99
Convergence Tests (for Series with Non-negative Terms) Math 55 - Elementary Analysis III Institute of Mathematics University of the Philippines Diliman Math 55 Convergence Tests I 1/ 21

19 Convergence Tests 1 - Handout

  • Upload
    john

  • View
    23

  • Download
    1

Embed Size (px)

DESCRIPTION

Math 55 chapter 19

Citation preview

  • Convergence Tests(for Series with Non-negative Terms)

    Math 55 - Elementary Analysis III

    Institute of MathematicsUniversity of the Philippines

    Diliman

    Math 55 Convergence Tests I 1/ 21

  • Recall

    R The seriesn=1

    an converges if its sequence of partial sums

    {Sn} is convergent. Otherwise, the series diverges.

    R Divergence Test

    If limn an 6= 0, then the series

    n=1

    an is divergent.

    Math 55 Convergence Tests I 2/ 21

  • Recall

    R The seriesn=1

    an converges if its sequence of partial sums

    {Sn} is convergent. Otherwise, the series diverges.

    R Divergence Test

    If limn an 6= 0, then the series

    n=1

    an is divergent.

    Math 55 Convergence Tests I 2/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn

    < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx

    = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx > Sn a1

    If limn

    n1f(x) dx = L, then

    n=1

    an = limnSn < a1 + limn

    n1f(x) dx = a1 + L

    and thus the series converges.

    Math 55 Convergence Tests I 3/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =.

    Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn

    > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an

    =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Test for Convergence/Divergence

    Consider a seriesn=1

    an and a function f , continuous and

    positive on [1,) such that an = f(n) for all n N.

    . . .

    n1f(x) dx < Sn an

    Now, suppose limn

    n1f(x) dx =. Then

    n=1

    an = limnSn > limn

    n1f(x) dx + an =

    and thus the series diverges.

    Math 55 Convergence Tests I 4/ 21

  • Integral Test

    Theorem

    Letn=1

    an be a series with nonnegative terms. Suppose f is a

    continuous, positive, and decreasing function in [1,) andf(n) = an for all n N. Then the series(i) converges if the improper integral

    1

    f(x) dx converges.

    (ii) diverges if the improper integral

    1

    f(x) dx diverges.

    Math 55 Convergence Tests I 5/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing. Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx = lim

    t ln |x|t1

    = limt ln t =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing.

    Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx = lim

    t ln |x|t1

    = limt ln t =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing. Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx

    = limt ln |x|

    t1

    = limt ln t =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing. Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx = lim

    t ln |x|t1

    = limt ln t =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing. Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx = lim

    t ln |x|t1

    = limt ln t

    =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Show by the Integral Test that the harmonic series

    n=1

    1

    nis

    divergent.

    Solution. Let f(x) =1

    x. On [1,), f is continuous, positive

    and decreasing. Hence, 1

    1

    xdx = lim

    t

    t1

    1

    xdx = lim

    t ln |x|t1

    = limt ln t =

    So the harmonic series diverges by the Integral Test.

    Math 55 Convergence Tests I 6/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,).

    Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )

    =1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • Examples

    Example

    Determine if the series

    n=2

    1

    n(lnn)2converges or diverges.

    Solution. Let f(x) =1

    x(lnx)2. Clearly, f is continuous,

    positive and decreasing on [2,). Then 2

    1

    x(lnx)2dx = lim

    t

    t2

    1

    x(lnx)2dx

    = limt

    ln tln 2

    du

    u2(letting u = lnx)

    = limt

    1

    u

    ln tln 2

    = limt

    ( 1

    ln t+

    1

    ln 2

    )=

    1

    ln 2.

    Hence, the series converges by the Integral Test.

    Math 55 Convergence Tests I 7/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent.

    If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,).

    Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx

    = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.

    Math 55 Convergence Tests I 8/ 21

  • p-Series

    Theorem

    The series

    n=1

    1

    np, called a p-series for a positive constant p, is

    convergent if p > 1 and divergent if p 1.

    Proof. If p = 1, the series becomes the harmonic seriesn=1

    1

    n,

    which is divergent. If p 6= 1, f(x) = 1xp

    is positive, decreasing

    and continuous on [1,). Therefore, 1

    1

    xpdx = lim

    t

    t1

    xp dx = limt

    xp+1

    p + 1t1

    = limt

    (tp+1

    p + 1 1

    p + 1)

    =

    , 0 < p < 11p 1 , p > 1

    and the result follows, by the Integral Test.Math 55 Convergence Tests I 8/ 21

  • Examples of p-Series

    Example

    1 The series

    n=1

    1

    n2is a p-series with p = 2 > 1 and hence,

    convergent.

