185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

  • View
    0

  • Download
    0

Embed Size (px)

Text of 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Ch. Rajani Kumari, Ph.D., Thesis 2010 References...

  • Ch. Rajani Kumari, Ph.D., Thesis 2010 References

    185

    1. Abalos, A. Physicochemical and antimicrobial properties of new rhamnolipids

    produced by Pseudomonas aeruginosa AT10 from soyabean oil refinery wastes.

    Langmuir; 2001; 17; pp 1367–1371.

    2. Akio Ueno, Mohammad Hasanuzzaman, Isao Yumoto, Hidetoshi

    Okuyama.Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas

    aeruginosa Strain Wat G in Soil Microcosms; Current microbiology ; 2006 ; 52; pp

    182–185.

    3. Alexander M. Biodegradation and Bioremediation. Academic Press, Harcourt

    Brace & Company publishers; 1994; pp1-443.

    4. Alexander M. How toxic are toxic chemicals in soil. Environmental Science and

    Technology; 1995, 24; pp 1156-1162.

    5. Anderson .T.H, Joergensen R.G. Relationship between SIR and FE estimates of

    microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem.

    1997; 29; pp 1033–1042.

    6. Anderson. T.H, Domsch K.H. The metabolic quotient for CO2 (q CO2) as a specific

    activity parameter to assess the effects of environmental conditions, such as pH,

    on the microbial biomass of forest soils. Soil Biol. Biochem. ; 1993 ; 25(3) ;pp 393-

    395 .

    7. Aparna.C, Saritha.P, Himabindu.V, Anjaneyulu.Y. Techniques for the evaluation

    of maturity for composts of industrially contaminated lake sediments.2007,pp

    8. APHA, AWWA, WEF .Standard methods for the examination of water and

    wastewater. American Public Health Association, American Water Works

    Association, and Water Environment Federation, Washington, D.C.; (1998), 19th

    edn . Appl. Microbiol., Vol. 89, pp. 158-168.

    9. Arino. S, Marchal R and Vandecasteele J P. Identification and Production of a

    Rhamnolipid Biosurfactant by a Pseudomonas species, Appl. Microbiol.

    Biotechnol.; (1996) ; 45 ; pp 162-168 .

    10. Asha A, Juwarkar, Anupa Nair, Kirti V. Dubey, S.K. Singh, Sukumar Devotta

    Biosurfactant technology for remediation of cadmium and lead contaminated

    soils. Chemosphere; August 2007; Volume 68; Issue 10; Pages 1996-2002.

    11. Bai GY, Brusseau ML, Miller RM. Influence of cation type, ionic strength, and pH

    on solubilization and mobilization of residual hydrocarbon by a biosurfactant. J

    Cont Hydrol ; 1998; 30 ;pp 265–279.

  • Ch. Rajani Kumari, Ph.D., Thesis 2010 References

    186

    12. Bai, G., L. M., Brusseau and R. M. Miller, Influence of rhamnolipid biosurfactants

    in: Biotechnology, 421-457.

    13. Bai.G, Brusseau. M.L, Miller R.M. Biosurfactant-enhanced removal of residual

    hydrocarbon from soil. J. Contam. Hydrol ; 1997 ; 24;pp 157–170.

    14. Baker. MD, Mayfeild C.I and Inniss W.E. Degradation of Chlorophenols in soils,

    sediment and water at low temperature. Water Res; 1980; 14; pp1765-1771.

    15. Balba M.T.,Al-Awadhi N. ,Al-Daher R. Bioremediation of oil contaminated soil:

    microbiological methods for feasibility assessment and field evaluation. Journal of

    Microbiological Methods 32 .1998; pp155-164.

    16. Banat I.M. Biosurfactant production and possible uses in microbial Enhanced oil

    recovery and oil pollution remediation: a review. Bioresource Technol; 1995; 51;

    pp 1–12.

    17. Banat IM, Samarah N, Murad M, Horne R, Banerjee S. Biosurfactant production

    and use in oil tank clean-up. World J Microbiol Biotechnol; 1991; 7; pp 80-84.

    18. Barber W.P and Stuckey D.C.Nitrogen Removal in a Modified Anaerobic za

    aesrass\4ertBaffled Reactor (ABR):1. Denitrification.Wat. Res; 2000; Vol. 10 ; pp. 2413-2422 .

    19. Beal R and Betts W B. “Role of Rhamnolipid Biosurfactants in the Uptake and

    Mineralization of Hexadecane in Pseudomonas aeruginosa”, J. Appl.Microbiol.,

    (2000), Vol. 89, pp. 158-168.

    20. Bednarski, W. Application of oil refinery waste in biosynthesis of glycolipids by

    yeast. Bioresource Techn. 2004; 95; pp 15–18 .

    21. Benincasa. M, Contiero J, Manresa M. A and Moraes I O. Rhamnolipid Production

    by Pseudomonas aeruginosa LBI Growing on Soap Stock as the Sole Carbon

    Source. J. Food. Eng; 2002; 54; pp 283-288.

    22. Benincasa. M. Chemical structure, surface properties and biological activities of

    the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock.

    Anton. Leeuw. Int. J. G.; 2004; 85; pp 1–8.

