustable output common-mode voltage level Image rejection optimization Square law power detector for setting mixer input power Variable attenuator for receiver power control Programmable via a 4-wire SPI interface 32-terminal, 5 mm × 5 mm LGA package APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE) FUNCTIONAL BLOCK DIAGRAM 90° DET SEN SDI GND LO_N LO_P GND VCC_MIXER DVDD SCLK SDO VCC_LNA_3P3 VCC_VVA VCTRL GND VCC_VGA VDET VCC_IF_BB Q_N Q_P IF_Q GND IF_I I_P I_N VCC_QUAD GND RF_IN GND VCC_LNA_1P5 VCC_BG RST BG_RBIAS ×4 ADMV1014 17172-001 Figure 1. GENERAL DESCRIPTION The ADMV1014 is a silicon germanium (SiGe), wideband, microwave downconverter optimized for point to point microwave radio designs operating in the 24 GHz to 44 GHz frequency range. The downconverter offers two modes of frequency translation. The device is capable of direct quadrature demodulation to baseband inphase (I)/quadrature (Q) output signals, as well as image rejection downconversion to a complex intermediate frequency (IF) output carrier frequency. The baseband outputs can be dc-coupled, or, more typically, the I/Q outputs are ac-coupled with a sufficiently low high-pass corner frequency to ensure adequate demodulation accuracy. The serial port interface (SPI) allows fine adjustment of the quadrature phase to allow the user to optimize I/Q demodulation performance. Alternatively, the baseband I/Q outputs can be disabled, and the I/Q signals can be passed through an on-chip active balun to provide two single-ended complex IF outputs anywhere between 800 MHz and 6000 MHz. When used as an image rejecting downconverter, the unwanted image term is typically suppressed to better than 30 dBc below the wanted sideband. The ADMV1014 offers a flexible local oscillator (LO) system, including a frequency quadruple option allowing up to a 41 GHz range of LO input frequencies to cover a radio frequency (RF) input range as wide as 24 GHz to 44 GHz. A square law power detector is provided to allow monitoring of the power levels at the mixer inputs. The detector output provides closed-loop control of the RF input variable attenuator through an external op amp error integrator circuit option. The ADMV1014 downconverter comes in a compact, thermally enhanced, 5 mm × 5 mm LGA package. The ADMV1014 operates over the −40°C to +85°C case temperature range.

24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

24 GHz to 44 GHz, Wideband, Microwave Downconverter

Data Sheet ADMV1014

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Wideband RF input frequency range: 24 GHz to 44 GHz 2 downconversion modes

Direct conversion from RF to baseband I/Q Image rejecting downconversion to complex IF

LO input frequency range: 5.4 GHz to 10.25 GHz LO quadrupler for up to 41 GHz Matched 50 Ω, single-ended RF input, and complex IF outputs Option between matched 100 Ω balanced or 50 Ω single-

ended LO inputs 100 Ω balanced baseband I/Q output impedance with

adjustable output common-mode voltage level Image rejection optimization Square law power detector for setting mixer input power Variable attenuator for receiver power control Programmable via a 4-wire SPI interface 32-terminal, 5 mm × 5 mm LGA package

APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE)

FUNCTIONAL BLOCK DIAGRAM

90°

DET

SEN

SDI

GN

D

LO_N

LO_P

GN

D

VCC

_MIX

ER

DVD

D

SCLK

SDO

VCC

_LN

A_3

P3

VCC

_VVA

VCTR

L

GN

D

VCC

_VG

A

VDET

VCC

_IF_

BB

Q_N

Q_P

IF_Q

GND

IF_I

I_P

I_N

VCC_QUAD

GND

RF_IN

GND

VCC_LNA_1P5

VCC_BG

RST

BG_RBIAS

×4

ADMV1014

1717

2-00

1

Figure 1.

GENERAL DESCRIPTION The ADMV1014 is a silicon germanium (SiGe), wideband, microwave downconverter optimized for point to point microwave radio designs operating in the 24 GHz to 44 GHz frequency range.

The downconverter offers two modes of frequency translation. The device is capable of direct quadrature demodulation to baseband inphase (I)/quadrature (Q) output signals, as well as image rejection downconversion to a complex intermediate frequency (IF) output carrier frequency. The baseband outputs can be dc-coupled, or, more typically, the I/Q outputs are ac-coupled with a sufficiently low high-pass corner frequency to ensure adequate demodulation accuracy. The serial port interface (SPI) allows fine adjustment of the quadrature phase to allow the user to optimize I/Q demodulation performance. Alternatively, the baseband I/Q outputs can be disabled, and the I/Q signals can be passed through an on-chip active balun to

provide two single-ended complex IF outputs anywhere between 800 MHz and 6000 MHz. When used as an image rejecting downconverter, the unwanted image term is typically suppressed to better than 30 dBc below the wanted sideband. The ADMV1014 offers a flexible local oscillator (LO) system, including a frequency quadruple option allowing up to a 41 GHz range of LO input frequencies to cover a radio frequency (RF) input range as wide as 24 GHz to 44 GHz. A square law power detector is provided to allow monitoring of the power levels at the mixer inputs. The detector output provides closed-loop control of the RF input variable attenuator through an external op amp error integrator circuit option.

The ADMV1014 downconverter comes in a compact, thermally enhanced, 5 mm × 5 mm LGA package. The ADMV1014 operates over the −40°C to +85°C case temperature range.

Page 2: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 2 of 42

TABLE OF CONTENTS Features .............................................................................................. 1 

Applications ....................................................................................... 1 

Functional Block Diagram .............................................................. 1 

General Description ......................................................................... 1 

Revision History ............................................................................... 2 

Specifications ..................................................................................... 3 

Serial Port Register Timing ......................................................... 5 

Absolute Maximum Ratings ............................................................ 6 

Thermal Resistance ...................................................................... 6 

ESD Caution .................................................................................. 6 

Pin Configuration and Function Descriptions ............................. 7 

Typical Performance Characteristics ............................................. 9 

I/Q Mode ....................................................................................... 9 

IF Mode ........................................................................................ 17 

Output Detector Performance .................................................. 24 

Return Loss and Isolations ........................................................ 25 

M × N Spurious Performance ................................................... 27 

Theory of Operation ...................................................................... 28 

Start-Up Sequence ...................................................................... 28 

Baseband Quadrature Demodulation (I/Q Mode) ................ 28 

Image Rejection Downconversion ........................................... 29 

Detector ....................................................................................... 29 

LO Input Path ............................................................................. 29 

Power-Down ............................................................................... 29 

Serial Port Interface (SPI) ......................................................... 30 

Applications Information .............................................................. 31 

Error Vector Magnitude (EVM) Performance ....................... 31 

Baseband Quadrature Demodulation to Very Low Frequencies ................................................................................. 32 

Performance at Different Quad Filter Settings ....................... 32 

VVA Temperature Compensation............................................ 33 

Performance Between Differential vs. Single-Ended LO Input....................................................................................................... 33 

Performance across RF Frequency at Fixed IF and Baseband Frequencies ................................................................................. 34 

Recommended Land Pattern .................................................... 35 

Evaluation Board Information ................................................. 35 

Register Summary .......................................................................... 36 

Register Details ............................................................................... 37 

Outline Dimensions ....................................................................... 42 

Ordering Guide .......................................................................... 42 

REVISION HISTORY 4/2019—Rev. 0 to Rev. A Changes to Figure 1 .......................................................................... 1 Changes to Table 3 and Thermal Resistance Section ................... 6 Changes to Figure 3 and Table 5 ..................................................... 7 Changes to Figure 14 ...................................................................... 10 Changes to Figure 19 Caption ....................................................... 11 Changes to Figure 27 ...................................................................... 12 Changes to Figure 51 Caption and Figure 52 Caption .............. 17 Changes to Figure 63 Caption and Figure 64 Caption .............. 19 Changes to Figure 69 Caption and Figure 70 Caption .............. 20 Changes to Figure 75 ...................................................................... 21 Changes to Figure 79 ...................................................................... 22

Changes to Return Loss and Isolations Section, Figure 95, and Figure 97 .......................................................................................... 25 Changes to Figure 99 and Figure 101 .......................................... 26 Changes to Start-Up Sequence Section and Baseband Quadrature Demodulation (I/Q Mode) Section ....................... 28 Changes to Image Rejection Downconversion Section and LO Input Path Section ............................................................ 29 Change to Serial Port Interface (SPI) Section ............................. 30 Changes to Figure 111 ................................................................... 32 Changes to Table 18 and Table 19 ................................................ 41 10/2018—Revision 0: Initial Version

Page 3: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 3 of 42

SPECIFICATIONS RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B set to 0x727C, Register 0x03, Bits[12:13] set to 11, and ambient temperature (TA) = 25°C, unless otherwise noted.

Measurements are in IF mode, performed with a 90° hybrid, Register 0x03, Bit 11 = 0, and Register 0x03, Bit 8 = 1, unless otherwise noted.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (VCM) = 1.15 V, Register 0x03, Bit 11 = 1, and Register 0x03, Bit 8 = 0, unless otherwise noted.

Table 1. Parameter Test Conditions/Comments Min Typ Max Unit FREQUENCY RANGES

RF Input 24 44 GHz LO Input 5.4 10.25 GHz LO Quadrupler 21.6 41 GHz IF Output 0.8 6.0 GHz Baseband (BB) I/Q Output DC 6.0 GHz

LO AMPLITUDE RANGE −6 0 +6 dBm I/Q DEMODULATOR PERFORMANCE

Conversion Gain At maximum gain 24 GHz to 42 GHz 12.5 17 dB 42 GHz to 44 GHz 12.5 17 dB

Voltage Variable Attenuator (VVA) Control Range 19 dB Single Sideband (SSB) Noise Figure At maximum gain

24 GHz to 42 GHz 5.5 8 dB 42 GHz to 44 GHz 6 8.5 dB

Input Third-Order Intercept (IP3) At maximum gain 24 GHz to 42 GHz 0 dBm 42 GHz to 44 GHz −1 dBm

Input Second-Order Intercept (IP2) 24 GHz to 44 GHz, at maximum gain 45 dBm Input 1 dB Compression Point (P1dB) At maximum gain

24 GHz to 42 GHz −14 −10 dBm 42 GHz to 44 GHz −15 −11 dBm

Amplitude Balance ±0.5 dB Phase Balance DC < baseband frequency (fBB) < 2 GHz 1 Degrees 2 GHz < fBB < 4 GHz 2 Degrees 4 GHz < fBB < 6 GHz 4 Degrees Image Rejection 24 GHz to 44 GHz, at maximum gain

Uncalibrated 45 dBc Calibrated 52 dBc

IF DOWNCONVERTER PERFORMANCE Conversion Gain At maximum gain

24 GHz to 42 GHz 12.5 17 dB 42 GHz to 44 GHz 11.5 16 dB

VVA Control Range 19 dB SSB Noise Figure At maximum gain

24 GHz to 42 GHz 5.5 8 dB 42 GHz to 44 GHz 6 8.5 dB

Input IP3 At maximum gain 24 GHz to 42 GHz 0 dBm 42 GHz to 44 GHz 0.5 dBm

Page 4: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 4 of 42

Parameter Test Conditions/Comments Min Typ Max Unit Input P1dB At maximum gain

24 GHz to 42 GHz −14 −9 dBm 42 GHz to 44 GHz −15 −10 dBm

Amplitude Balance −0.5 dB Phase Balance 800 MHz < IF frequency (fIF) < 2 GHz 0.5 Degrees 2 GHz < fIF < 4 GHz 1 Degrees 4 GHz < fIF < 6 GHz 2.5 Degrees Image Rejection

