21
Ch. Rajani Kumari, Ph.D., Thesis 2010 References 185 1. Abalos, A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soyabean oil refinery wastes. Langmuir; 2001; 17; pp 1367–1371. 2. Akio Ueno, Mohammad Hasanuzzaman, Isao Yumoto, Hidetoshi Okuyama.Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain Wat G in Soil Microcosms; Current microbiology ; 2006 ; 52; pp 182–185. 3. Alexander M. Biodegradation and Bioremediation. Academic Press, Harcourt Brace & Company publishers; 1994; pp1-443. 4. Alexander M. How toxic are toxic chemicals in soil. Environmental Science and Technology; 1995, 24; pp 1156-1162. 5. Anderson .T.H, Joergensen R.G. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem. 1997; 29; pp 1033–1042. 6. Anderson. T.H, Domsch K.H. The metabolic quotient for CO2 (q CO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. ; 1993 ; 25(3) ;pp 393- 395 . 7. Aparna.C, Saritha.P, Himabindu.V, Anjaneyulu.Y. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments.2007,pp 8. APHA, AWWA, WEF .Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C.; (1998), 19th edn . Appl. Microbiol. , Vol. 89, pp. 158-168. 9. Arino. S, Marchal R and Vandecasteele J P. Identification and Production of a Rhamnolipid Biosurfactant by a Pseudomonas species, Appl. Microbiol. Biotechnol.; (1996) ; 45 ; pp 162-168 . 10. Asha A, Juwarkar, Anupa Nair, Kirti V. Dubey, S.K. Singh, Sukumar Devotta Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere; August 2007; Volume 68; Issue 10; Pages 1996-2002. 11. Bai GY, Brusseau ML, Miller RM. Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. J Cont Hydrol ; 1998; 30 ;pp 265–279.

185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

185

1. Abalos, A. Physicochemical and antimicrobial properties of new rhamnolipids

produced by Pseudomonas aeruginosa AT10 from soyabean oil refinery wastes.

Langmuir; 2001; 17; pp 1367–1371.

2. Akio Ueno, Mohammad Hasanuzzaman, Isao Yumoto, Hidetoshi

Okuyama.Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas

aeruginosa Strain Wat G in Soil Microcosms; Current microbiology ; 2006 ; 52; pp

182–185.

3. Alexander M. Biodegradation and Bioremediation. Academic Press, Harcourt

Brace & Company publishers; 1994; pp1-443.

4. Alexander M. How toxic are toxic chemicals in soil. Environmental Science and

Technology; 1995, 24; pp 1156-1162.

5. Anderson .T.H, Joergensen R.G. Relationship between SIR and FE estimates of

microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem.

1997; 29; pp 1033–1042.

6. Anderson. T.H, Domsch K.H. The metabolic quotient for CO2 (q CO2) as a specific

activity parameter to assess the effects of environmental conditions, such as pH,

on the microbial biomass of forest soils. Soil Biol. Biochem. ; 1993 ; 25(3) ;pp 393-

395 .

7. Aparna.C, Saritha.P, Himabindu.V, Anjaneyulu.Y. Techniques for the evaluation

of maturity for composts of industrially contaminated lake sediments.2007,pp

8. APHA, AWWA, WEF .Standard methods for the examination of water and

wastewater. American Public Health Association, American Water Works

Association, and Water Environment Federation, Washington, D.C.; (1998), 19th

edn . Appl. Microbiol., Vol. 89, pp. 158-168.

9. Arino. S, Marchal R and Vandecasteele J P. Identification and Production of a

Rhamnolipid Biosurfactant by a Pseudomonas species, Appl. Microbiol.

Biotechnol.; (1996) ; 45 ; pp 162-168 .

10. Asha A, Juwarkar, Anupa Nair, Kirti V. Dubey, S.K. Singh, Sukumar Devotta

Biosurfactant technology for remediation of cadmium and lead contaminated

soils. Chemosphere; August 2007; Volume 68; Issue 10; Pages 1996-2002.

11. Bai GY, Brusseau ML, Miller RM. Influence of cation type, ionic strength, and pH

on solubilization and mobilization of residual hydrocarbon by a biosurfactant. J

Cont Hydrol ; 1998; 30 ;pp 265–279.

Page 2: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

186

12. Bai, G., L. M., Brusseau and R. M. Miller, Influence of rhamnolipid biosurfactants

in: Biotechnology, 421-457.

13. Bai.G, Brusseau. M.L, Miller R.M. Biosurfactant-enhanced removal of residual

hydrocarbon from soil. J. Contam. Hydrol ; 1997 ; 24;pp 157–170.

14. Baker. MD, Mayfeild C.I and Inniss W.E. Degradation of Chlorophenols in soils,

sediment and water at low temperature. Water Res; 1980; 14; pp1765-1771.

15. Balba M.T.,Al-Awadhi N. ,Al-Daher R. Bioremediation of oil contaminated soil:

microbiological methods for feasibility assessment and field evaluation. Journal of

Microbiological Methods 32 .1998; pp155-164.

16. Banat I.M. Biosurfactant production and possible uses in microbial Enhanced oil

recovery and oil pollution remediation: a review. Bioresource Technol; 1995; 51;

pp 1–12.

17. Banat IM, Samarah N, Murad M, Horne R, Banerjee S. Biosurfactant production

and use in oil tank clean-up. World J Microbiol Biotechnol; 1991; 7; pp 80-84.

18. Barber W.P and Stuckey D.C.Nitrogen Removal in a Modified Anaerobic za

aesrass\4ertBaffled Reactor (ABR):1. Denitrification.Wat. Res; 2000; Vol. 10 ; pp.

2413-2422 .

19. Beal R and Betts W B. “Role of Rhamnolipid Biosurfactants in the Uptake and

Mineralization of Hexadecane in Pseudomonas aeruginosa”, J. Appl.Microbiol.,

(2000), Vol. 89, pp. 158-168.

20. Bednarski, W. Application of oil refinery waste in biosynthesis of glycolipids by

yeast. Bioresource Techn. 2004; 95; pp 15–18 .

21. Benincasa. M, Contiero J, Manresa M. A and Moraes I O. Rhamnolipid Production

by Pseudomonas aeruginosa LBI Growing on Soap Stock as the Sole Carbon

Source. J. Food. Eng; 2002; 54; pp 283-288.

