4
PARTIALLY TREATED WASTEWATER SOLVES FLORIDA IRRIGATION PROBLEM Water waste. It is well-known what will happen if the world continues to waste and abuse the dwin- dling supply of perhaps its most important natural resource — fresh, clean water. The City of St. Petersburg, Fla. has a precedent- setting water reclamation project in which this wastewater, treated until it's nearly as fresh as it was when it first passed through household plumb- ing fixtures, is being used to irrigate golf courses, parks, commercial sites and street parkways. Recycled wastewater, or "effluent water," first began flowing through a special 14-mile distribu- tion system in St. Petersburg in November, 1976. Located in a region chronically plagued with a shortage of fresh water and surrounded by polluted saltwater bays, St. Petersburg took a bold step. "We believe our water recycling system for ef- fluent water is the first of its scope in the nation," said Timothy Thornton, of the engineering firm of Black, Crow and Eidsness. "Our efforts are being carefully watched by a number of state and national agencies, including the EPA. The results we achieve may well in- fluence the development of such systems else- where." Thornton explained that city fathers realized some time ago that they had little choice in One of four plants to be built in St. Petersburg to recycle wastewater for irrigation. deciding whether to beef up recycling efforts of ex- isting water supplies. "The community is supplied water from three sources," he said. "Lakes and streams supply a small portion of water, as do subsurface fresh water pockets, though this source is dwindling because of saltwater pollution. However, all of the potable and most of the irrigation water comes from well fields more than 50 miles away." He said that up to 40% of the potable water brought into the city from the outside has been used to keep areas green during the long dry season. "That's an abuse of drinkable water," he commented. "We are left with one viable water source for irrigation — effluent water. The only dependable future water supply for irrigation is treated waste- water," Thornton added. "Three years of research on wastewater purification yielded a process whereby the ef- fluent water is almost as fresh as the city's potable water," said Thornton. The process makes the ef- fluent water safe to use for irrigation and to be stored underground for future use through the use of deep injection wells. He explained that residents were reassured that the effluent water to be used to irrigate much of the city's landscape is odorless, clear and not a health hazard. It is treated in much the same way as water to be used for drinking, though it retains its nitrogen and phosphorus content because of the value of those chemicals as fertilizing agents. The spray irrigation system used to water parks,

MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

1

IPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

PG-TO220FP

Drain

Pin 2

Gate

Pin 1

Source

Pin 3

MOSFET600VCoolMOSªP7PowerTransistorTheCoolMOS™7thgenerationplatformisarevolutionarytechnologyforhighvoltagepowerMOSFETs,designedaccordingtothesuperjunction(SJ)principleandpioneeredbyInfineonTechnologies.The600VCoolMOS™P7seriesisthesuccessortotheCoolMOS™P6series.ItcombinesthebenefitsofafastswitchingSJMOSFETwithexcellenteaseofuse,e.g.verylowringingtendency,outstandingrobustnessofbodydiodeagainsthardcommutationandexcellentESDcapability.Furthermore,extremelylowswitchingandconductionlossesmakeswitchingapplicationsevenmoreefficient,morecompactandmuchcooler.

Features•Suitableforhardandsoftswitching(PFCandLLC)duetoanoutstanding commutationruggedness•Significantreductionofswitchingandconductionlosses•ExcellentESDrobustness>2kV(HBM)forallproducts•BetterRDS(on)/packageproductscomparedtocompetitionenabledbya lowRDS(on)*A(below1Ohm*mm²)•Fullyqualifiedacc.JEDECforIndustrialApplications

Benefits•Easeofuseandfastdesign-inthroughlowringingtendencyandusage acrossPFCandPWMstages•Simplifiedthermalmanagementduetolowswitchingandconduction losses•Increasedpowerdensitysolutionsenabledbyusingproductswith smallerfootprintandhighermanufacturingqualitydueto>2kVESD protection•Suitableforawidevarietyofapplicationsandpowerranges

PotentialapplicationsPFCstages,hardswitchingPWMstagesandresonantswitchingstagesfore.g.PCSilverbox,Adapter,LCD&PDPTV,Lighting,Server,TelecomandUPS.