Uncalibrated 30 dBc Calibrated 35 dBc

RECEIVER (Rx) POWER DETECTOR PERFORMANCE Input Level ±1 dB dynamic range

Minimum −35 dBm Maximum −14 dBm

±1 dB Dynamic Range 20 dB Output Voltage

Maximum DC Output 3.3 V RETURN LOSS

RF Input 50 Ω single-ended −13 dB LO Input 100 Ω differential −10 dB IF Output 50 Ω single-ended −12 dB BB Output 100 Ω differential −15 dB BB I/Q Output Impedance 100 Ω

LEAKAGE At maximum gain Fundamental LO to RF −70 dBm 4 × LO to RF −70 dBm Fundamental LO to IF −60 dBm Fundamental LO to I/Q −60 dBm

LOGIC INPUTS Input Voltage Range

High, VINH DVDD − 0.4 1.8 V Low, VINL 0 0.4 V

Input Current, IINH/IINL 100 μA Input Capacitance, CIN 3 pF

LOGIC OUTPUTS Output Voltage Range

High, VOH DVDD − 0.4 1.8 V Low, VOL 0 0.4 V

Output High Current, IOH 500 μA POWER INTERFACE

VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD

3.15 3.3 3.45 V

3.3 V Supply Current 437 mA DVDD, VCC_VVA 1.7 1.8 1.9 V

1.8 V Supply Current 4.2 mA VCC_LNA_1P5 1.43 1.5 1.57 V

1.5 V Supply Current 33 mA Total Power Consumption 1.5 W

Power-Down 96 125 mW

Page 5: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 5 of 42

SERIAL PORT REGISTER TIMING

Table 2. Parameter 䡟escription Min Typ Max Unit tSDI, SETUP Data to clock setup time 10 ns tSDI, HOLD Data to clock hold time 10 ns tSCLK, HIGH Clock high duration 40 to 60 % tSCLK, LOW Clock low duration 40 to 60 % tSCLK, SEN_SETUP Clock to SEN setup time 30 ns

tSCLK, DOT Clock to data out transition time 10 ns tSCLK, DOV Clock to data out valid time 10 ns tSCLK, SEN_INACTIVE Clock to SEN inactive 20 ns

tSEN_INACTIVE Inactive SEN (between two operations) 80 ns

Timing Diagram

tSCLK, LOW

tSCLK, DOT

SDOtSCLK, DOV

SDItSDI, SETUP

tSDI, HOLD

SCLK

tSEN_INACTIVE

tSCLK, HIGH

tSCLK, SEN_INACTIVE

tSCLK, SEN_SETUP

SEN

1717

2-10

6

Figure 2. Serial Port Register Timing Diagram

Page 6: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 6 of 42

ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating Supply Voltage

VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD

4.3 V

VCC_VVA, VCC_LNA_1P5 2.3 V RF Input Power 0 dBm LO Input Power 9 dBm Maximum Junction Temperature 125°C Maximum Power Dissipation1 2.17 W Lifetime at Maximum Junction Temperature (TJ) 1 ×106 hours Operating Case Temperature Range −40°C to +85°C Storage Temperature Range −55°C to +125°C Lead Temperature (Soldering 60 sec) 260°C Moisture Sensitivity Level (MSL) Rating2 MSL3 Electrostatic Discharge (ESD) Sensitivity

Human Body Model (HBM) 3000 V Field Induced Charged Device Model

(FICDM) 750 V

1 The maximum power dissipation is a theoretical number calculated by

(TJ − 85°C)/θJC_TOP. 2 Based on IPC/JEDEC J-STD-20 MSL classifications.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance.

Only use θJA and θJC to compare the thermal performance of different packages when all test conditions listed are similar to JEDEC specifications. Otherwise, use ѰJT and ѰJB to calculate the device junction temperature using the following equations:

TJ = (P × ѰJT) + TTOP (1)

where: TTOP is package top temperature (°C). TTOP is measured at the top center of the package. ѰJT is the junction to top thermal characterization number. P is the total power dissipation in the chip (W).

TJ = (P × ѰJB) + TBOARD (2)

where: TBOARD is the board temperature measured on the midpoint of the longest side of the package no more than 1 mm from the edge of the package body (°C). ѰJB is the junction to board thermal characterization number. P is the total power dissipation in the chip (W).

As stated in JEDEC51-12, only use Equation 1 and Equation 2 when no heat sink or heat spreader is present. When a heat sink or heat spreader is added, use θJC_TOP to estimate or calculate the junction temperature.

Table 4. Thermal Resistance Package Type1 θJA

2 θJC_TOP3 θJB

4 ΨJT5 ΨJB

6 Unit CC-32-6 33.6 18.4 13.3 4.9 12.6 °C/W 1 The thermal resistance values specified in Table 4 are simulated based on

JEDEC specifications, unless specified otherwise, and must be used in compliance with JESD51-12.

2 θJA is the junction to ambient thermal resistance in a natural convection, JEDEC environment.

3 θJC_TOP is the junction to case (top) JEDEC thermal resistance. 4 θJB is the junction to board JEDEC thermal resistance. 5 ΨJT is the junction to top JEDEC thermal characterization parameter. 6 ΨJB is the junction to board JEDEC thermal characterization parameter

ESD CAUTION

Page 7: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 7 of 42

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1717

2-00

2

VCC_QUADBG_RBIASRSTVCC_BGVCC_LNA_1P5GNDRF_INGND

SENI_PI_NIF_I

GNDIF_QQ_NQ_P

SDO

VCC

_IF_

BB

VDET

VCC

_VG

AG

ND

VCTR

LVC

C_V

VAVC

C_L

NA

_3P3

SDI

SCLK

DVD

DVC

C_M

IXER

GN

DLO

_PLO

_NG

ND

ADMV1014TOP VIEW

(Not to Scale)

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16

17

3132 30 29 28 27 26 25

18

19

20

21

22

23

24

NOTES1. EXPOSED PAD. SOLDER THE EXPOSED PAD

TO A LOW IMPEDANCE GROUND PLANE. Figure 3. Pin Configuration

Table 5. Pin Function Descriptions Pin No. Mnemonic Description 1 SEN SPI Serial Enable. SEN is a high impedance pin with a logic of 1.8 V.

2, 3 I_P, I_N Negative (I_N) and Positive (I_P) Differential BB I Outputs. These pins are dc-coupled.

4, 6 IF_I, IF_Q IF I and IF Q Single-Ended Complex Quadrature Outputs. These pins are dc-coupled to GND, and each pin is matched to 50 Ω.

5, 13, 17, 19, 25, 28 GND Ground. 7, 8 Q_N, Q_P Positive (Q_P) and Negative (Q_N) Differential Baseband Q Outputs. These pins are dc-coupled.

9 SDO SPI Serial Data Output. 10 VCC_IF_BB 3.3 V Power Supply for BB and IF Section. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this

pin. 11 VDET Square Law Detector Output Voltage. 12 VCC_VGA 3.3 V Power Supply for RF Amplifier. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin. 14 VCTRL RF VVA Control Voltage. The voltage on this pin ranges from 1.8 V (minimum gain) to 0 V (maximum

gain). Refer to the ADMV1014-EVALZ user guide for the external component requirements. 15 VCC_VVA 1.8 V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to

this pin. 16 VCC_LNA_3P3 3.3 V Power Supply for LNA. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin. 18 RF_IN RF Input. This pin is dc-coupled internally with a choke to GND, and matched to 50 Ω, single-

ended. A dc input above 0 V requires external ac coupling. 20 VCC_LNA_1P5 1.5 V Power Supply for Low Noise Amplifier (LNA). Place a 100 pF, 0.01 μF, and a 10 μF capacitor

close to this pin. 21 VCC_BG 3.3 V Power Supply for Band Gap Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this

pin. 22 RST SPI Reset. Connect this pin to logic high for normal operation. 23 BG_RBIAS Bang Gap Circuit External High Precision Resistor. Place a 1.1 kΩ, high precision resistor shunt to

ground close to this pin. 24 VCC_QUAD 3.3 V Power Supply for Quadruple. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.

Page 8: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 8 of 42

Pin No. Mnemonic Description 26, 27 LO_N, LO_P Negative (LO_N) and Positive (LO_P) Differential Local Oscillator Input. These pins are dc-coupled

internally with a choke to GND and matched to 100 Ω differential or 50 Ω single-ended. A dc input above 0 V requires external ac coupling. When using the LO input as single-ended, terminate the unused LO port with a 50 Ω impedance to ground.

29 VCC_MIXER 3.3 V Power Supply for the Mixer. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin. 30 DVDD 1.8 V SPI Digital Supply. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin. 31 SCLK SPI Clock Digital Input. SCLK is a high impedance pin. 32 SDI SPI Serial Data Input. SDI is a high impedance pin. EPAD Exposed Pad. Solder the exposed pad to a low impedance ground plane.

Page 9: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 9 of 42

TYPICAL PERFORMANCE CHARACTERISTICS I/Q MODE RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, and TA = 25°C, unless otherwise noted. Register 0x0B is set to 0x727C, Register 0x03, Bits[13:12] are set to 11, VCM = 1.15 V, Register 0x03, Bit 11 = 1, Register 0x03, Bit 8 = 0, and measurements are a composite of the I and Q channels. VATT is the attenuation voltage at the VCTRL pin. VATT = 0 V, unless otherwise specified.

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C AT 1.8V+25°C AT 1.8V–40°C AT 1.8V+85°C AT 0.8V+25°C AT 0.8V–40°C AT 0.8V+85°C AT 0V+25°C AT 0V–40°C AT 0V

1717

2-00

3

Figure 4. Conversion Gain vs. RF Frequency at Three Different Gain Settings for Various Temperatures, fBB = 100 MHz (Upper Sideband)

25

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-00

4

Figure 5. Conversion Gain vs. RF Frequency for Various Supply Voltages, fBB = 100 MHz

25

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-00

5

Figure 6. Conversion Gain vs. RF Frequency for Various LO Inputs, fBB = 100 MHz

25

–5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CO

NVE

RSI

ON

GA

IN (d

B)

VATT (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1717

2-00

6

Figure 7. Conversion Gain vs. VATT for Various RF Frequencies (fRF), fBB = 100 MHz at fRF = 28 GHz and 39 GHz

25

0

5

10

15

20

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

CO

NVE

RSI

ON

GA

IN (d

B)

BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-00

7

Figure 8. Conversion Gain vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Upper Sideband)

25

0

5

10

15

20

CO

NVE

RSI

ON

GA

IN (d

B)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1717

2-00

8

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 9. Conversion Gain vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 10: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 10 of 42

10

–10

–8

–6

–4

–2

0

2

4

6

8

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-00

9

Figure 10. Input IP3 vs. RF Frequency at Maximum Gain for Various Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,

fBB = 100 MHz (Upper Sideband)

10

–10

–8

–6

–4

–2

0

2

4

6

8

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-01

0

Figure 11. Input IP3 vs. RF Frequency at Maximum Gain for Various Supply Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,

fBB = 100 MHz (Upper Sideband)

10

–10

–8

–6

–4

–2

0

2

4

6

8

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-01

1

Figure 12. Input IP3 vs. RF Frequency at Maximum Gain for Various LO Inputs, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz

(Upper Sideband)