22. Benincasa. M. Chemical structure, surface properties and biological activities of

the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock.

Anton. Leeuw. Int. J. G.; 2004; 85; pp 1–8.

23. Bento.F.M, Camargo, FAO., Okeke. B.C., Frankenberger. W.T. Comparative

bioremediation of soils contaminated with diesel oil by natural attenuation,

biostimulation and bioaugmentation. Bioresource Technology; 2005; 96; pp 1049-

1055.

Page 3: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

187

24. Bhushan.B., Chauhan, A., Samanta, S. K. and Jain, R. K. Kinetics of

biodegradation of p-nitrophenol by different bacteria. Biochem. Biophys. Res.

Commun.; 2000; 274; pp 626–630.

25. Bognolo.G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf;

1999; 152; pp 41–52.

26. Boonchan.S, Britz M.L, Stanley GL. Degradation and mineralization of high-

molecular-weight polycyclic aromatic hydrocarbons by defined fungal–bacterial

cocultures. Appl Environ Microbiol; 2000; 66:pp1007–1019.

27. Boonchan.S, Britz.M.L, Stanley.G.A. Surfactant-enhanced biodegradation of high

molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas

maltophilia. Biotechnol. Bioeng; 1998; 59; pp 482-494.

28. Bordas F, Lafrance P, Villemur R. Conditions for effective removal of pyrene from

an artificially contaminated soil using Pseudomonas aeruginosa 57SJ

rhamnolipids; Environ Pollut; 2005; 138; pp 69–76.

29. Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP.

Diversity of bacterial strains degrading hexadecane in relation to the mode of

substrate uptake. J. Appl. Microbiol; 1999; 86; pp 421-428.

30. BoydS.A, Shelton,D.R, Berry,D and Tiedje, J.M. Anaerobic biodegradation of

Phenolic compounds in digested sludge. Appl.Environ.microbial ; 1983 ; (46) ; pp

52-54.

31. Bragg, J.R, Prince, R.C, Harner E.J, Atlas, R.M. Effectiveness of bioremediation for

the Exxon Valdez oil spill; Nature; 368, 1994; pp 413–418.

32. Brookes, P.C. The potential of microbiological properties as indicators in soil

pollution monitoring. In : Schulin R., Desaules A., Webster R., Von Steiger

B.(Eds.), Soil Monitoring; 1993.

33. Brookes, P.C., Mc Grath, S.P. Effects of metal toxicity on the size of the soil

microbial biomass. J. Soil Sci, 1984: 35; pp 341-346.

34. Burger M.M., L. Glaser and R.M. Burton. The enzymatic synthesis of rhamnose-

containing glycolipid by extracts of Pseudomonas aeruginosa. J. Biol. Chem;

1963; 238; pp 2595-2602.

35. Caetano M, Madureira M-J,ValeC. Metal remobilisation during resuspension of

anoxic contaminated sediment: short-term laboratory study. Water Air Soil

Pollution; 2002; 143 (14); pp 23–40.

Page 4: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

188

36. Calmano W, Hong J, Forstner U. Binding and mobilisation of heavy metals in

contaminated sediments affected by pH and redox potential. Water Sci Technol;

1993; 28 (8 – 9); pp 223– 35.

37. Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons.

Biodegradation; 1992; 3; pp 351–368.

38. Cerniglia. CE. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv

Appl Microbiol; 1984; 30; pp 31–71.

39. Chakrabarty.T, Subrahmanyam P.V.R, Sundaresan B.B. Biodegradation of

recalcitrant industrial wastes, Ed: Wise, D, Biotreatment Systems; 1988; 2; pp

172-234

40. Chandrasekaran, E. V, and Bemiller, J. N.. In L. Wrhiste, & M. L. Wolfrom (Eds.),

Methods in carbohydrate chemistry New York: Academic. 1980; Vol. III, pp. 89–97.

41. Chang J.S. Rhamnolipid Production by Indigenous Pseudomonas aeruginosa sJ4

Originating from Petrochemical Wastewater. Biochemical Engineering Journal;

2005; 27; pp. 146 – 154.

42. Chayabutra, C., Jian Wu. and J. Lu. Kwang. Rhamnolipid production by

Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and

carbon sources, Biotechnol. Bioeng., 2001,72,(1), 25-33.

43. Chen W, Kan AT, Fu G, Tomson M . Factors affecting the release of hydrophobic

organic contaminants from natural sediments. Environ Toxicol Chem; 2000;

19(10): 24; pp 1 –8.

44. Chen Y.C., Banks. M.K., and Schwab A.P. Pyrene degradation in the rhizosphere

of tall Fescue (Festuca arundinacea) and Switch grass (Panicum virgatum L)

Env.Sci & Tech; 2003; 37; pp 5778-5782.

45. Cheung. K.C, Zhang J.Y, HH Deng, YK Ou, HM Leung, SC Wu, MH

Wong.Interaction of higher plant (Jute), electrofused bacteria and mycorrhiza on

anthracene biodegradation Bioresource Technology; 2008; 99; 7; pp 2148-2155.

46. Chiou C.T, Mc Groddy SE, Kile DE. Partition characteristics of polycyclic aromatic

hydrocarbons on soils and sediments. Environ Sci Technol; 1998; 32(2); pp 264–

269.

47. Christofi. N, Ivshina IB. Microbial surfactants and their use in field studies of soil

remediation. J Appl Microbiol ; 2002; 93; pp 915–29.

Page 5: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

189

48. Clark.C.G and Wright S, J.L. Detoxication of isopropy; l-n-phenyl carbamate and

iso propyl-n-3chlorophenyl carbamate in soil and isolation of iso propyl-n-phenyl

carbamate metabolizing bacteria. Soil Biol. Bio chem.; 1970; (2); pp 19-26.

49. Cooper, D. G., and B. G. Goldenberg. Surface active agents from two Bacillus

species. Appl. Environ. Microbiol.; 1987; 53; pp 224–229.

50. Cooper, D.G; Biosurfactants. Microb. Sci; 3; pp 145–149.

51. Cunningham. C.J, Ivshina I.B, Lozinsky V.I, Kuyukina M.S, Philp. J.C;

Bioremediation of diesel-contaminated soil by microorganisms immobilised in

polyvinyl alcohol. Int Biodeter Biodegradation 2004; 54; pp 167– 174.

