16
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C. Gossard ECE and Materials Departments University of California, Santa Barbara, CA S.R Bank ECE Department, University of Texas, Austin, TX 2007 Device Research Conference South Bend, Indiana *[email protected]

2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C

  • View
    218

  • Download
    3

Embed Size (px)

Citation preview

2007 DRC

Ultra Low Resistance Ohmic Contacts to InGaAs/InP

Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey,M.J.W. Rodwell, and A.C. Gossard

ECE and Materials DepartmentsUniversity of California, Santa Barbara, CA

S.R BankECE Department, University of Texas, Austin, TX

2007 Device Research ConferenceSouth Bend, Indiana

*[email protected]

2007 DRC

• Motivation

• Previous Work

• Approach

• Results

• Conclusion

Outline

2007 DRC

Device bandwidth scaling laws

bccollbcexE

bcE

jecollectorbase CRCRqI

kTC

qI

kTC

f

2

1

effcbbb CR

ff

8max

Goal: Double transistor bandwidth Reduce transit delayReduce RC delay Vertical Scaling

Increased Capacitance Lateral Scaling Keep R constant

Ac

xeR

Reduce c

*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001

c has to scale as inverse square of lateral scaling

2007 DRC

Device bandwidth scaling roadmap – THz transistor

Emitter Resistance key to THz transistor

Emitter resistance effectively contributes > 50 % in bipolar logic gate delay*

Contact resistance serious barrier to THztechnology

2 contact resistivity requiredfor simultaneous THz ft and fmax

2m

*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001

2007 DRC

Device bandwidth scaling-FETs

Source contact resistance must scale to the inverse square of device scaling

Low source resistance means better NF in FETs*

f

fRRRgNF igsmi )(1min

P + substrate

barrier

sidewall

metal gate

gL

undopedsubstrate

wT

quantum well

gatedielectric

N+ regrowth N+ regrowth

source contact drain contactoxT

undopedsubstrate

S/DL

50 nm

Source resistance reduces gm and Id

A 22 nm III-V MOSFET with 5 mA/m Id

15 source resistance will reduceId by 10%

With 50 nm contact width this will require of 1

*T Takahashi ,IPRM 07

m

2mc

2007 DRC

Conventional Contacts• Conventional contacts

– complex metallization and annealing schemes– Surface oxides, contaminants – Fermi level pinning– metal-semiconductor reaction improves resistance

Au

5 - m2 ( - m2 ) obtained on InGaAs, used on the latest HBT results

Further improvement difficult using this technique

Reacted regionPt

InGaAs

Pt/Au Contact after 4hr 260C Anneal

S.E. Mohney,PSUM.Urteaga, Teledyne

8105

2007 DRC

In-situ ErAs-InGaAs Contacts

• Epitaxial ErAs-InGaAs contact – Epitaxially formed, no surface defects, no fermi level pinning– In-situ, no surface oxides– thermodynamically stable– ErAs/InAs fermi level should be above conduction band

III Er As

Approximate Schottky barrier potential

D. O. Klenov, Appl. Phys. Lett., 2005

1J.D. Zimmerman et al., J. Vac. Sci. Technol. B, 2005

InAlAs/InGaAs

S.R. Bank, NAMBE , 2006

2007 DRC

In-situ and ex-situ Contacts• In-situ Mo Contact

– In-situ deposition no oxide at metal-semiconductor interface– Fermi level pins inside conduction band of InAs

* S.Bhargava, Applied Physics Letters, 1997

Fe-doped InP substrate

100 nm In0.52Al0.48As, undoped

95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type

5 nm InAs, 3.5x1019/cm3 N-type

40 nm in-situ Mo

in-situ ErAs

7.5 nm in-situ ErAs

in-situ

Fe-doped InP substrate

100 nm In0.52Al0.48As, undoped

95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type

5 nm InAs, 3.5x1019/cm3 N-type

40 nm in-situ Mo in-situ

in-situ Mo

Fe-doped InP substrate

100 nm In0.52Al0.48As, undoped

95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type

500 nm ex-situ TiW

in-situ

ex-situ

ex-situ TiW

• Ex-situ contacts– InGaAs surface oxidized by UV Ozone treatment– Strong NH4OH treatment before contact metal deposition

In-situ ErAs/InAs In-situ Mo/InAs

Ex-situ TiW/InGaAs

2007 DRC

MBE growth and TLM fabrication

• MBE Growth– InGaAs:Si grown at 450 C – 3.5 E 19 active Si measured by Hall– ErAs grown at 450 C, 0.2 ML/s– Mo deposited in a electron beam evaporator connected to MBE under UHV– Mo cap on ErAs to prevent oxidation– Layer thickness chosen so as to satisfy 1-D condition in TLM