10.0

–5.0

–2.5

0

2.5

5.0

7.5

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

INPU

T IP

3 (d

Bm

)

VATT (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-01

2

Figure 13. Input IP3 vs. VATT for Various RF Frequencies (fRF), RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper

Sideband) at fRF = 28 GHz and 39 GHz

10.0

–10.0

–7.5

–5.0

–2.5

0

2.5

5.0

7.5 39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

INPU

T IP

3 (d

Bm

)

1717

2-01

3

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 14. Input IP3 vs. Baseband Frequency at Maximum Gain, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and

39 GHz, Upper Sideband and Lower Sideband

5

4

–5

–2

–4

–3

–1

0

1

2

3

–30 –29 –28 –27 –26 –25 –24 –23 –22 –21 –20

INPU

T IP

3 (d

Bm

)

INPUT POWER (dBm)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-01

4

Figure 15. Input IP3 vs. Input Power for Various RF Frequencies (fRF) at 20 MHz Spacing, fBB = 100 MHz, fRF = 28 GHz and 39 GHz

Page 11: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 11 of 42

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-01

5

Figure 16. Noise Figure vs. RF Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-01

6

Figure 17. Noise Figure vs. RF Frequency for Various Supply Voltages, fBB = 100 MHz

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-01

7

Figure 18. Noise Figure vs. RF Frequency for Various LO Inputs, fBB = 100 MHz

25

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

NO

ISE

FIG

UR

E (d

B)

VATT (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1717

2-01

8

Figure 19. Noise Figure vs. VATT for Various RF Frequencies and Temperatures, fBB = 100 MHz at fRF = 28 GHz and 39 GHz

9

0

2

4

6

8

1

3

5

7

NO

ISE

FIG

UR

E (d

B)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-01

90 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 20. Noise Figure vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Upper Sideband)

9

0

2

4

6

8

1

3

5

7

NO

ISE

FIG

UR

E (d

B)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1717

2-02

00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 21. Noise Figure vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 12: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 12 of 42

80

60

70

0

10

20

30

40

50

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

RF INPUT FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-02

1

Figure 22. Image Rejection vs. RF Input Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz, Uncalibrated

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

80

60

70

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-02

2

Figure 23. Image Rejection vs. RF Input Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz, Calibrated

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

80

60

70

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-02

3

Figure 24. Image Rejection vs. RF Input Frequency for Various Supply Voltages, fBB = 100 MHz

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

80

60

70

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-02

4

Figure 25. Image Rejection vs. RF Input Frequency for Various LO Inputs, fBB = 100 MHz

80

60

70

0

10

20

30

40

50IM

AG

E R

EJEC

TIO

N (d

Bc)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-02

5

Figure 26. Image Rejection vs. VATT for Various RF Frequencies (fRF), fBB = 100 MHz at fRF = 28 GHz and 39 GHz

1 2 3 4 5 6 7

80

60

70

0

10

20

30

40

50

IMA

GE

REJ

ECTI

ON

(dB

c)

0BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1717

2-02

6

Figure 27. Image Rejection vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

Page 13: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 13 of 42

60

0

10

20

30

40

50

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-02

7

Figure 28. Input IP2 vs. RF Frequency at Maximum Gain for Various Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,

fBB = 100 MHz (Upper Sideband)

60

0

10

20

30

40

50

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-02

8

Figure 29. Input IP2 vs. RF Frequency (fRF) at Maximum Gain for Various Supply Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,

fBB = 100 MHz (Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45

60

0

10

20

30

40

50

INPU

T IP

2 (d

Bm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-02

9

Figure 30. Input IP2 vs. RF Frequency at Maximum Gain for Various LO Inputs, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz

(Upper Sideband)

60

0

10

20

30

40

50

INPU

T IP

2 (d

Bm

)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1717

2-03

0

Figure 31. Input IP2 vs. VATT for Various RF Frequencies (fRF), RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper Sideband) at

fRF = 28 GHz and 39 GHz

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

55

0

10

20

30

40

5

15

25

35

50

45

INPU

T IP

2 (d

Bm

)

1717

2-03

10 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 32. Input IP2 vs. Baseband Frequency at Maximum Gain, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and

39 GHz, Upper Sideband

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

55

0

10

20

30

40

5

15

25

35

50

45

INPU

T IP

2 (d

Bm

)

1717

2-03

20 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 33. Input IP2 vs. Baseband Frequency for Various RF Frequencies (fRF) at 20 MHz Spacing, fBB = 100 MHz, fRF = 28 GHz and 39 GHz

Page 14: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 14 of 42

0

–20

–18

–16

–14

–10

–12

–8

–6

–4

–2

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1717

2-03

3Figure 34. Input P1dB vs. RF Frequency at Maximum Gain for Various

Temperatures, fBB = 100 MHz

0

–20

–18

–16

–14

–10

–12

–8

–6

–4

–2

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1717

2-03

4

Figure 35. Input P1dB vs. RF Frequency for Various Supply Voltages, fBB = 100 MHz

0

–20

–18

–16

–14

–10

–12

–8

–6

–4

–2

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1717

2-03

5

Figure 36. Input P1dB vs. RF Frequency for Various LO Inputs, fBB = 100 MHz

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

0

–14

–10

–12

–8

–6

–4

–2

INPU

T P1

dB (d

Bm

)

1717

2-03

6

Figure 37. Input P1dB vs. VATT for Various RF Frequencies (fRF), fBB = 100 MHz at fRF = 28 GHz and 39 GHz

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

0

–20

–18

–16

–14

–10

–12

–8

–6

–4

–2

INPU

T P1

dB (d

Bm

)

1717

2-03

70 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 38. Input P1dB vs. Baseband Output Frequency at fRF = 28 GHz and 39 GHz (Upper Sideband)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0

–20

–18

–16

–14

–10

–12

–8

–6

–4

–2

INPU

T P1

dB (d

Bm

)

1717

2-03

80 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BASEBAND FREQUENCY (GHz)

Figure 39. Input P1dB vs. Baseband Output Frequency at fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 15: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 15 of 42

1.0

–1.0

–0.8

–0.4

0

0.4

0.8

–0.6

–0.2

0.2

0.6

0 1 2 3 4 5 6 7

MA

GN

ITU

DE

ERR

OR

(dB

)

BASEBAND OUTPUT FREQUENCY (GHz)

BB I_N +85°CBB I_N +25°CBB I_N –40°C

BB Q_N +85°CBB Q_N +25°CBB Q_N –40°C

BB Q_P +85°CBB Q_P +25°CBB Q_P –40°C

1717

2-04

5

Figure 40. Magnitude Error vs. Baseband Output Frequency, Referenced to I_P Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain

8

–8

–4

0

4

–6

–2

2

6

0 1 2 3 4 5 6 7

PHA

SE E

RR

OR

(Deg

rees

)

BASEBAND OUTPUT FREQUENCY (GHz) 1717

2-04

6

BB I_N +85°CBB I_N +25°CBB I_N –40°C

BB Q_N +85°CBB Q_N +25°CBB Q_N –40°C

BB Q_P +85°CBB Q_P +25°CBB Q_P –40°C

Figure 41. Phase Error vs. Baseband Output Frequency, Referenced to I_P Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain

1.0

–1.0

–0.8

–0.4

0

0.4

0.8

–0.6

–0.2

0.2

0.6

0 1 2 3 4 5 6 7

MA

GN

ITU

DE

ERR

OR

(dB

)

BASEBAND OUTPUT FREQUENCY (GHz) 1717

2-04

7

BB I_N +85°CBB I_N +25°CBB I_N –40°C

BB Q_N +85°CBB Q_N +25°CBB Q_N –40°C

BB Q_P +85°CBB Q_P +25°CBB Q_P –40°C

Figure 42. Magnitude Error vs. Baseband Output Frequency, Referenced to I_P Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain

8

–8

–4

0

4

–6

–2

2

6

0 1 2 3 4 5 6 7

PHA

SE E

RR

OR

(Deg

rees

)

BASEBAND OUTPUT FREQUENCY (GHz) 1717

2-04

8

BB I_N +85°CBB I_N +25°CBB I_N –40°C

BB Q_N +85°CBB Q_N +25°CBB Q_N –40°C

BB Q_P +85°CBB Q_P +25°CBB Q_P –40°C

Figure 43. Phase Error vs. Baseband Output Frequency, Referenced to I_P Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain

Page 16: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 16 of 42

25

0

5

10

15

20

CO

NVE

RSI

ON

GA

IN (d

B)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

0123

1717

2-04

2

Figure 44. Conversion Gain vs. RF Frequency at Four Different BB_AMP_GAIN_CTRL (Register 0x0A, Bits[2:1]) Settings, fBB = 100 MHz

(Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

0123

5

–5

–4

–3

–2

–1

0

1

2

3

4

INPU

T IP

3 (d

Bm

)

1717

2-04

3

Figure 45. Input IP3 vs. RF Frequency at Four Different BB_AMP_GAIN_CTRL (Register A, Bits[2:1]) Settings, fBB = 100 MHz (Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

0123

12

0

2

4

6

8

10

NO

ISE

FIG

UR

E (d

B)

1717

2-04

4

Figure 46. Noise Figure vs. RF Frequency Four Different BB_AMP_GAIN_CTRL (Register 0x0A, Bits[2:1]) Settings, fBB = 100 MHz (Upper Sideband)

Page 17: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 17 of 42

IF MODE RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C unless otherwise specified. Register 0x0B set to 0x727C, Register 0x03, Bits[12:13] set to 11, measurements performed with a 90° hybrid, Register 0x03, Bit 11 = 0, and Register 0x03, Bit 8 = 1.

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-04

9

Figure 47. Conversion Gain vs. RF Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1717

2-05

0

Figure 48. Conversion Gain vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1717

2-05

1

Figure 49. Conversion Gain vs. RF Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

25

0

5

10

15

20

0.5 1.0 2.0 3.01.5 2.5 3.5 4.0 4.5 5.0 5.5 6.56.0 7.0

CO

NVE

RSI

ON

GA

IN (d

B)

IF FREQUENCY

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1717

2-05

2

Figure 50. Conversion Gain vs. IF Frequency (fIF) at Maximum Gain, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

25

–15

–10

–5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CO

NVE

RSI

ON

GA

IN (d

B)

VATT (V)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

1717

2-05

3

Figure 51. Conversion Gain vs. VATT at Various Temperatures, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Upper Sideband)

25

–15

–10

–5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CO

NVE

RSI

ON

GA

IN (d

B)

VATT (V)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

1717

2-05

4

Figure 52. Conversion Gain vs. VATT at Various Temperatures, fIF = 3.5 GHz , fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 18: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 18 of 42

12

–12

–10

–8

–6

–4

–2

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-05

5Figure 53. Input IP3 vs. RF Frequency at Maximum Gain for Various

Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

12

–12

–10

–8

–6

–4

–2

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1717

2-05

6

Figure 54. Input IP3 vs. RF Frequency at Maximum Gain for Various Supply Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz

(Upper Sideband and Lower Sideband)

12

–12

–10

–8

–6

–4

–2

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1717

2-05

7

Figure 55. Input IP3 vs. RF Frequency at Maximum gain for Various LO Inputs, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz

(Upper Sideband and Lower Sideband)

10

–6

–4

0

4

8

–2

2

6

0 0.2 0.6 1.00.4 0.8 1.2 1.4 1.6 1.8

INPU

T IP

3 (d

Bm

)