52. Das, K.; Mukherjee, A.K. Comparison of lipopeptide biosurfactants production by

Bacillus subtilis strains in submerged and solid state fermentation systems using

a cheap carbon source: some industrial applications of biosurfactants. Process

Biochem. 2007, 42, 1191–1199.

53. Dave .H, Ramakrishna .C, Bhatt BD, Desai JD .Biodegradation of slope oil from

petroleum Industry and bioreclamation of slop oil contaminated soil. World J

Microbiol Biotechnol; 1994; 10; pp 653-656.

54. Daziel. E, Paquette G, Vellemur R, Lepins F, Bisaillnon JG. Biosurfactant

production by a soil Pseudomonas strain growing on PAH's. Appl Environ

Microbiol; 1996; 62; pp 1908 – 1912.

55. Del ‘Arco JP, de Franca FP. Influence of oil contamination levels on hydrocarbon

biodegradation in sandy sediments. Environ Pollut; 2001; 110; pp 515-519.

56. Desai. A.J., R.M. Patel, and J.D. Desai. Advances in production of biosurfactants

and their commercial applications. J. Sci. Ind. Res.; 1994; 53; pp 619–629.

57. Desai. J.D and Banat I M; Microbial Production of Surfactants and their

Commercial Potential Microbiol. Mol. Biol. Rev.; 1997; 61; pp 47 – 64.

58. Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM. Toxicity of

cadmium in sediments; the role of acid volatile sulfide Environ Toxicol

Chem;1990; 9; 1; pp 487–502.

59. Dibble J.T, Bartha R. Effect of environmental parameters of the biodegradation of

oil sludge. Appl. Environ Microbial; 1979; 37; pp 729-739.

60. Dilly O. Microbial respiratory quotient during basal metabolism and after glucose

amendment in soils and litter. Soil biology & biochemistry; 2001; 33; pp 117-127.

Page 6: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

190

61. Dubey. K and Juwarkar.A. Determination of genetic basis for biosurfactant

production in distillery and curd whey wastes utilizing Pseudomonas aeruginosa

strain BS2. Indian J. Biotechnol.; 2004; 3; pp 74–81.

62. Dubey.K. and Juwarkar.A. Determination of genetic basis for biosurfactant

production in distillery and curd whey wastes utilizing as viable alternative

sources for biosurfactant production. World J. Microbiol. Biotechnol.; 2001; 17;

pp 61–69.

63. European soil portal>JRC>Land management and natural hazards unit>soil

themes> soil contamination.

64. Fan W, Wang W-X, Chen J, Li X, Yen Y-F. Cu, Ni and Pb speciation in surface

sediments from a contaminated bay of northern China. Mar Pollut Bull; 2002; 44;

pp 816– 32.

65. Ferraz.C. The influence of vegetable oils on biosurfactant production by Serratia

marcescens. Appl. Biochem. Biotechnol; 2002; 98–100; pp 841–847.

66. Fiebig.R, Schulze D, Chung JC, Lee ST.Biodegradation of polychlorinated

biphenyls (PCBs) in the presence of a bio-emulsifier produced on sunflower oil;

1997; 8; pp 67-75.

67. Fiecther.A. Biosurfactants: Moving Towards Industrial Application. Trends

Biotechnol.; 1992; 10; pp 208-217.

68. Francisco J. Ochoa-Loza, Wouter H. Noordman, Dick B. Jannsen, Mark L.

Brusseau, Raina.M.Maier. Effect of clays, metal oxides, and organic matteron

rhamnolipid biosurfactant sorption by soil. Chemosphere; 2007; 66; pp 1634–

1642.

69. Franco,I., Contin.M., Bragato.G., De Nobili.M., Microbiological resilience of soils

contaminated with crude oil. Geoderma., 2004 121; pp 17-30.

70. Frische. T, H.Hoper. Soil microbial parameters and luminescent bacteria assays

as indicators for in situ bioremediation of TNT-contaminated soils, Chemosphere;

2003; 50; pp 415–427.

71. Georgiou.G., Lin S.C. and Sharma M.M. Surface active compounds from

microorganisms. BioTechnology; 1992; 10; pp 60-65.

72. Ghosh.M. M., I. T. Yeom, Z. Shi, C. D. Cox, and K. G. Robinson. Surfactant-

enhanced bioremediation of PAH- and PCB-contaminated soils, In R. E. Hinchee,

C.M. Vogel, and F.J. Brockman (ed.), Third International In Situ and On-Site

Page 7: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

191

Bioreclamation Symposium. Battelle Press, Columbus, Ohio 2 references. pp 15–

23.

73. Gillie.J.K, Hochlowski J, Arbuckle-Keil GA. Infrared spectroscopy. Anal Chem;

2000; 72; pp 71-80.

74. Golyshin. PM, Fredrickson HL, Giuliano L, Rothmel R, Timmis KN, Yakimov

MM.Effect of novel biosurfactants on biodegradation of polychlorinated biphenyls

by pure and mixed bacterial cultures. New Microbiol; 1999; 22; pp 257-267.

75. Goodfellow. M., Williams and Wilkins Co., Baltimore. In: Williams, S.T., Sharpe,

M.E., Holt, J.G Genus Rhodococcus Zopf (Eds.); Bergey’s Manual of Systematic

Bacteriology; 1989; 4; pp 2362–2371.

76. Goossens.H, Zwolsman.JJG. An evaluation of the behaviour of pollutants during

dredging activities. Terra et Aqua; 1996; 62; pp 20–27.

77. Goulding.C, Gallen.C.J, Bolten.E. Biodegradation of substitutions benzenes, J.

Appl. Bacteriol; 1988; 65; pp 1-6.

78. Guerin. WF, Boyd SA; Differential bioavailability of soil sorbed Naphthalene to two

bacterial species; Appl Environ Microbiol 1992; 58; pp 1142 – 1152.

79. Guerra-Santos, L. H., O. Kappeli, and A. Flechter . Dependence of Pseudomonas

aeruginosa continuous culture biosurfactant production on nutritional and

environmental factors. Appl. Microbiol. Biotechnol; 1986; 24; pp 443–448.

80. Guerra-Santos. L.H., O. Kappeli, and A. Fiechter. Pseudomonas aeruginosa

biosurfactant production in continuous culture with glucose as carbon source.

Appl. Environ. Microbiol; 1984; 48; pp 301–305.