    2 The seriesn=1

    1n

    is a p-series with p = 12 < 1 and hence,

    divergent.

    Math 55 Convergence Tests I 9/ 21

  • Examples of p-Series

    Example

    1 The series

    n=1

    1

    n2is a p-series with p = 2 > 1 and hence,

    convergent.

    2 The seriesn=1

    1n

    is a p-series with p = 12 < 1 and hence,

    divergent.

    Math 55 Convergence Tests I 9/ 21

  • Comparing Series

    We know that

    n=1

    1

    n2is convergent. How about

    n=1

    1

    n2 + 1?

    Notice that for any n N,1

    n2 + 1 1 and solnn

    n>

    1

    nfor n 3.

    Since the harmonic series

    n=1

    1

    ndiverges,

    the seriesn=1

    lnn

    n

    diverges by Comparison Test.

    Math 55 Convergence Tests I 14/ 21

  • Examples

    Example

    Determine whether the series

    n=1

    lnn

    nconverges or diverges.

    Solution. Note that for n 3, lnn > 1 and solnn

    n>

    1

    nfor n 3.

    Since the harmonic series

    n=1

    1

    ndiverges, the series

    n=1

    lnn

    n

    diverges by Comparison Test.

    Math 55 Convergence Tests I 14/ 21

  • Comparing Series

    In some cases a useless comparison arises. For example,

    consider

    n=2

    1

    n2 1.

    Notice that for n 2,

    1

    n2 0 such that m < c < M .

    For sufficientlylarge n,

    m < anbn < M

    mbn < an < Mbn

    If Mn=1

    bn converges, so doesn=1

    an by Comparison Test.

    Similarly, if mn=1

    bn diverges, so doesn=1

    an.

    Math 55 Convergence Tests I 16/ 21

  • Limit Comparison Test

    Theorem

    Supposen=1

    an andn=1

    bn are series with positive terms. If

    limn

    anbn

    = c for some constant c > 0, then both series converge

    or both diverge.

    Proof. Let m,M > 0 such that m < c < M . For sufficientlylarge n,

    m < anbn < M

    mbn < an < Mbn

    If Mn=1

    bn converges, so doesn=1

    an by Comparison Test.

    Similarly, if mn=1

    bn diverges, so doesn=1

    an.

    Math 55 Convergence Tests I 16/ 21

  • Limit Comparison Test

    Theorem

    Supposen=1

    an andn=1

    bn are series with positive terms. If

    limn

    anbn

    = c for some constant c > 0, then both series converge

    or both diverge.

    Proof. Let m,M > 0 such that m < c < M . For sufficientlylarge n,

    m < anbn < M

    mbn < an < Mbn

    If Mn=1

    bn converges, so doesn=1

    an by Comparison Test.

    Similarly, if mn=1

    bn diverges, so doesn=1

    an.

    Math 55 Convergence Tests I 16/ 21

  • Limit Comparison Test

    Theorem

    Supposen=1

    an andn=1

    bn are series with positive terms. If

    limn

    anbn

    = c for some constant c > 0, then both series converge

    or both diverge.

    Proof. Let m,M > 0 such that m < c < M . For sufficientlylarge n,

    m < anbn < M

    mbn < an < Mbn

    If Mn=1

    bn converges, so doesn=1

    an by Comparison Test.

    Similarly, if mn=1

    bn diverges, so doesn=1

    an.

    Math 55 Convergence Tests I 16/ 21

  • Limit Comparison Test

    Theorem

    Supposen=1

    an andn=1

    bn are series with positive terms. If

    limn

    anbn

    = c for some constant c > 0, then both series converge

    or both diverge.

    Proof. Let m,M > 0 such that m < c < M . For sufficientlylarge n,

    m < anbn < M

    mbn < an < Mbn

    If Mn=1

    bn converges, so doesn=1

    an by Comparison Test.

    Similarly, if mn=1

    bn diverges, so doesn=1

    an.

    Math 55 Convergence Tests I 16/ 21

  • Limit Comparison Test

    The following corollary takes care of the case when limn

    anbn

    = 0

    or .