VATT (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1717

2-05

8

Figure 56. Input IP3 vs. VATT for Various RF Frequencies (fRF), RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz at fRF = 28 GHz and

39 GHz (Upper Sideband and Lower Sideband)

10

–10

–8

–6

–4

0

4

8

–2

2

6IN

PUT

IP3

(dB

m)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0.5 1.0 2.0 3.01.5 2.5 3.5 4.0 4.5 5.0 5.5 6.56.0 7.0IF FREQUENCY (GHz) 17

172-

059

Figure 57. Input IP3 vs. IF Frequency at Maximum Gain, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and 39 GHz

(Upper Sideband and Lower Sideband)

5

–5

–4

–3

–2

0

2

4

–1

1

3

INPU

T IP

3 (d

Bm

)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

–30 –29 –27 –25–28 –26 –24 –23 –22 –21 –20INPUT POWER (dBm) 17

172-

060

Figure 58. Input IP3 vs. Input Power for Various RF Frequencies (fRF), at 20 MHz Spacing, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz

(Upper Sideband and Lower Sideband)

Page 19: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 19 of 42

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-06

1

Figure 59. Noise Figure vs. RF Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1717

2-06

2

Figure 60. Noise Figure vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

12

0

2

4

6

8

10

23 25 27 29 31 33 35 37 39 41 43 45

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1717

2-06

3

Figure 61. Noise Figure vs. RF Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0.5 1.0 2.0 3.01.5 2.5 3.5 4.0 4.5 5.0 5.5 6.56.0 7.0IF FREQUENCY (GHz)

9

0

2

4

6

8

1

3

5

7

NO

ISE

FIG

UR

E (d

B)

1717

2-06

4

Figure 62. Noise Figure vs. IF Frequency at Maximum Gain, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

22

0

4

8

12

16

20

2

6

10

14

18

NO

ISE

FIG

UR

E (d

B)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V) 17

172-

065

Figure 63. Noise Figure vs. VATT at Various Temperatures, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Upper Sideband)

22

0

4

8

12

16

20

2

6

10

14

18

NO

ISE

FIG

UR

E (d

B)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V) 17

172-

066

Figure 64. Noise Figure vs. VATT at Various Temperatures, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 20: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 20 of 42

0

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-06

7

Figure 65. Input P1dB vs. RF Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

0

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1717

2-06

8

Figure 66. Input P1dB vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

0

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

24 26 28 30 32 34 36 38 40 42 44

INPU

T P1

dB (d

Bm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1717

2-06

9

Figure 67. Input P1dB vs. RF Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0.5 1.0 2.0 3.01.5 2.5 3.5 4.0 4.5 5.0 5.5 6.56.0 7.0IF FREQUENCY (GHz)

1

–15

–11

–7

–3

–13

–9

–5

–1

INPU

T P1

dB (d

Bm

)

1717

2-07

0

Figure 68. Input P1dB vs. IF Frequency at Maximum Gain, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

2

–16

–14

–12

–10

–8

–6

–4

–2

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

INPU

T P1

dB (d

Bm

)

VATT (V)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

1717

2-07

1

Figure 69. Input P1dB vs. VATT at Various Temperatures, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Upper Sideband)

2

–16

–14

–12

–10

–8

–6

–4

–2

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

INPU

T P1

dB (d

Bm

)

VATT (V)

+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz

1717

2-07

2

Figure 70. Input P1dB vs. VATT at Various Temperatures, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 21: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 21 of 42

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

60

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-07

3

Figure 71. Image Rejection vs. RF Input Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband), Uncalibrated

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

60

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1717

2-07

4

Figure 72. Image Rejection vs. RF Input Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband), Calibrated

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

60

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1717

2-07

5

Figure 73. Image Rejection vs. RF Input Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

23 25 27 29 31 33 35 37 39 41 43 45

IMA

GE

REJ

ECTI

ON

(dB

c)

60

0

10

20

30

40

50

RF INPUT FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1717

2-07

6

Figure 74. Image Rejection vs. RF Input Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

60

0

10

20

30

40

50

IMA

GE

REJ

ECTI

ON

(dB

c)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0IF INPUT FREQUENCY (GHz) 17

172-

077

1 2 3 4 5 6 7

Figure 75. Image Rejection vs. IF Input Frequency at Maximum Gain, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

60

0

10

20

30

40

50

IMA

GE

REJ

ECTI

ON

(dB

c)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8VATT (V) 17

172-

078

Figure 76. Image Rejection vs. VATT at Various RF Frequencies (fRF), fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

Page 22: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 22 of 42

23 25 27 29 31 33 35 37 39 41 43 45

20

0

2

6

4

8

10

12

14

16

18

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz) 1717

2-07

9

013715

Figure 77. Conversion Gain vs. RF Frequency at Different IF_AMP_COARSE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for

Register 0x08, Bits[11:8] and Register 0x09, Bits[15:12] Are the Same

5

–5

–4

–2

–3

–1

0

1

2

3

4

23 25 27 29 31 33 35 37 4139 4543

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz) 1717

2-08

0

013715

Figure 78. Input IP3 vs. RF Frequency at Different IF_AMP_COARSE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[11:8]

and Register 0x09, Bits[15:12] Are the Same

23 25 27 29 31 33 35 37 39 41 43 45

10

0

1

3

2

4

5

6

7

8

9

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz) 1717

2-08

1

013715

Figure 79. Noise Figure vs. RF Frequency at Different IF_AMP_COARSE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for

Register 0x08, Bits[11:8] and Register 0x09, Bits[15:12] Are the Same

23 25 27 29 31 33 35 37 39 41 43 45

20

0

2

4

6

8

10

12

14

16

18

CO

NVE

RSI

ON

GA

IN (d

B)

RF FREQUENCY (GHz)

0123

4567

891011

12131415

1717

2-08

2

Figure 80. Conversion Gain vs. RF Frequency at Different IF_AMP_ FINE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Register 0x08, Bits[7:4]

and Bits[3:0] Are the Same

5

–5

–4

–2

–3

–1

0

1

2

3

4

23 25 27 29 31 33 35 37 4139 4543

INPU

T IP

3 (d

Bm

)

RF FREQUENCY (GHz)

0123

4567

891011

12131415

1717

2-08

3

Figure 81. Input IP3 vs. RF Frequency at Different IF_AMP_FINE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[7:4]

and Bits[3:0] Are the Same

23 25 27 29 31 33 35 37 39 41 43 45

10

0

1

3

2

4

5

6

7

8

9

NO

ISE

FIG

UR

E (d

B)

RF FREQUENCY (GHz)

0123

4567

891011

12131415

1717

2-08

4

Figure 82. Noise Figure vs. RF Frequency at Different IF_AMP_FINE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[7:4]

and Bits[3:0] Are the Same

Page 23: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 23 of 42

0 2 4 61 3 5 7

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

I/Q M

AG

NIT

UD

E ER

RO

R (d

B)

IF OUTPUT FREQUENCY (GHz)

+85°C+25°C–40°C

1717

2-08

5

Figure 83. I/Q Magnitude Error vs. IF Output Frequency, Referenced to IF_I Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain

0 2 4 61 3 5 7

5

–5

–4

–3

–2

–1

0

1

2

3

4

I/Q P

HA

SE E

RR

OR

(dB

)

IF OUTPUT FREQUENCY (GHz)

+85°C+25°C–40°C

1717

2-08

6

Figure 84. I/Q Phase Error vs. IF Output Frequency, Referenced to IF_I Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain

0 2 4 61 3 5 7IF OUTPUT FREQUENCY (GHz)

+85°C+25°C–40°C

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

I/Q M

AG

NIT

UD

E ER

RO

R (d

B)

1717

2-08

7

Figure 85. I/Q Magnitude Error vs. IF Output Frequency, Referenced to IF_I Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain

0 2 4 61 3 5 7

5

–5

–4

–3

–2

–1

0

1

2

3

4

I/Q P

HA

SE E

RR

OR

(dB

)

IF OUTPUT FREQUENCY (GHz)

+85°C+25°C–40°C

1717

2-08

8

Figure 86. I/Q Phase Error vs. IF Output Frequency, Referenced to IF_I Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain

Page 24: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 24 of 42

OUTPUT DETECTOR PERFORMANCE RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set to 0x727C, Register 0x03, Bit 6 = 0, Register 0x03, Bits[13:12] set to 11, and TA = 25°C, unless otherwise noted.

3.5

0

0.5

1.0

1.5

2.5

2.0

3.0

–40 –35 –25–30 –20 –15 –10

VDET

(V)

RF INPUT POWER (dBm)

+85°C = 64+85°C = 8+85°C = 0

+25°C = 64+25°C = 8+25°C = 0

–40°C = 64–40°C = 8–40°C = 0

1717

2-09

0

Figure 87. VDET vs. RF Input Power, fRF = 28 GHz for Various Temperatures and DET_PROG Settings

3.5

0

0.5

1.0

1.5

2.5

2.0

3.0

–40 –35 –25–30 –20 –15 –10

VDET

(V)

RF INPUT POWER (dBm)

+85°C = 64+85°C = 8+85°C = 0

+25°C = 64+25°C = 8+25°C = 0

–40°C = 64–40°C = 8–40°C = 0

1717

2-09

1

Figure 88. VDET vs. RF Input Power, fRF = 39 GHz for Various Temperatures and DET_PROG Settings

23 25 27 29 31 33 35 37 39 41 43 45

3.0

0.5

1.0

1.5

2.0

2.5

VDET

(V)

RF INPUT FREQUENCY (GHz)

–22–27–32

1717

2-08

9

Figure 89. VDET vs. RF Input Frequency at Various Input Power Levels, DET_PROG = 8

5

–5

–4

–3

–2

2

0

4

1

–1

3

–40 –35 –25–30 –20 –15 –10

VDET

LIN

EAR

ITY

ERR

OR

(dB

)

RF INPUT POWER (dBm)

+85°C = 64+85°C = 8+85°C = 0+25°C = 64+25°C = 8+25°C = 0

–40°C = 64–40°C = 8–40°C = 0

1717

2-09

3

Figure 90. VDET Linearity Error vs. RF Input Power, fRF = 28 GHz for Various Temperatures and DET_PROG Settings

5

–5

–4

–3

–2

2

0

4

1

–1

3

–40 –35 –25–30 –20 –15 –10

VDET

LIN

EAR

ITY

ERR

OR

(dB

)

RF INPUT POWER (dBm)

+85°C = 64+85°C = 8+85°C = 0+25°C = 64+25°C = 8+25°C = 0

–40°C = 64–40°C = 8–40°C = 0

1717

2-09

4

Figure 91. VDET Linearity Error vs. RF Input Power, fRF = 39 GHz for Various Temperatures and DET_PROG Settings

Page 25: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 25 of 42

RETURN LOSS AND ISOLATIONS RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set to 0x727C, Register 0x03, Bits[13:12] are set to 11, and TA = 25°C, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 11 = 0, Register 0x03, Bit 8 = 1, unless otherwise noted. Measurements in I/Q mode are measured as a composite of the I and Q channel performed, VCM = 1.15 V, Register 0x03, Bit 11 = 1, and Register 0x03, Bit 8 = 0, unless otherwise noted.