Pleasenote:ForMOSFETparallelingtheuseofferritebeadsonthegateorseparatetotempolesisgenerallyrecommended.

Table1KeyPerformanceParametersParameter Value UnitVDS @ Tj,max 650 V

RDS(on),max 120 mΩ

Qg,typ 36 nC

ID,pulse 78 A

Eoss @ 400V 4.0 µJ

Body diode diF/dt 900 A/µs

Type/OrderingCode Package Marking RelatedLinksIPA60R120P7 PG-TO 220 FullPAK 60R120P7 see Appendix A

Page 2: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

2

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

TableofContentsDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Electrical characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Page 3: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

3

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

1MaximumratingsatTj=25°C,unlessotherwisespecified

Table2MaximumratingsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Continuous drain current1) ID --

--

2616 A TC=25°C

TC=100°C

Pulsed drain current2) ID,pulse - - 78 A TC=25°C

Avalanche energy, single pulse EAS - - 82 mJ ID=5.0A; VDD=50V; see table 10

Avalanche energy, repetitive EAR - - 0.41 mJ ID=5.0A; VDD=50V; see table 10

Avalanche current, single pulse IAS - - 5.0 A -

MOSFET dv/dt ruggedness dv/dt - - 80 V/ns VDS=0...400VGate source voltage (static) VGS -20 - 20 V static;

Gate source voltage (dynamic) VGS -30 - 30 V AC (f>1 Hz)

Power dissipation Ptot - - 28 W TC=25°CStorage temperature Tstg -55 - 150 °C -

Operating junction temperature Tj -55 - 150 °C -

Mounting torque - - - 50 Ncm M2.5 screws

Continuous diode forward current IS - - 26 A TC=25°CDiode pulse current2) IS,pulse - - 78 A TC=25°C

Reverse diode dv/dt3) dv/dt - - 50 V/ns VDS=0...400V,ISD<=26A,Tj=25°C see table 8

Maximum diode commutation speed diF/dt - - 900 A/µs VDS=0...400V,ISD<=26A,Tj=25°C see table 8

Insulation withstand voltage VISO - - 2500 V Vrms,TC=25°C,t=1min

1) Limited by Tj,max. Maximum Duty Cycle D = 0.50; TO-220 equivalent2) Pulse width tp limited by Tj,max3) Identical low side and high side switch with identical RG

Page 4: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

4

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

2Thermalcharacteristics

Table3ThermalcharacteristicsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Thermal resistance, junction - case RthJC - - 4.49 °C/W -

Thermal resistance, junction - ambient RthJA - - 62 °C/W leaded

Thermal resistance, junction - ambientfor SMD version RthJA - - - °C/W -

Soldering temperature, wavesolderingonly allowed at leads Tsold - - 260 °C 1.6mm (0.063 in.) from case for 10s

Page 5: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

5

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

3ElectricalcharacteristicsatTj=25°C,unlessotherwisespecified

Table4StaticcharacteristicsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Drain-source breakdown voltage V(BR)DSS 600 - - V VGS=0V,ID=1mAGate threshold voltage V(GS)th 3 3.5 4 V VDS=VGS,ID=0.41mA

Zero gate voltage drain current IDSS --

-10

1- µA VDS=600V,VGS=0V,Tj=25°C

VDS=600V,VGS=0V,Tj=150°C

Gate-source leakage current IGSS - - 1000 nA VGS=20V,VDS=0V

Drain-source on-state resistance RDS(on)--

0.1000.234

0.120- Ω VGS=10V,ID=8.2A,Tj=25°C

VGS=10V,ID=8.2A,Tj=150°C

Gate resistance RG - 7 - Ω f=1MHz,opendrain

Table5DynamiccharacteristicsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Input capacitance Ciss - 1544 - pF VGS=0V,VDS=400V,f=250kHzOutput capacitance Coss - 27 - pF VGS=0V,VDS=400V,f=250kHz