81. Haba. E, M.J. Espuny, M.Busquets and A. Manresa. Screening and production of

rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying

oils. J. Appl. Microbiol.; 2000; 88; pp 379-387.

82. Haberhauer, G.; Feigl, B.; Gerzabek, M.H.; Cerri, C. FT-IR spectroscopy of organic

matter in tropical soils: changes induced through deforestation. Appl. Spectrosc.

2000, 54, pp 221–224.

83. Haferburg. D., Hommel R., Claus R., Kleber H.P. Extracellular microbial lipids as

biosurfactants. Adv. Biochem. Eng. Biotechnol. 33- 53.

84. Hammond .M.W. and Alaxander .M. Effect of chemical structure on microbial

degradation of methyl substituted aliphatic acids, Environ. sci. Technol; 1972; 6;

pp 732 – 735.

Page 8: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

192

85. Helvaci S.S, Pecker S.O, zdemir. G. Effect of electrolytes on the surface behavior of

rhamnolipids R1 and R2. Colloids Surf. B: Biointerfaces; 2004; 35; pp 225–233.

86. Herman, D.C.; Artiola, J.F.; Miller, R.M. Removal of cadmium, lead, and zinc from

soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 1995, 29, 2280–2285.

87. Herman. D.C., Zhang, Y., Miller, R.M .Rhamnolipid (biosurfactant) effects on cell

aggregation and biodegradation of residual hexadecane under saturated flow

conditions. Appl. Environ. Microbiol; 1997; 63, pp 3622-3627.

88. Hewald, S. Genetic analysis of biosurfactant production in Ustilago maydis. Appl.

Environ. Microbiol. 2005; 71; pp 3033–3040.

89. Hirai, M.F, Chanyasart, V, Kubota,H. A standard measurement for composting

maturity, Biocycle; 1983; 24; pp 54-56.

90. Hollender J, Althoff K., Mundt M., Dott W. Assessing the microbial activity of soil

samples, its nutrient limitation and toxic effects of contaminants using a sample

respiration test. Chemosphere; 2003; 53; pp 269-275.

91. Hwang.S., Cutright.T.J. Biodegradability of aged pyrene and phenanthrene in a

natural soil. Chemosphere; 2002; 47(9); pp 891-899.

92. Insam H., Hutchinson, T.C., Reber, H.H. Effects of heavy metal stress on the

metabolic quotient if the soil microflora. Soil Biol. Biochem., 1996; 28; pp 691-

694.

93. Itoh. S, Suzuki T. Effect of rhamnolipids on growth of Pseudomonas aeruginosa

mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem; 1972; 36; pp 22-

33.

94. Jackson A. W., Pardue J. H. & Araujo R. A. Monitoring of crude oil mineralization

in salt marshes: use of stable carbon isotope ratios. Environ Sci Technol; 1996;

30; pp 1139-1144.

95. Jackson. WA, Pardue JH. Assessment of metal inhibition of reductive

dechlorination of hexachlorobenzene at a Superfund site. Environ Toxicol Chem;

1998; 17; pp 1441–1446.

96. Jain, D.K. Collins-Thompson, D.L., Lee, H.and Trevors, J.T. A drop-collapsing test

for screening surfactant-producing microorganisms, Journal of Microbiological

Methods; 1991; 13; pp 271-279.

Page 9: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

193

97. Jane-Yii Wu, Kuei-Ling Yeh, Wei-Bin Lu, Chung-Liang Lin, Jo-Shu Chang.

Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated

from oil-contaminated site. Bioresource Technology; 2008; 99; 5; pp 1157-1164.

98. Javaheri.M., Jenneman.G.E., McInnerney M.J., and R. M. Knapp. Anaerobic

production of a biosurfactant by Bacillus licheniformis JF 2.Appl. Environ.

Microbiol; 1985; 50; pp 698–700.

99. Jenkinson. V.S, Brookes P.D, Powslon D.S. Measuring soil microbial biomass. Soil

biology and Biochemistry; 2004; 36(1); pp 5-7.

100. Johnson DL, Anderson DR, McGrath SP; Soil microbial response during the

Phytoremediation of a PAH contaminated soil Soil Biology. Biochemistry; 2005; 37:

pp 2334–2336.

101. Kaiser. E.A., Mueller, T., Joergensen R.G., Insam .H, Heinemeyer.O. Evaluation

of methods to estimate the soil microbial biomass and the relationship with soil

texture and organic matter. Soil. Biol. Biochem; 1992; 24 (7); pp 675–683 .

102. Khanitta Somtrakoon ,Sudarat Suanjit , Prayad Pokethitiyook, Maleeya

Kruatrachue ,Hung Lee ,Suchart Upatham. Enhanced Biodegradation of

Anthracene in Acidic Soil by Inoculated Burkholderia sp. VUN10013, Curr

Microbiol; 2008; 57: pp102–106.

103. Kim IS, Park J, Kim K. Enhanced biodegradation of polycyclic aromatic

hydrocarbons using nonionicsurfactants in soil slurry. Appl Geochem; 2001a; 16:

pp1419–1428

104. Kim. H. S, Jeon J W, Kim B H, Ahn C Y, Oh H M and Yoon B D. Extra Cellular

Production of a Glycolipid Biosurfactant, Mannosylerythritol Lipid, by Candida sp.

SY16 Using Fed-Batch Fermentation. Appl. Microbiol. Biotechnol.; 2006; 70; pp.

391-396 .

105. Knackmuss, H.J. Basic knowledge and perspectives of bioelimination of

xenobiotic compounds. J Biotechnol; 1996; 51; pp 287-295.

106. Koch A.K, Kaeppeli .O, Fiecther. A and Reiser J.Hydrocarbon Assimilation and

Biosurfactant Production in Pseudomonas aeruginosa Mutants, J. Bacteriol.;

1991; 173; pp 4212-4219.

107. Kördel. W., Hennecke D. and Herrmann M.; Application of the HPLC-screening

method for the determination of the adsorption coefficient on sewage sludges

Chemosphere; 1997; 35, 1-2; pp 121-128

Page 10: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

194

108. Kosaric N. Biosurfactants and their application for soil bioremediation. Food

Technol Biotechnology; 2001; 39; pp 295–304.

109. Kosaric. N, N.C.C. Gray, and W. L. Cairns. Microbial emulsifiers and de-

emulsifiers, In H.J. Rehm and G.Reed (ed.), Biotechnology; 1983; 3; pp 575–592.