0

–35

–15

–25

–5

–20

–30

–10

23 27 3531 39 4325 3329 37 41 45

RF

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (GHz) 1717

2-09

5

Figure 92. RF Input Return Loss vs. RF Frequency

0

–35

–15

–25

–5

–20

–30

–10

4 6 1085 97 11 12

LO R

ETU

RN

LO

SS (d

B)

LO FREQUENCY (GHz)

LONLOPLODIFF

1717

2-09

6

Figure 93. LO Return Loss vs. LO Frequency

4 6 1085 97 11 12

–50

–100

–65

–80

–55

–70

–90

–85

–75

–95

–60

LO T

O R

F LE

AK

AG

E (d

Bm

)

LO INPUT FREQUENCY (GHz)

LOx1 = +85°CLOx1 = +25°CLOx1 = –40°CLOx4 = +85°CLOx4 = +25°CLOx4 = –40°C

1717

2-09

7

Figure 94. LO to RF Leakage vs. LO Input Frequency for Various Temperatures at Different Gain Settings

0

–35

–15

–30

–5

–20

–25

–10

0

I/Q D

IFFE

REN

TIA

L R

ETU

RN

LO

SS (d

B)

I/Q FREQUENCY (GHz)

IQ

1717

2-09

8

1 2 3 4 5 6 7

Figure 95. I/Q Differential Return Loss vs. I/Q Frequency (Taken Without Hybrids or Baluns)

0

–35

–15

–30

–5

–20

–25

–10

0 2 641 53 7

IF R

ETU

RN

LO

SS (d

B)

IF FREQUENCY (GHz)

IF_IIF_Q

1717

2-09

9

Figure 96. IF Return Loss vs. IF Frequency (Taken Without Hybrid)

4 6 1085 97 11 12

–50

–100

–65

–80

–55

–70

–90

–85

–75

–95

–60

LO T

O IF

LEA

KA

GE

(dB

m)

LO INPUT FREQUENCY (GHz) 1717

2-10

0LOx1 = 1.8LOx1 = 0.9LOx1 = 0LOx4 = 1.8LOx4 = 0.9LOx4 = 0

Figure 97. LO to IF Leakage vs. LO Input Frequency at Different VCTRL Settings

Page 26: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 26 of 42

4 6 1085 97 11 12

–30

–80

–45

–60

–35

–50

–70

–65

–55

–75

–40

LO T

O IF

LEA

KA

GE

(dB

m)

LO INPUT FREQUENCY (GHz)

I = +85°CI = +25°CI = –40°CQ = +85°CQ = +25°CQ = –40°C

1717

2-10

1

Figure 98. LO to IF Leakage vs. LO Input Frequency at Various Temperatures

–40

–90

–55

–70

–45

–60

–80

–75

–65

–85

–50

4 6 108 12

LO T

O I/

Q L

EAK

AG

E (d

Bm

)

LO INPUT FREQUENCY (GHz) 1717

2-10

2

I_P = +85°CI_P = +25°CI_P = –40°CI_N = +85°CI_N = +25°CI_N = –40°C

Q_P = +85°CQ_P = +25°CQ_P = –40°CQ_N = +85°CQ_N = +25°CQ_N = –40°C

Figure 99. LO to I/Q Leakage vs. LO Input Frequency at Various Temperatures (Taken Without Hybrid)

4 6 1085 97 11 12

–30

–80

–45

–60

–35

–50

–70

–65

–55

–75

–40

LO T

O IF

LEA

KA

GE

(dB

m)

LO INPUT FREQUENCY (GHz)

I = 0I = 1I = 3I = 7I = 15

Q = 0Q = 1Q = 3Q = 7Q = 15

1717

2-10

3

Figure 100. LO to IF Leakage, vs. LO Input Frequency at Different IF Amplifier Gain Settings (Taken Without Hybrid)

4 6 1085 97 11 12

–40

–90

–55

–70

–45

–60

–80

–75

–65

–85

–50

FUN

DA

MEN

TAL

LO T

O I/

Q L

EAK

AG

E (d

Bm

)

LO INPUT FREQUENCY (GHz)

I_P = 0I_P = 3I_N = 0I_N = 3

Q_P = 0Q_P = 3Q_N = 0Q_N = 3

1717

2-10

4

Figure 101. Fundamental LO to I/Q Leakage vs. LO Input Frequency at Different Baseband Amplifier Gain Settings

Page 27: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 27 of 42

M × N SPURIOUS PERFORMANCE Mixer spurious products are measured in dBc from the IF output power level. Spurious values are measured using the following equation:

|(M × RF)+ (N × LO)|

N/A means not applicable. Blank cells in the spurious performance tables indicate that the frequency is above 50 GHz and is not measured.

The LO frequencies are referred from the frequencies applied to the LO_x pin of the ADMV1014. RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_ IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set to 0x727C, Register 0x03, Bits[13:12] are set to 11, and TA = 25°C, unless otherwise noted.

Measurements in IF mode performed with Register 0x03, Bit 11 = 0 and Register 0x03, Bit 8 = 1, unless otherwise noted.

The measurements in I/Q mode are as follows: VCM = 1.15 V, Register 0x03, Bit 11 = 1, and Register 0x03, Bit 8 = 0, unless otherwise noted.

I/Q Mode

Measurements are made on the I_P port. Data is taken without any hybrids or baluns.

BB frequency (fBB) =100 MHz, LO= 6.975 GHz at 0 dBm, and fRF = 28 GHz at −30 dBm.

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 85 87 87 82 86 103 96 59

−1 61 90 54 46 0 45 52 106 82

0 N/A 43 55 65 48 76 78 81

+1 61 91 80 82

fBB = 100 MHz, LO= 9.725 GHz at 0 dBm, and fRF = 39 GHz at −30 dBm.

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 85 88 87 92 87 60

−1 63 92 56 47 0 51 61 85 84

0 N/A 42 48 67 51 85

+1 42 48

IF Mode

Measurements are made on the IF_I port. Data is taken without any 90° hybrid.

IF frequency (fIF) = 3.5 GHz, LO= 6.125 GHz at 0 dBm, and fRF = 28 GHz at −30 dBm.

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 81 93 85 93 93 99 96 �䤁Ĥ

−1 66 94 89 63 0 44 46 92 78

0 N/A 45 43 65 54 71 64 80 58

+1 66 84 84 81

fIF = 3.5 GHz, LO= 8.875 GHz at 0 dBm, and fRF = 39 GHz at −30 dBm.

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 84 92 91 93 59

−1 62 93 81 71 0 39 91 92 89

0 N/A 47 68 75 50 75

+1 62 89

fIF = 3.5 GHz, LO= 7.875 GHz at 0 dBm, and fRF = 28 GHz at −30 dBm.

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 90 86 83 95 94 83 89 58

−1 70 93 70 41 0 65 90 89 83

0 N/A 47 62 66 49 74 86

+1 70 90 88

fIF = 3.5 GHz, LO= 10.5 GHz at 0 dBm, and fRF =39 GHz at −30 dBm

N × LO 0 1 2 3 4 5 6 7 8

M × RF

−2 85 87 94 94 90 58

−1 61 91 81 35 0 87 84 84 82

0 N/A 39 51 62 53

+1 61 89

Page 28: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 28 of 42

THEORY OF OPERATION The ADMV1014 is a wideband microwave downconverter optimized for microwave radio designs operating in the 24 GHz to 44 GHz frequency range. See Figure 1 for a functional block diagram of the device. The ADMV1014 digital settings are controlled via the SPI. The ADMV1014 has two modes of operation:

Baseband quadrature demodulation (I/Q mode) Image reject I/Q downconversion (IF mode)

START-UP SEQUENCE The ADMV1014 SPI settings require its default settings to be changed during startup for optimum performance. To use the SPI, toggle the RST pin to logic low and then logic high to perform a hard reset before starting up the device.

Set Register 0x0B to 0x727C after every power-up or reset. Set Register 0x03, Bits[13:12] to 11 after every power-up or reset.

BASEBAND QUADRATURE DEMODULATION (I/Q MODE) In I/Q mode, the output impedance of the baseband I/Q ports is 100 Ω differential. These outputs are designed to be loaded to a dc-coupled, differential, 100 Ω load. I_P and I_N are the differential baseband I outputs. Q_P and Q_N are the differential baseband Q outputs.

To set the ADMV1014 in I/Q mode, set BB_AMP_PD (Register 0x03, Bit 8) to 0 and set IF_AMP_PD (Register 0x03, Bit 11) to 1.

The baseband I/Q ports are designed to operate from dc to 6.0 GHz at each I and Q channel.

The BB output VCM can be changed from 1.05 V to 1.85 V. To change the VCM, set BB_SWITCH_HIGH_LOW_COMMMON (Register 0x0A, Bit 0) to be the opposite of Register 0x0A, Bit 6. Also, set the MIXER_VGATE bit field (Register 0x07, Bits[15:9]) and the BB_AMP_REF_GEN bit field (Register 0x0A, Bits[6:3]) based on Table 6.

Table 6 provides the correct setting for these bit fields vs. the required common-mode voltage.

The VCM can be further adjusted on each I or Q channel by ±15 mV by setting the BB_AMP_OFFSET_I bit field (Register 0x09, Bits[4:0]) and the BB_AMP_OFFSET_Q bit field (Register 0x09, Bits[9:5]) for each VCM setting shown in Table 6.

The most significant bit (MSB) for each bit field is the sign bit. When the MSB is 1, the values of the four lower bits are positive. When the MSB is 0, the values of the four lower bits are negative. These bits also offer input IP2 and common-mode rejection optimization.

The BB I/Q section of the ADMV1014 also features a baseband amplifier with a digital attenuator that is controlled by setting the BB_AMP_GAIN_CTRL bit field (Register 0x0A, Bits[2:1]). Figure 44, Figure 45, and Figure 46 show the performance of the baseband digital attenuator.

The Baseband Quadrature Demodulation to Very Low Frequencies section shows the baseband performance to very low demodulation frequencies.

Table 6. Common-Mode Voltage Settings

VCM (V) MIXER_VGATE (Register 0x07, Bits[15:9])

BB_AMP_REF_GEN (Register 0x0A, Bits[6:3])

BB_SWITCH_HIGH_LOW_COMMON_MODE (Register 0x0A, Bit 0)

1.05 1101010 0000 1 1.10 1101011 0001 1 1.15 1101100 0010 1 1.20 1101110 0011 1 1.25 1101111 0100 1 1.30 1110000 0101 1 1.35 1110001 0110 1 1.40 1110010 0111 1 1.50 1110101 1000 0 1.55 1110110 1001 0 1.60 1110111 1010 0 1.65 1111000 1011 0 1.70 1111010 1100 0 1.75 1111011 1101 0 1.80 0101100 1110 0 1.85 0101101 1111 0

Page 29: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 29 of 42

IMAGE REJECTION DOWNCONVERSION The ADMV1014 features the ability to downconvert to a real IF output anywhere from 800 MHz to 6000 MHz, while suppressing the unwanted image sideband by typically better than 30 dBc. The IF outputs are quadrature to each other, 50 Ω single-ended, and are internally ac coupled. IF_I and IF_Q are the quadrature IF outputs. An external 90° hybrid is required to select the appropriate sideband.

To configure the ADMV1014 in IF mode, set BB_AMP_PD (Register 0x03, Bit 8) to 1 and set IF_AMP_PD (Register 0x03, Bit 11) to 0

Each IF output features an amplifier with a digital attenuator. The digital attenuator can be adjusted using fine or coarse steps. The coarse steps for the IF_I can be adjusted using the IF_AMP_ COARSE_GAIN_I bit field (Register 0x08, Bits[11:8]). The coarse steps for the IF_Q can be adjusted using the IF_AMP_COARSE_ GAIN_Q bit field (Register 0x09, Bits[15:12]). Each course gain bit field has five settings. The fine steps for IF_I can be adjusted using the IF_AMP_FINE_GAIN_I bit field (Register 0x08, Bits[3:0]). The fine steps for the IF_Q can be adjusted using the IF_AMP_FINE_GAIN_Q bit field (Register 0x08, Bits[7:4]). Figure 77 to Figure 82 show the performance of these four bit fields.