• TLM Fabrication– Samples processed into TLM structures by photolithography and liftoff

– Mo and TiW dry etched in SF6/Ar with Ni as etch mask, isolated by wet etch

– Separate probe pads from contacts to minimize parasitic metal resistance

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

L

Lt

Lt/L >> 1

2007 DRC

Contact Resistance

Contact Lt (nm)

ErAs/InAs 1.5 300

Mo/InAs 0.5 175

TiW/InGaAs 0.7 190

)( 2mc

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6Pad Spacing (m)

Re

sist

ance

(

)

TiW/InGaAs

ErAs/InAs

Mo/InAs

0

5

10

15

20

0 5 10 15 20 25 30

Re

sis

tan

ce (

Pad Spacing (m)

• Resistance measured by 4155 C parameter analyzer• Pad spacing verified by SEM image• Smallest gap, contact resistance 60 % of total resistance

• 15-18 Ohm sheet resistance for all three contacts

W

RR SCC

22

282 1011 cmm

2007 DRC

Ex-situ Contacts

0.1

1

10

0 5 10 15

c (

m

2)

NH4OH Normality

• Ex-situ contact depends on the concentration of NH4OH*

* A.M. Crook, submitted to APL

2007 DRC

Thermal Stability

0.1

1

10

100

0 100 200 300 400 500

Temperature (C)

Sp

eci

fic

Co

nta

ct

Res

isti

vity

(

m

2)

As DepositedErAs/InAs

TiW/InGaAs

Mo/InAs

• Contacts annealed under N2 flow at different temperatures• Contacts stays Ohmic after anneal • In-situ Mo/InAs, ex-situ TiW/InGaAs contact resistivity < 1 -m2 after anneal

• ErAs/InAs contact resistivity increases with anneal

• The increase could be due to lateral oxidation of ErAs

2007 DRC

Thermal Stability

0 50 100 150 200 250 300 350 400

Inte

nsi

ty (

arb

. un

its

)

Etching Time (sec)

Ni

Ti

Au

Mo

In

Ga

• SIMS depth profiling shows that Mo and TiW act as diffusion barrier to Ti and Au

SIMS profile of contacts annealed at 400 C

2007 DRC

Error Analysis

• 1-D Approximation

• Large Lt/L,

• 1-D case overestimates

• Overlap resistance

• Wide contact width reduces overlap resistance.

• 1-D case, Overlap resistance overestimates extracted

• Errors

• Pad spacing, minimized by SEM inspection

• Resistance, minimized by using 4155C parameter analyzer

• c/c* is 60 % at 1 -m2 , 75 % at

0.5 -m2

c

L

Lt

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

Isource

Isource

Vsense

Vsense

(a)

(b)

W = 26 um

Pad Spacing

0.5 1.0 1.5 2.0 2.5 3.0 3.50.0 4.0

0.2

0.4

0.6

0.8

0.0

1.0

156.25*(V1-.032)

.000

256*

cont

act/(

(V1-

.032

)*(V

1-.0

32))

cLt/L

c2D

/c1

D

*H.Ueng, IEEE TED,2001

2007 DRC

Integration into Device Processing

barrier

well

r

barrier

well

r

barrier

well

r

barrier

well

r

barrier

well

r

(starting material) nonselective regrowth planarize etch strip resist

• Source Contact in FETs

• HBT emitter contact*

InGaAs/InP emitterInGaAs BaseInP Collector

SI substrate

Ti/W or Mo

Sub-Collector

InGaAs/InP emitterInGaAs BaseInP Collector

SI substrate

Ti/W

Sub-Collector

InGaAs BaseInP Collector

SI substrate

Ti/W

Sub-Collector

Blanket metal depostion Dry etch Emitter metal Dry + Wet etch Emitter

*E.Lind, Late News,DRC 2007

2007 DRC

Conclusion

• Ultra Low Ohmic contacts to InGaAs/InP with c < 1 -m2

• Contacts realized by both in-situ and ex-situ

• In-situ Mo/InAs and ex-situ TiW/InGaAs c < 1 -m2 even after 500 C anneal

• In-situ ErAs/InAs contacts c =1.5 -m2, increases gradually with anneal

This work was supported by Office of Naval Research (ONR) Ultra Low ResistanceContacts program and a grant by Swedish Research Council