110. Kuyukina.M.S. Recovery of Rhodococcus biosurfactants using methyl tertiary-

butyl ether extraction.J. Microbiol. Meth; 2001; 46; pp 149–156.

111. Kwok C.K., Loh K.C. Effects of Singapore soil type on bioavailability of nutrients

in soil bioremediation. Advances in Environmental Research; 2003; 7(4); pp 889-

900.

112. Kyung-Hee Shin, Kyoung-Woong Kim and Ju-Yong Kim, Kyung-Eun Lee and

Sung-Sik Han. Rhamnolipid Morphology and Phenanthrene Solubility at Different

pH Values, J. Environ. Qual; 2008; 37; pp 509–514.

113. Kyung-Taek Oh, Young-Ju Kim, Van Nam Nguyen, Woo-Jin Jung, Ro-Dong Park

; Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process

Biochemistry; 2007; 42; 7; pp 1069-1074.

114. Lajoie. C.A., Layton, A.C., Easter, J.P., Menn, F.M. and Sayler, G.S. Degradation

of nonionic surfactants and polychlorinated biphenyls by recombinant field

application vectors. Journal of Industrial Microbiology & Biotechnology; 1997; 19;

pp 252-262.

115. Lamoureux EM, Brownawell BJ. Chemical and biological availability of

sediment-sorbed hydrophobic organic contaminants. Environ Toxicol Chem; 1999;

18(8):17; pp 33–41.

116. Li X, Shen Z, Wai OWH, Li Y-S. Chemical partitioning of heavy metal

contaminants in sediments of the Pearl River Estuary. Chem Speciat Bioavailab;

2000; 12(1); pp 17 – 25.

117. Liang-Ming Whang, Pao-Wen G. Liu, Chih-Chung Ma and Sheng-Shung Cheng.

Application of biosurfactants, rhamnolipid, and surfactin, for enhanced

biodegradation of diesel-contaminated water and soil. Journal of Hazardous

Materials; 2008; 151; pp155-163.

118. Lorch, H.J., Benckieser, G., Ottow, J.C.G., Basic methods for counting

microorganisms in soil and water. In: Alef, K., Nannipieri, P (Eds.), methods in

Applied Soil Microbiology, 1995.

Page 11: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

195

119. Luoma SN. Bioavailability of trace metals to aquatic organisms—a review. Sci

Total Environ; 1983; 28; pp 1– 22.

120. Lyman WJ. Transport and transformation processes. In: Rand GM, editor.

Fundamentals of aquatic toxicology: Effects, environmental fate, and risk

assessment. Second edition. USA: Taylor and Francis; 1995.

121. Ma.H, DaiS, Huang.G. Distribution of tributyltin chloride in laboratory

simulated estuarine microcosms Water Res; 2000; 34(10); pp 28-29.

122. Maier R.M and Chavez G.S. Pseudomonas aeruginosa Rhamnolipids.

Biosynthesis and Potential Applications. Appl. Microbiol. Biotechnol.; 2000; 54; pp

625-633.

123. Maier, R.M.; Soberón-Chávez, G. Pseudomonas aeruginosa rhamnolipids:

biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 2000, 54,

625–633.

124. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, and Holliger

C..Characterization of the Corrinoid Iron-Sulfur Protein Tetrachloroethene

Reductive Dehalogenase of Dehalobacter restrictus. Applied and Environmental

Microbiology; 2003; 69 (8): 4628-4638.

125. Mancera-López, M.E., Esparza-García, F., Chávez-Gómez, B., Rodríguez-

Vázquez, R., Saucedo-Castañeda, G. and J. Barrera-Cortés. Bioremediation of an

aged hydrocarbon-contaminated soil by a combined system of biostimulation–

bioaugmentation with filamentous fungi. International Biodeterioration &

Biodegradation. 2008; 61/2; pp 151-160.

126. Maneerat, Suppasil. Production of biosurfactants using substrates from

renewable-resources. Songklanakarin. J. Sci. Technol; 2005; 27; pp 675-683

127. Margesin R., Zimmerbauer A., Schineer F. Monitoring of bioremediation by soil

biological activities. Chemosphere; 2000; 40; pp 339-346.

128. Margesin, R. and Schinner F. Efficiency of Indigenous and Inoculated cold-

adapted soil Micro-organisms for Biodegradation of Diesel Oil in Alphine soils.

Appl. Environ. Microbial; 1997; 67(7); pp 2660 – 2664.

129. Margesin.R,SchinnerF. Bioremediation (Natural Attenuation and Biostimulation)

of Diesel-Oil-contaminated soil in an Alpine Glacier Skiing Area. Applied and

Environmental Microbiology; 2001; 67; pp 3127-3133.

Page 12: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

196

130. Marin,J.A., Hernandez.T and Garcia.C. Bioremediation of oil refinery sludge by

landfarming in semiarid conditions: Influence on soil microbial activity

Environmental Research; 2005; 98; pp 185-195.

131. Marschner, B., Kalbitz, K., Controls of bioavailability and biodegradability of

dissolved organic matter in soils. Geoderma; 2003; 113; pp 211 – 235.

132. Mata-Sandoval. J.C., Kams J. and Torrente A. Effect of nutritional and

environmental conditions on the production and composition of rhamnolipids by

pseudomonas aeruginosa UG2. Microbiol. Res.; 2000; 155; pp 1 – 8.

133. Mc Gowan.C, Fulthrope.R., Wright.A., Tiedje.J.M. Evidence for interspecies gene

transfer in the evolution of 2,4-di chlorophenoxyacetic acid degraders, Appl.

Environ. Microbial; 1998; 64; pp 4089-4092.

134. Miller R.M. Surfactant enhanced bioavailability of slightly soluble organic

compounds. In: Skipper H, Turco R (eds) Bioremediation-science and application.

Soil Science Society of America, Madison, Wis; 1995; pp 3-54.

135. Morgan P., Watkinson R.J. Biodegradation of components of petroleum,

Biochemistry of Microbial degradation; 2000; pp1-31.

136. Morikawa, M.,Y.Hirata and T.Imanaka .A study on the structure-function

relationship of Lipopeptide biosurfactants. Biochem. Bio Physi. Acta; 1988; pp

211-218.