DETECTOR The ADMV1014 features a square law detector that produces a voltage linearly, according to the square of the RF voltage output from the low noise amplifier. The detector can be enabled by setting the DET_EN bit (Register 0x03, Bit 6) to 0. The detector can be turned off by setting this bit to 1. The detector linear range can be adjusted by setting the DET_PROG bit field (Register 0x07, Bits[6:0]). These ranges are specified based on the input power into the detector coming from the output of the low noise amplifier. Each DET_PROG setting offers an approximate 20 dB of ±1 dB dynamic range based on a two-point linear regression from an ideal line for one temperature at each DET_PROG setting. See Figure 89 to Figure 91 for more performance information of the detector.

LO INPUT PATH The LO input path operates from 5.4 GHz to 10.25 GHz with an LO amplitude range of −6 dBm to +6 dBm. The LO has an internal quadrupler (×4) and a programmable band-pass filter. The LO band-pass filter is programmable using QUAD_FILTERS (Register 0x04 Bits[3:0]). See the Performance at Different Quad Filter Settings section for more information on the QUAD_FILTERS settings.

The LO path can operate either differentially or single-ended (SE). LOIP and LOIN are the inputs to the LO path. The LO

path can switch from differential to single-ended operation by setting the QUAD_SE_MODE bits (Register 0x04, Bits[9:6]). See the Performance Between Differential vs. Single-Ended LO Input section for more information.

Figure 102 shows a block diagram of the LO path.

AMP4 × LO_N4 × LO_P

LO_NLO_P

×4

1717

2-10

5

Figure 102. LO Path Block Diagram

Enable the quadrupler by setting the QUAD_IBIAS_PD bit (Register 0x03, Bit 7) to 0 and the QUAD_BG_PD bit (Register 0x03, Bit 9) to 0. To power down the quadrupler, set both of these bits to 1.

An unwanted image can be downconverted from the quadrature error in generating the quadrature LO signals. Deviation from ideal quadrature (that is, total image rejection and no image tone is downconverted) on these signals limits the amount of achievable image rejection.

The ADMV1014 offers about 25° of quadrature phase adjustment in the LO path quadrature signals. Make these adjustments through the LOAMP_PH_ADJ_I_FINE bits (Register 0x05, Bits[15:9]) and the LOAMP_PH_ADJ_Q_FINE (Register 0x05, Bits[8:2]) bits. These bits reject the unwanted sideband signal. In IF mode amplitude adjustments can be made to the complex outputs via IF_AMP_FINE_GAIN_Q (Register 0x08, Bits[7:4]) and IF_AMP_FINE_GAIN_I (Register 0x08, Bits[3:0]) to further reduce the unwanted sideband.

POWER-DOWN The SPI of the ADMV1014 allows the user to power down device circuits and reduce power consumption. There are two power-down modes: band gap power-down mode (BG_PD) and individual power-down circuits mode. The BG_PD bit (Register 0x03, Bit 5) and the QUAD_BG_PD bit (Register 0x03, Bit 9) power down the band gap circuit. The QUAD_IBIAS_PD bit (Register 0x03, Bit 7) and the IBIAS_PD bit (Register 0x03, Bit 14) power down the specific circuits.

Table 7 shows the circuits that are controlled by their related power-down bit, the typical power savings, and the latency requirement to power the circuits back up.

Page 30: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 30 of 42

Table 7. Power-Down Power and Latency Requirements

Bit Name Circuit Typical Power Savings (mW)

Power-Up Latency (μs)

Power-Down Latency (μs)

IBIAS_PD Receiver bias current (IBIAS) 1172 5 <1 QUAD_IBIAS_PD LO path 238 4 <1 BG_PD and QUAD_BG_PD Band gap 1423 4.5 <1 IBIAS_PD, IF_AMP_PD, QUAD_BG_PD,

BB_AMP_PD, QUAD_IBIAS_PD, BG_PD Entire chip 1435 5 <1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDI D11R/W A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 PD10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SEN

1717

2-10

7

Figure 103. Write Serial Port Timing Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDI

SDO D0 PD5 D4 D3 D2 D1D10 D9 D8 D7 D6D15 D14 D13 D12 D11

A1 A0R/W A5 A4 A3 A2

SEN

1717

2-10

8

Figure 104. Read Serial Port Timing Diagram

SERIAL PORT INTERFACE (SPI) The SPI of the ADMV1014 allows the user to configure the device for specific functions or operations via a 4-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDIN, SDO, and SEN.

The ADMV1014 protocol consists of a write/read bit followed by six register address bits, 16 data bits, and a parity bit. Both the address and data fields are organized most significant bit (MSB) first and end with the least significant bit. For a write, set the first bit to 0. For a read, set the first bit to 1.

The write cycle sampling must be performed on the rising edge. The 16 bits of the serial write data are shifted in, MSB to Lower

Sideband. The ADMV1014 input logic level for the write cycle supports an 1.8 V interface.

For a read cycle, up to 16 bits of serial read data are shifted out, MSB first. After the 16 bits of data shift out, the parity bit shifts out. The output logic level for a read cycle is 1.8 V.

The parity bit always follows the direction of the data. If parity is not used, the transmitting end transmits zero instead of parity. The parity is odd, which means that the total number of ones transmitted during a command, including the read/write bit, the address bit, the data bit, and the parity bit, must be odd.

Figure 103 and Figure 104 show the SPI write and read protocol, respectively.

Page 31: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 31 of 42

APPLICATIONS INFORMATION ERROR VECTOR MAGNITUDE (EVM) PERFORMANCE Figure 105 shows the EVM vs. input power performance of the ADMV1014 in IF mode at maximum gain, upper sideband, 25°C and 0 dBm LO input power. The EVM measurement was performed using four 100 MHz, 5G-NR, 256QAM waveforms. The EVM shown is the average of the four channels. The EVM of the test equipment was not de-embedded.

Figure 106 shows the constellation diagram and EVM statistics of each of the four channels at −30 dBm input power.

–45 –40 –35 –30 –25 –20 –15PIN (dBm)

EVM

(%)

1.8

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1717

2-10

9

Figure 105. EVM vs. Input Power at 28 GHz, VCTRL = 0 V, TA = 25°C,

LO = 0 dBm, Upper Sideband (Low-Side LO), IF = 3.5 GHz

1717

2-11

0

Figure 106. Constellation Diagram and EVM Statistics per Channel

Page 32: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 32 of 42

BASEBAND QUADRATURE DEMODULATION TO VERY LOW FREQUENCIES Figure 107 to Figure 111 show the I/Q mode performance at low baseband frequencies. The measurements were performed at 28 GHz, −25 dBm input power, VCM = 1.15 V, Register 0x03, Bit 11 = 1, Register 0x03, Bit 8 = 0, 6 dBm LO input power, and TA = 25°C.

350

0

100

250

50

150

200

300

1 100M10M1M100k10k1k10010

I AN

D Q

DIF

FER

ENTI

AL

PEA

K-T

O-P

EAK

VO

LTA

GE

BASEBAND FREQUENCY (Hz)

Q DIFFERENTIALI DIFFERENTIAL

1717

2-11

1

Figure 107. I and Q Differential Peak-to-Peak Voltage vs. Baseband Frequency

20

0

6

14

5

7

10

18

12

8

16

1 100M10M1M100k10k1k10010

CO

NVE

RSI

ON

GA

IN (d

B)

BASEBAND FREQUENCY (Hz)

Q GAINI GAIN

1717

2-11

2

Figure 108. Conversion Gain vs. Baseband Frequency

5

0

2

4

1

3

AM

PLIT

UD

E IM

BA

LAN

CE

(dB

)/PH

ASE

IMB

ALA

NC

E (D

egre

es)

BASEBAND FREQUENCY (Hz)

AMPLITUDE IMBALANCEPHASE IMBALANCE

1 100M10M1M100k10k1k10010

1717

2-11

3

Figure 109. Amplitude Imbalance and Phase Imbalance vs. Baseband Frequency

BASEBAND FREQUENCY (Hz)

IMAGE REJECT

50

0

10

20

30

40

45

5

15

25

35

IMA

GE

REJ

ECTI

ON

(dB

c)

1 100M10M1M100k10k1k10010

1717

2-11

4

Figure 110. Image Rejection vs. Baseband Frequency

350

0

100

250

50

150

200

300

1 100M10M1M100k10k1k10010

DC

OFF

SET

ERR

OR

(mV)

BASEBAND FREQUENCY (Hz)

Q DIFFERENTIALI DIFFERENTIAL

1717

2-11

1

Figure 111. DC Offset Error vs. Baseband Frequency

PERFORMANCE AT DIFFERENT QUAD FILTER SETTINGS Figure 112 shows the conversion gain vs. RF frequency in IF mode at 25°C and LO input power = 6 dBm, for different QUAD_FILTERS settings. Figure 113 shows the LO to IF_I and LO to IF_Q leakage vs. LO frequency at different quad filter settings.

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

QUAD_FILTERS = 0QUAD_FILTERS = 5QUAD_FILTERS = 10QUAD_FILTERS = 15

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

CO

NVE

RSI

ON

GA

IN (d

B)

1717

2-11

6

Figure 112. Conversion Gain vs. RF Frequency for Four Different

QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)

Page 33: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 33 of 42

4 5 6 7 8 9 10 11 12LO FREQUENCY (GHz)

IF I: QUAD_FILTERS = 0IF I: QUAD_FILTERS = 5IF I: QUAD_FILTERS = 10IF I: QUAD_FILTERS = 15

IF Q: QUAD_FILTERS = 0IF Q: QUAD_FILTERS = 5IF Q: QUAD_FILTERS = 10IF Q: QUAD_FILTERS = 15

–40

–80

–75

–65

–55

–45

–70

–60

–50

LO T

O IF

LEA

KA

GE

(dB

m)

1717

2-11

7

Figure 113. LO To IF Leakage vs. RF Frequency for Four Different

QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)

VVA TEMPERATURE COMPENSATION Figure 114 shows the conversion gain vs. RF frequency at two different Register 0x0B settings and three different temperatures for IF mode. The recommended value suggested in the Start-Up Sequence section provides the highest conversion gain. If the priority is to decrease the conversion gain variation across temperature, Register 0x0B can be set to 0x726C. However, at this value, the conversion gain is lower at each temperature.

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

+85°C AT REG 0x0B = 0x727C+25°C AT REG 0x0B = 0x727C–40°C AT REG 0x0B = 0x727C+85°C AT REG 0x0B = 0x726C+25°C AT REG 0x0B = 0x726C–40°C AT REG 0x0B = 0x726C

25

–10

–5

0

5

10

15

20

CO

NVE

RSI

ON

GA

IN (d

B)

1717

2-11

8

Figure 114. Conversion Gain vs. RF Frequency at Maximum Gain for Various

Register 0x0B Settings and Various Temperatures

PERFORMANCE BETWEEN DIFFERENTIAL vs. SINGLE-ENDED LO INPUT Figure 115 to Figure 117 show the conversion gain, input IP3 and image rejection performance for operating the ADMV1014 LO input as differential vs. SE. The measurements were performed with 0 dBm LO input power, IF mode, with an IF frequency of 3.5 GHz, upper sideband, and TA = 25°C.