    Corollary

    Suppose thatn=1

    an andn=1

    bn are series with positive terms.

    i If limn

    anbn

    = 0 andn=1

    bn converges, thenn=1

    an also

    converges.

    ii If limn

    anbn

    = andn=1

    bn diverges, thenn=1

    an also

    diverges.

    Math 55 Convergence Tests I 17/ 21

  • Examples

    Example

    Show that the series

    n=2

    1

    n2 1 is convergent.

    Solution. Let an =1

    n2 1 and bn =1

    n2. Then

    limn

    anbn

    = limn

    n2

    n2 1 = 1 > 0.

    Sincen=2

    1

    n2converges, the series

    n=2

    1

    n2 1 also converges, bythe Limit Comparison Test.

    Math 55 Convergence Tests I 18/ 21

  • Examples

    Example

    Show that the series

    n=2

    1

    n2 1 is convergent.

    Solution. Let an =1

    n2 1 and bn =1

    n2.

    Then

    limn

    anbn

    = limn

    n2

    n2 1 = 1 > 0.

    Sincen=2

    1

    n2converges, the series

    n=2

    1

    n2 1 also converges, bythe Limit Comparison Test.

    Math 55 Convergence Tests I 18/ 21

  • Examples

    Example

    Show that the series

    n=2

    1

    n2 1 is convergent.

    Solution. Let an =1

    n2 1 and bn =1

    n2. Then

    limn

    anbn

    = limn

    n2

    n2 1

    = 1 > 0.

    Sincen=2

    1

    n2converges, the series

    n=2

    1

    n2 1 also converges, bythe Limit Comparison Test.

    Math 55 Convergence Tests I 18/ 21

  • Examples

    Example

    Show that the series

    n=2

    1

    n2 1 is convergent.

    Solution. Let an =1

    n2 1 and bn =1

    n2. Then

    limn

    anbn

    = limn

    n2

    n2 1 = 1

    > 0.

    Sincen=2

    1

    n2converges, the series

    n=2

    1

    n2 1 also converges, bythe Limit Comparison Test.

    Math 55 Convergence Tests I 18/ 21

  • Examples

    Example

    Show that the series

    n=2

    1

    n2 1 is convergent.

    Solution. Let an =1

    n2 1 and bn =1

    n2. Then

    limn

    anbn

    = limn

    n2

    n2 1 = 1 > 0.

    Since

    n=2

    1

    n2converges, the series

    n=2

    1

    n2 1 also converges, bythe Limit Comparison Test.

    Math 55 Convergence Tests I 18/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    . Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1 > 0.

    Sincen=2

    3n

    diverges, the seriesn=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    .

    Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1 > 0.

    Sincen=2

    3n

    diverges, the seriesn=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    . Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1 > 0.

    Sincen=2

    3n

    diverges, the seriesn=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    . Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1 > 0.

    Sincen=2

    3n

    diverges, the seriesn=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    . Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1

    > 0.

    Sincen=2

    3n

    diverges, the seriesn=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Examples

    Example

    Determine whether the series

    n=2

    3n3 + 4nn7 + 4

    converges or

    diverges.

    Solution. Let an =3n3 + 4nn7 + 4

    and bn =3n3n7

    =3n

    . Then

    limn

    anbn

    = limn

    n(3n3 + 4n)

    3n7 + 4

    = limn

    3n72 + 4n

    32

    3(n7 + 4)12

    = 1 > 0.

    Since

    n=2

    3n

    diverges, the series

    n=2

    3n4 + 4nn6 + 4

    also diverges, by

    the Limit Comparison Test.

    Math 55 Convergence Tests I 19/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the seriesn=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the series

    n=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • Exercises

    1 Determine whether each of the following series converges ordiverges.

    a.

    n=1

    lnn

    n3

    b.

    n=1

    e1n

    n2

    c.

    n=1

    n2 13n4 + 1

    d.

    n=1

    n + 2

    (n + 1)3

    e.

    n=1

    4 + 3n

    2n

    f.

    n=1

    n!

    nn

    g.

    n=1

    sin2 n

    n3

    h.

    n=1

    sin

    (1

    n

    )

    2 For what values of p is the series

    n=1

    n(1 + n2)p convergent?

    3 Prove the corollary to the Limit Comparison Test.

    Math 55 Convergence Tests I 20/ 21

  • References

    1 Stewart, J., Calculus, Early Transcendentals, 6 ed., ThomsonBrooks/Cole, 2008

    2 Dawkins, P., Calculus 3, online notes available athttp://tutorial.math.lamar.edu/

    Math 55 Convergence Tests I 21/ 21