137. Mosher J.J, Levison B.S, Johnston C.G. A simplified dehydrogenase enzyme

assay in contaminated sediment using 2-(p-iodophenyl)-3(p-nitrophenyl)-5-

phenyl Tetrazolium chloride .Journal of Microbiological Methods; 2003; 53; pp

411-415.

138. Mueller J. G., Cerniglia C. E, Pritchard P. H. Bioremediation of Environments

Contaminated by Polycyclic Aromatic Hydrocarbons. Bioremediation: Principles

and Applications, Cambridge University Press, Cambridge (1996). Pp.125–194.

139. Mukred. A.M. Enhancement of biodegradation of crude petroleum oil in

contaminated water by the addition of Nitrogen sources. School of biosciences and

biotechnology; Faculty of Science and technology, University of Kebangsaan,

Malayasia; 2002.

140. Mulligan C.N, N. Yong and B.F. Gibbs .Surfactant-enhanced remediation of

contaminated soil: A review. Eng. Geol; 2005; 60; pp 371-380.

Page 13: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

197

141. Mulligan C.N, Yong R.N., Gibbs B.F. An evaluation of technologies for the heavy

metal remediation of dredged sediments. Journal of Hazardous Materials; 2001;

85(1-2); pp 145-163.

142. Nakahara.T, Hisatsuka.K and Minoda.Y. Effect of hydrocarbon emulsification on

growth and respiration of microorganisms in hydrocarbon media. J. Ferment.

Technol; 1981; 59; pp 415-418.

143. Nanny, M. A.; Ratasuk, N. Characterization and comparison of hydrophobic

neutral and hydrophobic acid dissolved organic carbon isolated from three

municipal landfill leachates. Water Res. 2002, 36, 1572–1584.

144. Naumann, D.; Schultz, C. P.; Helm, D. What can infrared spectroscopy tell us

about the structure and composition of intact bacterial cells? In Infrared

Spectroscopy of Biomolecules; Mantsch, H. H., Chapman, D., Eds.; Wiley-Liss:

New York, 1996, pp. 279–310.

145. Navon-Venezia. S Zosim Z, Gottlieb A, Legmann R, Carnell S, Ron EZ,

Rosenberg E. Alasan a new bioemulsifier from Arthrobacter radioresistens. Appl

Environ Microbiol; 1995; 61; pp 3240- 3244.

146. Nitschke, M. and Pastore, G. Cassava flour wastewater as a substrate for

biosurfactant production. Appl. Biochem. Biotechnol; 2003; 105–108; pp 295–

301.

147. Nitschke, M. and Pastore, G. Production and properties of a surfactant obtained

from Bacillus subtilis grown on cassava wastewater. Bioresource Technol.; 2006;

97; pp 336–341.

148. Nitschke, M. and Pastore, G.M. Biosurfactant production by B.subtilis using

cassava-processing effluent. Appl. Biochem. Biotechnol. 2004; 112; pp163–172.

149. Nitschke, M. Oil wastes as unconventional substrates for rhamnolipid

biosurfactant production by Pseudomonas aeruginosa LB1. Biotechnol. Prog. ;

2005; 21; pp 1562–1566.

150. Noah, K.S. Development of continuous surfactin production from potato process

effluent by Bacillus subtilis in an airlift reactor. Appl. Biochem. Biotechnology;

2002; 98–100, pp 803–813.

151. Noah, K.S. Surfactin production from potato process effluent by Bacillus subtilis

in a chemostat. Appl. Biochem. Biotechnol. 2005; 122; pp 465–474.

Page 14: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

198

152. Noordman W H and Janssen D B “Rhamnolipid Stimulates Uptake of

Hydrophobic Compounds by Pseudomonas aeruginosa”, Appl. Environ. Microbiol.

(2002), Vol. 68, pp. 4502-4508.

153. Norman RS, Frontera-Suau R, Morris PJ. Variability in Pseudomonas

aeruginosa lipopolysaccharide expression during crude oil degradation. Appl

Environ Microbial; 2002; 68; pp 5096–5103.

154. Norris R.D., Matthews J.E. hand book of Bioremediation. CRC press; 1994; pp

1-257.

155. Ochsner, U.A. et al. (1995) Production of Pseudomonas aeruginosa rhamnolipid

biosurfactants in heterologous hosts. Appl. Environ.Microbiol. 61, 3503–3506

156. Ocio.J.A, Brookes.P.C. An evaluation of methods for measuring microbial

biomass in soil following recent additions of wheat straw and the characterization

of the biomass that develops. Soil Biol. Biochem. 1990; 22; pp 685-694. 157. Otte M.P, Gagon.J, Comeau Y., Matte.N, GreerC.W, Samson.R .Activation of

an indigenous microbial consortium for bioaugmentation of

pentachlorophenol / cresote contaminated soils. Applied microbiology and

biotechnology; 1994; 40; pp 926-932.

158. Ouatmane, A.; Provenzano, M.R.; Hafidi, M.; Senesi, N. Compost maturity

assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci.

Util. 2000, 8, 124–134.

159. Palmberg, C., Nordgren. A. Soil respiration curves, a method to test the

abundance, activity and vitality of the microflora in forest soil. In: Torstensson, L.

(Ed.), Guidelines. Soil biological variables in environmental hazard assessment.

Swedish Environmental Protection Agency Report 4262, Solna; 1993; pp 149–156.

160. Paris.D.F. and Wolfe, N.L. Relationship between properties of a series of anilines

and their transformation by bacteria, Appl. Environ. Microbiol; 1987; (53); pp 911-

916.

161. Park JY, Cho HJ, Yang JW. Effects of surfactant on electrokinetic remediation of

soil contaminated by phenanthrene. Taejon/Chungnam-Kyushu Fukuoka, Japan;

2000; 13; pp 267–268.

162. Pekin, G. Production of sophorolipids from Candida bombicola ATCC 22214

using Turkish corn oil and honey. Eng. LifeSci.2005; 5; pp 357–362.

163. Philp J.C. Alkanotropic Rhodococcus ruber as a biosurfactant producer. Appl.

Microbiol. Biotechnol.; 2000; 59; pp 318–324.

Page 15: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

199

164. Płaza Grazyna A, Ulfig Krzysztof, Brigmon Robin L. Surface active properties of

bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Polish

journal of microbiology; 2005; 54; 2; pp 161-167.