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

LO DIFFLO SE P SIDELO SE N SIDE

25

0

5

10

15

20

CO

NVE

RSI

ON

GA

IN (d

B)

1717

2-11

9

Figure 115. Conversion Gain vs. RF Frequency for Three Different LO Mode

Settings, fIF = 3.5 GHz (Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

10

–10

–8

–6

–4

–2

0

2

4

6

8

INPU

T IP

3 (d

Bm

)

LO DIFFLO SE P SIDELO SE N SIDE

1717

2-12

0

Figure 116. Input IP3 vs. RF Frequency for Three Different LO Mode Settings,

RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband)

Page 34: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 34 of 42

24 26 28 30 32 34 36 38 40 42 44RF INPUT FREQUENCY (GHz)

40

0

10

20

30

5

15

25

35

IMA

GE

REJ

ECTI

ON

(dB

c)

1717

2-12

1

LO DIFFLO SE P SIDELO SE N SIDE

Figure 117. Image Rejection vs. RF Input Frequency for Three Different LO

Mode Settings, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband)

PERFORMANCE ACROSS RF FREQUENCY AT FIXED IF AND BASEBAND FREQUENCIES The ADMV1014 quadrupler operates from 21.6 GHz to 41 GHz. When using high-side LO injection, the conversion gain starts rolling off gradually after the quadrupler frequency reaches 41 GHz. When using low-side LO, the conversion gain starts rolling off when the quadrupler frequency is 21.6 GHz.

Figure 118 and Figure 119 show the conversion gain vs. RF frequency in IF mode for fixed IF frequencies (TA = 25°C, LO = 6 dBm) for upper sideband and lower sideband, respectively. Figure 120 and Figure 121 show the conversion gain vs. RF frequency in IQ mode for fixed BB frequencies (TA = 25°C, LO = 6 dBm) for upper sideband and lower sideband, respectively.

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

0.8GHz UPPER SIDEBAND1.0GHz UPPER SIDEBAND2.0GHz UPPER SIDEBAND3.0GHz UPPER SIDEBAND4.0GHz UPPER SIDEBAND5.0GHz UPPER SIDEBAND6.0GHz UPPER SIDEBAND

CO

NVE

RSI

ON

GA

IN (d

B)

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

1717

2-12

2

Figure 118. Conversion Gain vs. RF Frequency for Multiple IF Frequency

Settings (Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

CO

NVE

RSI

ON

GA

IN (d

B)

30

–70

–60

–50

–40

–30

–20

–10

0

10

20

1717

2-12

3

0.8GHz LOWER SIDEBAND1.0GHz LOWER SIDEBAND2.0GHz LOWER SIDEBAND3.0GHz LOWER SIDEBAND4.0GHz LOWER SIDEBAND5.0GHz LOWER SIDEBAND6.0GHz LOWER SIDEBAND

Figure 119. Conversion Gain vs. RF Frequency at Multiple IF Frequency

Settings (Lower Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

CO

NVE

RSI

ON

GA

IN (d

B)

25

–30

–25

–20

–15

–10

–5

0

5

10

15

20

1717

2-12

4

0.8GHz UPPER SIDEBAND1.0GHz UPPER SIDEBAND2.0GHz UPPER SIDEBAND3.0GHz UPPER SIDEBAND4.0GHz UPPER SIDEBAND5.0GHz UPPER SIDEBAND6.0GHz UPPER SIDEBAND

Figure 120. Conversion Gain vs. RF Frequency at Multiple I/Q Frequency

Settings (Upper Sideband)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

CO

NVE

RSI

ON

GA

IN (d

B)

30

–60

–50

–40

–30

–20

–10

0

10

20

1717

2-12

5

0.8GHz LOWER SIDEBAND1.0GHz LOWER SIDEBAND2.0GHz LOWER SIDEBAND3.0GHz LOWER SIDEBAND4.0GHz LOWER SIDEBAND5.0GHz LOWER SIDEBAND6.0GHz LOWER SIDEBAND

Figure 121. Conversion Gain vs. RF Frequency at Multiple IQ Frequency

Settings (Lower Sideband)

Page 35: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 35 of 42

RECOMMENDED LAND PATTERN Solder the exposed pad on the underside of the ADMV1014 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package.

1717

2-12

6

Figure 122. Evaluation Board Layout for the LGA package

EVALUATION BOARD INFORMATION For more information about the ADMV1014 evaluation board, refer to the ADMV1014-EVALZ user guide.

Page 36: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 36 of 42

REGISTER SUMMARY Table 8. Register Summary

Reg. Name Bits

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Reset R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x00 SPI_CONTROL [15:8] PARITY_EN SPI_SOFT_

RESET RESERVED CHIP_ID[7:4] 0x0093 R/W

[7:0] CHIP_ID[3:0] REVISION

0x01 ALARM [15:8] PARITY_ ERROR

TOO_FEW_ERRORS

TOO_MANY_ERRORS

ADDRESS_RANGE_ERROR

RESERVED 0x0000 R

[7:0] RESERVED

0x02 ALARM_MASKS [15:8] PARITY_ ERROR_MASK

TOO_ FEW_ ERRORS_ MASK

TOO_MANY_ERRORS_ MASK

ADDRESS_RANGE_ERROR_ MASK

RESERVED 0xFFFF R/W

[7:0] RESERVED

0x03 ENABLE [15:8] RESERVED IBIAS_PD P1DB_COMPENSATION IF_AMP_ PD

RESERVED QUAD_ BG_PD

BB_AMP_ PD

0x0157 R/W

[7:0] QUAD_IBIAS_PD

DET_EN BG_PD RESERVED

0x04 QUAD [15:8] RESERVED QUAD_SE_MODE[3:2] 0x5700 R/W

[7:0] QUAD_SE_MODE[1:0] RESERVED QUAD_FILTERS

0x05 LO_AMP_ PHASE_ ADJUST1

[15:8] LOAMP_PH_ADJ_I_FINE LOAMP_ PH_ADJ_ Q_FINE[6]

0x4101 R/W

[7:0] LOAMP_PH_ADJ_Q_FINE[5:0] RESERVED

0x07 MIXER [15:8] MIXER_VGATE RESERVED 0xD808 R/W

[7:0] RESERVED DET_PROG

0x08 IF_AMP [15:8] RESERVED IF_AMP_COARSE_GAIN_I 0x0000 R/W

[7:0] IF_AMP_FINE_GAIN_Q IF_AMP_FINE_GAIN_I

0x09 IF_AMP_BB_ AMP

[15:8] IF_AMP_COARSE_GAIN_Q RESERVED BB_AMP_OFFSET_Q[4:3] 0x0000 R/W

[7:0] BB_AMP_OFFSET_Q[2:0] BB_AMP_OFFSET_I

0x0A BB_AMP__AGC [15:8] RESERVED 0x2390 R/W

[7:0] RESERVED BB_AMP_REF_GEN BB_AMP_GAIN_CTRL BB_ SWITCH_ HIGH_ LOW_ COMMON_MODE

0x0B VVA_TEMP_ COMP

[15:8] VVA_TEMPERATURE_COMPENSATION[15:8] 0x4A5C R/W

[7:0] VVA_TEMPERATURE_COMPENSATION[7:0]

Page 37: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 37 of 42

REGISTER DETAILS Address: 0x00, Reset: 0x0093, Name: SPI_CONTROL

Enable the Parity for Write Execution Revision ID

SPI Soft Reset Chip ID

0

11

12

03

04

15

06

07

18

09

010

011

012

013

014

015

0

[15] PARITY_EN (R/W) [3:0] REVISION (R)

[14] SPI_SOFT_RESET (R/W) [11:4] CHIP_ID (R)

[13:12] RESERVED

Table 9. Bit Descriptions for SPI_CONTROL Bits Bit Name Settings Description Reset Access 15 PARITY_EN Enable the Parity for Write Execution 0x0 R/W 14 SPI_SOFT_RESET SPI Soft Reset 0x0 R/W [13:12] RESERVED Reserved 0x0 R [11:4] CHIP_ID Chip ID 0x9 R [3:0] REVISION Revision ID 0x3 R

Address: 0x01, Reset: 0x0000, Name: ALARM

Parity Error

Too Few ErrorsAddress Range Error

Too_Many_Errors

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15] PARITY_ERROR (R) [11:0] RESERVED

[14] TOO_FEW_ERRORS (R)[12] ADDRESS_RANGE_ERROR (R)

[13] TOO_MANY_ERRORS (R)

Table 10. Bit Descriptions for ALARM Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR Parity Error 0x0 R 14 TOO_FEW_ERRORS Too Few Errors 0x0 R 13 TOO_MANY_ERRORS Too Many Errors 0x0 R 12 ADDRESS_RANGE_ERROR Address Range Error 0x0 R [11:0] RESERVED Reserved 0x0 R

Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASKS

Parity Error Mask

Too Few Errors MaskAddress Range Error Mask

Too Many Errors Mask

0

11

12

13

14

15

16

17

18

19

110

111

112

113

114

115

1

[15] PARITY_ERROR_MASK (R/W) [11:0] RESERVED

[14] TOO_FEW_ERRORS_MASK (R/W)[12] ADDRESS_RANGE_ERROR_MASK (R/W)

[13] TOO_MANY_ERRORS_MASK (R/W)

Table 11. Bit Descriptions for ALARM_MASKS Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR_MASK Parity Error Mask 0x1 R/W 14 TOO_FEW_ERRORS_MASK Too Few Errors Mask 0x1 R/W 13 TOO_MANY_ERRORS_MASK Too Many Errors Mask 0x1 R/W 12 ADDRESS_RANGE_ERROR_MASK Address Range Error Mask 0x1 R/W [11:0] RESERVED Reserved 0xFFF R

Page 38: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 38 of 42

Address: 0x03, Reset: 0x0157, Name: ENABLE

Power Down the RX Ibias Power Down the RX BG

Turn on bits to optimize P1dB Digital RX Detector Enable

Power Down the IF Amp Power Down the Quadrupler BiasCurrent.

Power Down the Base-Band AmpPower Down the Quadrupler BandGap

0

11

12

13

04

15

06

17

08

19

010

011

012

013

014

015

0

[15] RESERVED [4:0] RESERVED

[14] IBIAS_PD (R/W) [5] BG_PD (R/W)

[13:12] P1DB_COMPENSATION (R/W) [6] DET_EN (R/W)

[11] IF_AMP_PD (R/W) [7] QUAD_IBIAS_PD (R/W)

[10] RESERVED[8] BB_AMP_PD (R/W)

[9] QUAD_BG_PD (R/W)

Table 12. Bit Descriptions for ENABLE Bits Bit Name Settings Description Reset Access 15 RESERVED Reserved 0x0 R 14 IBIAS_PD Power Down the Rx IBIAS 0x0 R/W [13:12] P1DB_COMPENSATION Turn on bits to optimize P1dB 0x0 R/W 11 IF_AMP_PD Power Down the IF Amp 0x0 R/W 10 RESERVED Reserved 0x0 R 9 QUAD_BG_PD Power Down the Quadrupler Band Gap 0x0 R/W 8 BB_AMP_PD Power Down the Baseband Amp 0x1 R/W 7 QUAD_IBIAS_PD Power Down the Quadrupler Bias Current 0x0 R/W 6 DET_EN Digital Rx Detector Enable 0x1 R/W 5 BG_PD Power Down the Rx BG 0x0 R/W [4:0] RESERVED Reserved 0x1 R

Address: 0x04, Reset: 0x5700, Name: QUAD

LO Filters BW Selection

1111: LO Frequency BW: 5.4 to 7GHz.1010: LO Frequency BW: 5.4 to 8GHz.0101: LO Frequency BW: 6.6 to 9.2GHz.0000: LO Frequency BW: 8.625 to 10.25GHz.