Effective output capacitance, energyrelated1) Co(er) - 50 - pF VGS=0V,VDS=0...400V

Effective output capacitance, timerelated2) Co(tr) - 524 - pF ID=constant,VGS=0V,VDS=0...400V

Turn-on delay time td(on) - 21 - ns VDD=400V,VGS=13V,ID=8.2A,RG=5.3Ω;seetable9

Rise time tr - 14 - ns VDD=400V,VGS=13V,ID=8.2A,RG=5.3Ω;seetable9

Turn-off delay time td(off) - 81 - ns VDD=400V,VGS=13V,ID=8.2A,RG=5.3Ω;seetable9

Fall time tf - 6 - ns VDD=400V,VGS=13V,ID=8.2A,RG=5.3Ω;seetable9

Table6GatechargecharacteristicsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Gate to source charge Qgs - 8 - nC VDD=400V,ID=8.2A,VGS=0to10VGate to drain charge Qgd - 11 - nC VDD=400V,ID=8.2A,VGS=0to10VGate charge total Qg - 36 - nC VDD=400V,ID=8.2A,VGS=0to10VGate plateau voltage Vplateau - 5.2 - V VDD=400V,ID=8.2A,VGS=0to10V

1)Co(er)isafixedcapacitancethatgivesthesamestoredenergyasCosswhileVDSisrisingfrom0to400V2)Co(tr)isafixedcapacitancethatgivesthesamechargingtimeasCosswhileVDSisrisingfrom0to400V

Page 6: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

6

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

Table7ReversediodecharacteristicsValues

Min. Typ. Max.Parameter Symbol Unit Note/TestCondition

Diode forward voltage VSD - 0.9 - V VGS=0V,IF=8.2A,Tj=25°C

Reverse recovery time trr - 207 - ns VR=400V,IF=4A,diF/dt=100A/µs;see table 8

Reverse recovery charge Qrr - 1.9 - µC VR=400V,IF=4A,diF/dt=100A/µs;see table 8

Peak reverse recovery current Irrm - 19 - A VR=400V,IF=4A,diF/dt=100A/µs;see table 8

Page 7: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

7

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

4Electricalcharacteristicsdiagrams

Diagram1:Powerdissipation

TC[°C]

Ptot[W

]

0 25 50 75 100 125 1500

5

10

15

20

25

30

Ptot=f(TC)

Diagram2:Safeoperatingarea

VDS[V]

ID[A

]

100 101 102 10310-5

10-4

10-3

10-2

10-1

100

101

102

10 µs

1 µs

100 µs

1 ms

10 ms

DC

ID=f(VDS);TC=25°C;D=0;parameter:tp

Diagram3:Safeoperatingarea

VDS[V]

ID[A

]

100 101 102 10310-5

10-4

10-3

10-2

10-1

100

101

102

1 µs

10 µs

100 µs

1 ms

10 ms

DC

ID=f(VDS);TC=80°C;D=0;parameter:tp

Diagram4:Max.transientthermalimpedance

tp[s]

ZthJC[K

/W]

10-5 10-4 10-3 10-2 10-1 100 10110-2

10-1

100

101

0.5

0.2

0.1

0.01

0.05

0.02

single pulse

ZthJC=f(tP);parameter:D=tp/T

Page 8: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

8

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

Diagram5:Typ.outputcharacteristics

VDS[V]

ID[A

]

0 5 10 15 200

20

40

60

80

10020 V

10 V

8 V

7 V

6 V

5.5 V

5 V

4.5 V

ID=f(VDS);Tj=25°C;parameter:VGS

Diagram6:Typ.outputcharacteristics

VDS[V]