165. Pooja Singh, Swaranjit Singh Cameotra. Enhancement of metal bioremediation

by use of microbial surfactants, Biochemical and Biophysical Research

Communications; 2004; 319, 2; pp 291-297.

166. Powlson.D.S. Soil microbial biomass: before, beyond and back. In: Ritz, K.,

Dighton, J., Giller, K.E. (Eds.), beyond the biomass. Willey, Chichester, UK; 1993;

pp 3-20.

167. Pritchard. P.H., Costa, C. F. & Suit, L. Aslaska. Oil Spill Bioremediation Project

(Report No.EPLA/600/9.91/0.46a, b, US Envir. Protection Ag., Gulf Breeze,

Florida; 1991.

168. Radwan.S.S., Al-Hasan. R.H., Salamah.S, Al-Dabbous.S., Bioremediation of oily

sea water by bacteria immobilised in biofilms coating macroalgae. International

Biodeterioration & Biodegradation.2002; 50, pp 55–59.

169. Rahaman K.S.M, Rahaman T.J; Banat I.M, Lord.R and Street.G. Bioremediation

of petroleum sludge using bacterial consortium with Biosurfactant. Environmental

Bioremediation Technologies; 2007; 10.1007/9783-540-34793-4-17; pp 391-408.

170. Rahman K. S. M, Banat I. M., J. Thahira, Tha. Thayumanavan,

P.Lakshmanaperumalsamy. Bioremediation of gasoline contaminated soil by a

bacterial consortium amended with poultry litter, coir pith and rhamnolipid

biosurfactant, Bioresource Technology; 2002; 81; 1; pp 25-32.

171. Rahman K. S. M, Thahira J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant, I.

M. Banat . Enhanced bioremediation of n-alkane in petroleum sludge using

bacterial consortium amended with rhamnolipid and micronutrients ; Bioresource

Technology; 2003; 90; 2, pp 159-168.

172. Rahman. K S M, Rahman T J, McClean S, Marchant R and Banat I M.

Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa

Using Low-Cost Raw Materials. Biotechnol. Prog; 2002; 18; pp 1277-1281.

173. Rahman. K.S.M., I.M. Banat, J. Thahira-Rahman, T. Thayumanavan and

P.Lakshmanaperumalsamy .Bioremediation of gasoline contaminated Soil by a

bacterial consortium amended with poultry litter, coir pith and rhamnolipid

biosurfactant. Biores. Technol; 2002a; 81; pp 25-32.

Page 16: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

200

174. Ramana, K.V., and N.G. Karanth. Production of biosurfactants by the resting

cells of Pseudomonas aeruginosa CFTR-6. Biotechnol. Lett; 1989; 11; pp 437–442.

175. Ramana. K.V., and N.G. Karanth. Factors affecting biosurfactants production

using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J. Chem.

Technol. Biotechnol; 1989; 45; pp 249–257.

176. Reiling, H.E. Pilot plant production of rhamnolipid biosurfactant by

Pseudomonas aeruginosa. Appl. Environ. Microbiol; 1986; 51; pp 985–989.

177. Robert, M., Mercad´e, M.E., Bosch, P., Parra, J.L., Espuny, M.J., Manresa,M.A.,

Guinea, J.,. Effect of the carbon source on biosurfactant production by

Pseudomonas aeruginosa 44T1. 1989 Biotechnol. Lett. 11, 871–874.

178. Rodrigo J.S. Jacques, Benedict C. Okeke, Fatima M. Bento, Aline S. Teixeira,

Maria C.R. Peralba, Flavio A.O. Camargo, Microbial consortium bioaugmentation

of a polycyclic aromatic hydrocarbons contaminated soil, Bioresource Technology;

2008; 99; 7; pp 2637-2643.

179. Romantschuk. M., Sarand.I., Petanen.T.,Peltola. Means to improve the effect of

insitu bioremediation of contaminated soil: An overview of novel approaches,

Environmental pollution; 2000; 107; pp 2179-185.

180. Ronald R.Navarro, Yoruke limura, Hiroyasu Lchikawa Kenji Tatsumi.treatment

of PAHs in contaminated soil by extraction with aqueous DNA followed by

biodegradation with a pure culture of Sphingomonas Sp. Chemosphere; 2008; 73;

9; 1414-1419.

181. purchase this article.

182. Rosenberg E, Barkay T, Navon-Venezia S, Ron EZ. Role of Acinetobacter

bioemulsans in petroleum degradation. In Novel Approaches for Bioremediation of

Organic Pollution. Edited by Fass R. New York: Kluwer Academic/Plenum

Publishers; 1999; pp171-180.

183. Rosenberg E, Rubinovitz A, Gottlieb A, Rosenhak S, Ron E . Production of

biodispersan by Acientobacter calcoaceticus A2. Appl Environ Microbiol; 1988; 54;

pp 317-322.

184. Rosenberg. E; Microbial surfactants. CRC crit rev. Biotech; 1986; 3; pp 105-132.

185. Ryan.J.R., Loehr.R.C and Rucker.E. Bioremediation of organic contaminated

soils. J. Hazard. Materials; 1991; 28; pp 159-169.

Page 17: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

201

186. Saleha Husain. Identification of pyrene-degradation pathways; Bench-scale

studies using Pseudomonas fluorescens 29L, Remediation Journal; 2008; 18; 3; pp 119 – 142.

187. Sánchez M.Aggregation behaviour of a dirhamnolipid biosurfactant secreted by

Pseudomonas aeruginosa in aqueous media. Journal of Colloid and Interface

Science; 2007; 307; pp 246–253.

188. Santos EC, Jacques. RJS, FM Bento, MDR Peralba, PA Selbach, ELS Sa, FAO

Camargo. Anthracene biodegradation and surface activity by an iron-stimulated

Pseudomonas sp, Bioresource Technology; 2008; 99; 7; pp 2644-2649.

189. Saulnier .I, Mucci A. Trace metal remobilization following the resuspension of

estuarine sediments. Saguenay Fjord, Canada. Appl Geochem; 2000; 15; pp 191–

210.

190. Schreier C.G., Walker W.J., Burns J., Wilkenfield R; Total organic carbon as a

screening method for petroleum hydro carbons. Chemosphere; 1999; 39; pp 503-

510.

191. Schulz. D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V, Gunkel W. Crude-

oil degrading marine microorganisms from the North-Sea. J Biosci; 1991; 46; pp

197-203.