    23. Bento.F.M, Camargo, FAO., Okeke. B.C., Frankenberger. W.T. Comparative

    bioremediation of soils contaminated with diesel oil by natural attenuation,

    biostimulation and bioaugmentation. Bioresource Technology; 2005; 96; pp 1049-

    1055.

  • Ch. Rajani Kumari, Ph.D., Thesis 2010 References

    187

    24. Bhushan.B., Chauhan, A., Samanta, S. K. and Jain, R. K. Kinetics of

    biodegradation of p-nitrophenol by different bacteria. Biochem. Biophys. Res.

    Commun.; 2000; 274; pp 626–630.

    25. Bognolo.G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf;

    1999; 152; pp 41–52.

    26. Boonchan.S, Britz M.L, Stanley GL. Degradation and mineralization of high-

    molecular-weight polycyclic aromatic hydrocarbons by defined fungal–bacterial

    cocultures. Appl Environ Microbiol; 2000; 66:pp1007–1019.

    27. Boonchan.S, Britz.M.L, Stanley.G.A. Surfactant-enhanced biodegradation of high

    molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas

    maltophilia. Biotechnol. Bioeng; 1998; 59; pp 482-494.

    28. Bordas F, Lafrance P, Villemur R. Conditions for effective removal of pyrene from

    an artificially contaminated soil using Pseudomonas aeruginosa 57SJ

    rhamnolipids; Environ Pollut; 2005; 138; pp 69–76.

    29. Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP.

    Diversity of bacterial strains degrading hexadecane in relation to the mode of

    substrate uptake. J. Appl. Microbiol; 1999; 86; pp 421-428.

    30. BoydS.A, Shelton,D.R, Berry,D and Tiedje, J.M. Anaerobic biodegradation of

    Phenolic compounds in digested sludge. Appl.Environ.microbial ; 1983 ; (46) ; pp

    52-54.

    31. Bragg, J.R, Prince, R.C, Harner E.J, Atlas, R.M. Effectiveness of bioremediation for

    the Exxon Valdez oil spill; Nature; 368, 1994; pp 413–418.

    32. Brookes, P.C. The potential of microbiological properties as indicators in soil

    pollution monitoring. In : Schulin R., Desaules A., Webster R., Von Steiger

    B.(Eds.), Soil Monitoring; 1993.

    33. Brookes, P.C., Mc Grath, S.P. Effects of metal toxicity on the size of the soil

    microbial biomass. J. Soil Sci, 1984: 35; pp 341-346.

    34. Burger M.M., L. Glaser and R.M. Burton. The enzymatic synthesis of rhamnose-

    containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem;

    1963; 238; pp 2595-2602.

    35. Caetano M, Madureira M-J,ValeC. Metal remobilisation during resuspension of

    anoxic contaminated sediment: short-term laboratory study. Water Air Soil

    Pollution; 2002; 143 (14); pp 23–40.

  • Ch. Rajani Kumari, Ph.D., Thesis 2010 References

    188

    36. Calmano W, Hong J, Forstner U. Binding and mobilisation of heavy metals in

    contaminated sediments affected by pH and redox potential. Water Sci Technol;

    1993; 28 (8 – 9); pp 223– 35.

    37. Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons.

    Biodegradation; 1992; 3; pp 351–368.

    38. Cerniglia. CE. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv

    Appl Microbiol; 1984; 30; pp 31–71.

    39. Chakrabarty.T, Subrahmanyam P.V.R, Sundaresan B.B. Biodegradation of

    recalcitrant industrial wastes, Ed: Wise, D, Biotreatment Systems; 1988; 2; pp

    172-234

    40. Chandrasekaran, E. V, and Bemiller, J. N.. In L. Wrhiste, & M. L. Wolfrom (Eds.),

    Methods in carbohydrate chemistry New York: Academic. 1980; Vol. III, pp. 89–97.

    41. Chang J.S. Rhamnolipid Production by Indigenous Pseudomonas aeruginosa sJ4

    Originating from Petrochemical Wastewater. Biochemical Engineering Journal;

    2005; 27; pp. 146 – 154.

    42. Chayabutra, C., Jian Wu. and J. Lu. Kwang. Rhamnolipid production by

    Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and

    carbon sources, Biotechnol. Bioeng., 2001,72,(1), 25-33.

    43. Chen W, Kan AT, Fu G, Tomson M . Factors affecting the release of hydrophobic

    organic contaminants from natural sediments. Environ Toxicol Chem; 2000;

    19(10): 24; pp 1 –8.

    44. Chen Y.C., Banks. M.K., and Schwab A.P. Pyrene degradation in the rhizosphere

    of tall Fescue (Festuca arundinacea) and Switch grass (Panicum virgatum L)

    Env.Sci & Tech; 2003; 37; pp 5778-5782.

    45. Cheung. K.C, Zhang J.Y, HH Deng, YK Ou, HM Leung, SC Wu, MH

    Wong.Interaction of higher plant (Jute), electrofused bacteria and mycorrhiza on

    anthracene biodegradation Bioresource Technology; 2008; 99; 7; pp 2148-2155.

    46. Chiou C.T, Mc Groddy SE, Kile DE. Partition characteristics of polycyclic aromatic

    hydrocarbons on soils and sediments. Environ Sci Technol;