ID[A

]

0 5 10 15 200

10

20

30

40

50

60

70

20 V

10 V

8 V

7 V

6 V

5.5 V

5 V

4.5 V

ID=f(VDS);Tj=125°C;parameter:VGS

Diagram7:Typ.drain-sourceon-stateresistance

ID[A]

RDS(on

) [Ω]

0 10 20 30 40 50 600.200

0.250

0.300

0.350

0.400

0.450

0.500

20 V

10 V

6.5 V

6 V

7 V

5.5 V

RDS(on)=f(ID);Tj=125°C;parameter:VGS

Diagram8:Drain-sourceon-stateresistance

Tj[°C]

RDS(on

) [no

rmalized]

-50 -25 0 25 50 75 100 125 1500.000

0.500

1.000

1.500

2.000

2.500

3.000

RDS(on)=f(Tj);ID=8.2A;VGS=10V

Page 9: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

9

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

Diagram9:Typ.transfercharacteristics

VGS[V]

ID[A

]

0 2 4 6 8 10 120

20

40

60

80

100

150 °C

25 °C

ID=f(VGS);VDS=20V;parameter:Tj

Diagram10:Typ.gatecharge

Qgate[nC]

VGS [V]

0 10 20 30 40 500

2

4

6

8

10

12

120 V 400 V

VGS=f(Qgate);ID=8.2Apulsed;parameter:VDD

Diagram11:Forwardcharacteristicsofreversediode

VSD[V]

IF [A]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.810-1

100

101

102

125 °C 25 °C

IF=f(VSD);parameter:Tj

Diagram12:Avalancheenergy

Tj[°C]

EAS [mJ]

25 50 75 100 125 1500

20

40

60

80

100

EAS=f(Tj);ID=5.0A;VDD=50V

Page 10: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

10

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

Diagram13:Drain-sourcebreakdownvoltage

Tj[°C]

VBR(DSS

) [V]

-50 -25 0 25 50 75 100 125 150540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

VBR(DSS)=f(Tj);ID=1mA

Diagram14:Typ.capacitances

VDS[V]

C[p

F]

0 100 200 300 400 500100

101

102

103

104

105

Ciss

Coss

Crss

C=f(VDS);VGS=0V;f=250kHz

Diagram15:Typ.Cossstoredenergy

VDS[V]

Eoss[µ

J]

0 100 200 300 400 5000

1

2

3

4

5

6

Eoss=f(VDS)

Page 11: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

11

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

5TestCircuits

Table8DiodecharacteristicsTest circuit for diode characteristics Diode recovery waveform

VDS

IF

Rg1

Rg 2

Rg1 = Rg 2

Table9SwitchingtimesSwitching times test circuit for inductive load Switching times waveform

VDS

VGS

td(on) td(off)tr

ton

tf

toff

10%

90%

VDS

VGS

Table10UnclampedinductiveloadUnclamped inductive load test circuit Unclamped inductive waveform

VDS

V(BR)DS

IDVDS

VDSID

Page 12: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

12

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

6PackageOutlines

DIMENSIONS

MIN. MAX.

A2

H

b

D

c

b2

E

e

L

Q

øP

L1

D1

A

A1

2.862.42

2.54

28.70

0.95

15.67

0.40

0.65

10.00

2.83

3.15

3.00

12.78

8.97

29.75

0.90

0.63

1.51

16.15

3.50

3.30

3.45

13.75

10.65

9.83

MILLIMETERS

4.50

2.34

4.90

2.85

b1 0.95 1.38

b4 0.65 1.51

b3 0.65 1.38

1

SCALE

Z8B00003319

REVISION

ISSUE DATE

EUROPEAN PROJECTION

07

27.01.2017

0 5mm

DOCUMENT NO.