Switch Differential/SE Modes

1100: Differential Mode.1001: SE_Mode_P_Side.0110: SE_Mode_N_Side.

0

01

02

03

04

05

06

07

08

19

110

111

012

113

014

115

0

[15:10] RESERVED [3:0] QUAD_FILTERS (R/W)

[9:6] QUAD_SE_MODE (R/W)

[5:4] RESERVED

Table 13. Bit Descriptions for QUAD Bits Bit Name Settings Description Reset Access [15:10] RESERVED Reserved 0x15 R [9:6] QUAD_SE_MODE Switch Differential/SE Modes 0xC R/W 0110 SE Mode N Side 1001 SE Mode P Side 1100 Differential Mode [5:4] RESERVED Reserved. 0x0 R [3:0] QUAD_FILTERS LO Filters BW Selection 0x0 R/W 0000 LO Frequency BW: 8.625 GHz to 10.25 GHz 0101 LO Frequency BW: 6.6 GHz to 9.2 GHz 1010 LO Frequency BW: 5.4 GHz to 8 GHz 1111 LO Frequency BW: 5.4 GHz to 7 GHz

Page 39: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 39 of 42

Address: 0x05, Reset: 0x4101, Name: LO_AMP_PHASE_ADJUST1

Mixer Image Rejection Calibration0x00:Maximum Phase, 0x7F: MinimumPhase

Mixer Image Rejection Calibration0x00:Maximum Phase, 0x7F: MinimumPhase

0

11

02

03

04

05

06

07

08

19

010

011

012

013

014

115

0

[15:9] LOAMP_PH_ADJ_I_FINE (R/W) [1:0] RESERVED

[8:2] LOAMP_PH_ADJ_Q_FINE (R/W)

Table 14. Bit Descriptions for LO_AMP_PHASE_ADJUST1 Bits Bit Name Settings Description Reset Access [15:9] LOAMP_PH_ADJ_I_FINE Mixer Image Rejection Calibration 0x00: Maximum Phase, 0x7F:

Minimum Phase 0x20 R/W

[8:2] LOAMP_PH_ADJ_Q_FINE Mixer Image Rejection Calibration 0x0: Maximum Phase, 0x7F: Minimum Phase

0x40 R/W

[1:0] RESERVED Reserved. 0x1 R

Address: 0x07, Reset: 0xD808, Name: MIXER

Control BB Common Mode Voltage(Please see the application sectionfor more Information)

Digital RX Detector Program

1000000: From -18 to -2dBm.100000: From -17 to -1dBm.

10000: From -16.25 to -0.25dBm.1000: From -15.5 to +0.5dBm.

100: From -15 to +1dBm.10: From -14 to +2dBm.

1: From -13 to +3dBm.0: From -12 to +4dBm.

0

01

02

03

14

05

06

07

08

09

010

011

112

113

014

115

1

[15:9] MIXER_VGATE (R/W) [6:0] DET_PROG (R/W)

[8:7] RESERVED

Table 15. Bit Descriptions for MIXER Bits Bit Name Settings Description Reset Access [15:9] MIXER_VGATE Control BB Common Mode Voltage. See the Applications Information section for

more information) 0x6C R/W

[8:7] RESERVED Reserved. 0x0 R [6:0] DET_PROG Digital Rx Detector Program. 0x8 R/W 0 From −12 dBm to +4 dBm. 1 From −13 dBm to +3 dBm. 10 From −14 dBm to +2 dBm. 100 From −15 dBm to +1 dBm. 1000 From −15.5 dBm to +0.5 dBm. 10000 From −16.25 dBm to −0.25 dBm. 100000 From −17 dBm to −1 dBm. 1000000 From −18 dBm to −2 dBm.

Page 40: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 40 of 42

Address: 0x08, Reset: 0x0000, Name: IF_AMP

IF Amp I, 10 Fine Steps from 0x0 to0xA (Total attenuation ~1dB). Referto Figure 80 to Figure 82.Digital IF Amp 1dB Step Gain_I

1111: Refer to Figure 77 to Figure 79.111: Refer to Figure 77 to Figure 79.11: Refer to Figure 77 to Figure 79.1: Refer to Figure 77 to Figure 79.0: Refer to Figure 77 to Figure 79.

IF Amp Q, 10 Fine Steps from 0x0to 0xA (Total attenuation ~1dB). Referto Figure 80 to Figure 82.

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:12] RESERVED [3:0] IF_AMP_FINE_GAIN_I (R/W)

[11:8] IF_AMP_COARSE_GAIN_I (R/W)

[7:4] IF_AMP_FINE_GAIN_Q (R/W)

Table 16. Bit Descriptions for IF_AMP Bits Bit Name Settings Description Reset Access [15:12] RESERVED Reserved. 0x0 R [11:8] IF_AMP_COARSE_GAIN_I Digital IF Amp Step Gain I. 0x0 R/W 0 Refer to Figure 77 to Figure 79. 1 Refer to Figure 77 to Figure 79. 11 Refer to Figure 77 to Figure 79. 111 Refer to Figure 77 to Figure 79. 1111 Refer to Figure 77 to Figure 79. [7:4] IF_AMP_FINE_GAIN_Q IF Amp Q, 10 Fine Steps from 0x0 to 0xA. Refer to Figure 80 to Figure 82. 0x0 R/W [3:0] IF_AMP_FINE_GAIN_I IF Amp I, 10 Fine Steps from 0x0 to 0xA. Refer to Figure 80 to Figure 82. 0x0 R/W

Address: 0x9, Reset: 0x0000, Name: IF_AMP__BB_AMP

Digital IF Amp 1dB Step Gain_Q

1111: Refer to Figure 77 to Figure 79.111: Refer to Figure 77 to Figure 79.11: Refer to Figure 77 to Figure 79.1: Refer to Figure 77 to Figure 79.0: Refer to Figure 77 to Figure 79.

BB Amp I. Bit 4: Use as Sign Bit, b’1is for positive values and b’0 is fornegative values; Bits [3:0] MinimumOffset, 0xF: Maximum Offset.

BB Amp Q. Bit 9: Use as Sign Bit,b’1is for positive values and b’0 isfor negative values; Bit [8:5] MinimumOffset, 0xF: Maximum Offset.

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:12] IF_AMP_COARSE_GAIN_Q (R/W) [4:0] BB_AMP_OFFSET_I (R/W)

[11:10] RESERVED

[9:5] BB_AMP_OFFSET_Q (R/W)

Table 17. Bit Descriptions for IF_AMP__BB_AMP Bits Bit Name Settings Description Reset Access [15:12] IF_AMP_COARSE_GAIN_Q Digital IF Amp 1 dB Step Gain Q 0x0 R/W 0 Refer to Figure 77 to Figure 79 1 Refer to Figure 77 to Figure 79 11 Refer to Figure 77 to Figure 79 111 Refer to Figure 77 to Figure 79 1111 Refer to Figure 77 to Figure 79 [11:10] RESERVED Reserved. 0x0 R [9:5] BB_AMP_OFFSET_Q BB Amp Q (Bit 9: Use as Sign Bit, 1 is for positive values and 0 is for

negative values; Bits[8:5]: Minimum Offset, 0xF: Maximum Offset) 0x0 R/W

[4:0] BB_AMP_OFFSET_I BB Amp I (Bit 4: Use as Sign Bit, 1 is for positive values and 0 is for negative values; Bits[3:0]: Minimum Offset, 0xF: Maximum Offset)

0x0 R/W

Page 41: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

Data Sheet ADMV1014

Rev. A | Page 41 of 42

Address: 0x0A, Reset: 0x2390, Name: BB_AMP_AGC

Setting between High and Low OutputCommon Mode Voltage; Should BeSet to Opposite from RegA<bit6>Control BB Common Mode Voltage

See the Baseband Quadrature Demodulation(I/Q Mode) section for more information.

See Figure 44 to Figure 46.

0

01

02

03

04

15

06

07

18

19

110

011

012

013

114

015

0

[15:7] RESERVED [0] BB_SWITCH_HIGH_LOW_COMMON_MODE (R/W)

[6:3] BB_AMP_REF_GEN (R/W)

[2:1] BB_AMP_GAIN_CTRL (R/W)

Table 18. Bit Descriptions for BB_AMP_AGC Bits Bit Name Settings Description Reset Access [15:7] RESERVED Reserved. 0x4 R [6:3] BB_AMP_REF_GEN Control BB Common-Mode Voltage. See the

Baseband Quadrature Demodulation (I/Q Mode) section for more information.

0x2 R/W

[2:1] BB_AMP_GAIN_CTRL See Figure 44 to Figure 46. 0x0 R/W 0 BB_SWITCH_HIGH_LOW_COMMON_MODE Setting between High and Low Output Common-

Mode Voltage. This bit must be set to opposite from Register 0x0A, Bit 6. See the Baseband Quadrature Demodulation (I/Q Mode) section for more information.

0x0 R/W

Address: 0x0B, Reset: 0x4A5C, Name: VVA_TEMP_COMP

VVA Temperature Compensation

0

01

02

13

14

15

06

17

08

09

110

011

112

013

014

115

0

[15:0] VVA_TEMPPERATURE_COMPENSATION (R/W)

Table 19. Bit Descriptions for VVA_TEMP_COMP Bits Bit Name Settings Description Reset Access [15:0] VVA_TEMPERATURE_COMPENSATION VVA Temperature Compensation. Set to 0x727C. See the

Start-Up Sequence section and the VVA Temperature Compensation section for more information. Disable PARITY_EN when updating the VVA temperature compensation.

0x4A5C R/W

Page 42: 24 GHz to 44 GHz, Wideband, Microwave Downconverter Data ...€¦ · Table 3. Parameter Rating Supply Voltage VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER, VCC_BG, VCC_QUAD, DVDD 4.3

ADMV1014 Data Sheet

Rev. A | Page 42 of 42

OUTLINE DIMENSIONS

02-1

2-20

18-A

PKG

-005

727

5.105.004.90

TOP VIEW

SIDE VIEW

BOTTOM VIEW

1

8

916

17

24

25 32

0.50BSC

0.75BSC 0.165

BSC0.275REF

3.50 REFSQ

0.400.350.30

0.320.270.22

FOR PROPER CONNECTION OFTHE EXPOSED PADS, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

0.81 BSCSQ

PIN 1INDICATOR

3.57 BSCSQ

3.77 BSC

PIN 1CORNER AREA

0.75 MAX0.67 NOM

0.520.450.38

0.250.220.19

SEATINGPLANE

Figure 123. 32-Terminal Land Grid Array [LGA]

(CC-32-6) Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADMV1014ACCZ −40°C to +85°C 32-Terminal Land Grid Array Package [LGA] CC-32-6 ADMV1014ACCZ-R7 −40°C to +85°C 32-Terminal Land Grid Array Package [LGA] CC-32-6 ADMV1014-EVALZ Evaluation Board 1 Z = RoHS-Compliant Part.

©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17172-0-4/19(A)