5:1

2 3 4

1 2 3

Figure1OutlinePG-TO220FullPAK,dimensionsinmm/inches

Page 13: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

13

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

7AppendixA

Table11RelatedLinks

• IFXCoolMOSP7Webpage:www.infineon.com

• IFXCoolMOSP7applicationnote:www.infineon.com

• IFXCoolMOSP7simulationmodel:www.infineon.com

• IFXDesigntools:www.infineon.com

Page 14: MOSFET · 2018-12-26 · 1 IPA60R120P7 Final Data Sheet Rev. 2.1, 2018-05-15 PG-TO 220 FP Drain Pin 2 Gate Pin 1 Source Pin 3 MOSFET 600V CoolMOSª P7 Power Transistor The CoolMOS™

14

600VCoolMOSªP7PowerTransistorIPA60R120P7

Rev.2.1,2018-05-15Final Data Sheet

RevisionHistoryIPA60R120P7

Revision:2018-05-15,Rev.2.1

Previous Revision

Revision Date Subjects (major changes since last revision)

2.0 2017-05-18 Release of final version

2.1 2018-05-15 Updated diagram scalings; Nomenclature of product qualification grade was changed

TrademarksAllreferencedproductorservicenamesandtrademarksarethepropertyoftheirrespectiveowners.

WeListentoYourCommentsAnyinformationwithinthisdocumentthatyoufeeliswrong,unclearormissingatall?Yourfeedbackwillhelpustocontinuouslyimprovethequalityofthisdocument.Pleasesendyourproposal(includingareferencetothisdocument)to:[email protected]

PublishedbyInfineonTechnologiesAG81726München,Germany©2018InfineonTechnologiesAGAllRightsReserved.

LegalDisclaimerTheinformationgiveninthisdocumentshallinnoeventberegardedasaguaranteeofconditionsorcharacteristics(“Beschaffenheitsgarantie”).

Withrespecttoanyexamples,hintsoranytypicalvaluesstatedhereinand/oranyinformationregardingtheapplicationoftheproduct,InfineonTechnologiesherebydisclaimsanyandallwarrantiesandliabilitiesofanykind,includingwithoutlimitationwarrantiesofnon-infringementofintellectualpropertyrightsofanythirdparty.Inaddition,anyinformationgiveninthisdocumentissubjecttocustomer’scompliancewithitsobligationsstatedinthisdocumentandanyapplicablelegalrequirements,normsandstandardsconcerningcustomer’sproductsandanyuseoftheproductofInfineonTechnologiesincustomer’sapplications.Thedatacontainedinthisdocumentisexclusivelyintendedfortechnicallytrainedstaff.Itistheresponsibilityofcustomer’stechnicaldepartmentstoevaluatethesuitabilityoftheproductfortheintendedapplicationandthecompletenessoftheproductinformationgiveninthisdocumentwithrespecttosuchapplication.

InformationForfurtherinformationontechnology,deliverytermsandconditionsandpricespleasecontactyournearestInfineonTechnologiesOffice(www.infineon.com).

WarningsDuetotechnicalrequirements,componentsmaycontaindangeroussubstances.Forinformationonthetypesinquestion,pleasecontactthenearestInfineonTechnologiesOffice.TheInfineonTechnologiescomponentdescribedinthisDataSheetmaybeusedinlife-supportdevicesorsystemsand/orautomotive,aviationandaerospaceapplicationsorsystemsonlywiththeexpresswrittenapprovalofInfineonTechnologies,ifafailureofsuchcomponentscanreasonablybeexpectedtocausethefailureofthatlife-support,automotive,aviationandaerospacedeviceorsystemortoaffectthesafetyoreffectivenessofthatdeviceorsystem.Lifesupportdevicesorsystemsareintendedtobeimplantedinthehumanbodyortosupportand/ormaintainandsustainand/orprotecthumanlife.Iftheyfail,itisreasonabletoassumethatthehealthoftheuserorotherpersonsmaybeendangered.