192. Semprini .L., Roberts, PV. Hoplins G.D and Mc Carty, P.L. A field evaluation of

insitu biodegradation of chlorinated ethanes, part 2. Results of biostimulation and

biotransformation experiments. Ground Water; 1990; 28; pp 715-727.

193. Siddhartha G.V.A.O. Costa , Marcia Nitschke, Renato Haddad, Marcos N.

Eberlin , Jonas Contiero . Production of Pseudomonas aeruginosa LBI

rhamnolipids following growth on Brazilian native oils Process Biochemistry 41

(2006) pp 483–488.

194. Sifour, M.; Al-Jilawi, M.H.; Aziz, G.M. Emulsification properties of biosurfactant

produced from Pseudomonas aeruginosa RB 28. Pak. J. Biol. Sci. 2007, 10, 1331–

1335

195. Sims.J.R., Haby,V.A. Simplified colorimetric determination of soil organic

matter. Soil Sciences; 1971; 112; pp 137-141.

196. Smidt, E.; Lechner, P.; Schwanninger, M.; Haberhauer, G.; Gerzabek, M.H.

Characterization of waste organic matter by FT-IR spectroscopy—application in

waste science. Appl. Spectrosc. 2002, 56, pp 1170–1175.

Page 18: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

202

197. Smidt, E; Schwanninger, M; Characterization of Waste Materials Using FTIR

Spectroscopy: Process monitoring and Quality assessment; Spectroscopy Letters,

2005, 38; pp 247-270.

198. Smith, B. Infrared Spectral Interpretation; CRC Press: Boca Raton, FL, 1999; pp

264.

199. Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and

Charts, 3rd edition; John Wiley & Sons Ltd.: Chichester, 2001; pp 347.

200. Song H.G., Bartha R. Effect of jet fuel on the microbial community of soil

.Appl.Environ .Microbiol; 1990; 56; pp 646-651.

201. Steinberg S.M., Poziomek E.J., Engelmann W.H., and Rogers, K.R. A review of

environmental applications of bioluminescence measurements, Chemosphere,

1995; 30; pp 21-55.

202. Sturm. T W, Amritharajh A, Tiller CL. Mobilization and fate of inorganic

contaminants due to resuspension of cohesive sediment. 2002.

203. Swaranjit Singh Cameotra, Pooja Singh. Bioremediation of oil sludge using

crude biosurfactants. International Biodeterioration & Biodegradation; October

2008; 62; 3; pp 274-280.

204. Tang. Y, Qi JL, Krieger-Brockett B.Evaluating factors that influence microbial

phenanthrene biodegradation rates by regression with categorical variables;

Chemosphere; 2005; 59; pp 729–741.

205. Thibault. SL, Anderson M, Frankenberger WT Jr. Influence of surfactants on

pyrene desorption and degradation in soils. Appl Environ Microbiol; 1996; 62; pp

283-287.

206. Thompson. D.N. Biosurfactants from potato process effluents. Appl. Biochem.

Biotechnol.; 2000; 84–86; pp 917–930.

207. Thompson. D.N. The effects of pretreatments on surfactin production from

potato process effluent by Bacillus subtilis. Appl. Biochem. Biotechnol; 2001; 91–

93; pp 487–502.

208. Timmis. K.N, Pieper DH. Bacteria designed for bioremediation. Trends

Biotechnol. 1999; 20; pp14-17.

209. Trummler. K. An integrated microbial/enzymatic process for production of

rhamnolipids andl-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM

2874. Eur. J. Lipid. Sci. Tech.; 2003; 105; pp 563–571.

Page 19: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

203

210. Tseng, D.Y.; Vir, R.; Traina, S.J.; Chalmers, J.J. A Fourier-transform infrared

spectroscopic analysis of organic matter degradation in a bench-scale solid

substrate fermentation (composting) system. Biotechnol. Bioeng. 1996, 52, pp

661–671.

211. Tsomides. H.J, Hughes J.B, Thomas J.M, and Ward C.H. Effect of surfactant

addition on phenanthrene biodegradation in sediments, Environ. Toxicol. Chem;

1995; 14; pp 953-959.

212. Tuleva. B.K., G.R. Ivanov and N.E. Christova; Biosurfactant production by a new

Pseudomonas putida strain. Z Naturforsch.C; 2002; 57; pp 356-360.

213. Urum. K., T. Pekdemir and M. Gopur. Optimum conditions for washing of crude

oil-contaminated soil with biosurfactant solutions. Process Saf. Environ; 2003; 81;

pp 203-209.

214. Van Dyke, M. I., P. Couture, M. Brauer, H. Lee, and J. T. Trevors.

1993.Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural

characterization and their use in removing hydrophobic compounds from soil.Can.

J. Microbiol. 39:1071–1078.

215. Van Limbergen H, Top EM, Verstraete W .Bioaugmentation in activated sludge:

current features and future perspectives. Appl Microbiol Biotechnol; 1998; 50;

pp16–23.

216. Vance-Harrop, M.H. New bioemulsifiers produced by Candida lipolytica using D-

Glucose and Babassu oil as carbon sources. Braz. J. Microbiol.; 2003; 34; pp

120–123.

217. Vasilyeva G.K., and Strijakova E.R. Bioremediation of Soils and Sediments

Contaminated by Polychlorinated Biphenyls. Microbiology; 2007; 76; 6; pp 639–

653.

218. Vega D.M., Gallego J.L.R., Pelaez A.I., de Cordoba G.F., Moreno J., Munoz D.,

Sanchez J; Surface sediments from a contaminated bay of northern china. Res;

2007; 18; pp 299-306.

219. Verlag Chemie, Deerfield Beach, Fla. Kosaric, N., H.Y. Choi, and R. Bhaszczyk.

Biosurfactant production from Nocardia SFC-D. Tenside Surf. Det; 1990; 27; pp

294–297.

Page 20: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

204

220. Vipulanandan.C., Ren X. Enhanced solubility and biodegradation of napthalene

with biosurfactant .Journal of Environmental Engineering; 2000; 126; pp 629-

634. 221. Walworth J., Pond A., Snape I., Rayner J., Ferguson S., Harvey P.

Nitrogen requirements for maximising petroleum bioremediation in a Sub-

Antarctic soil. Cold regions Science and Technology; 2007; 48; pp 84-91.

222. Whang, L.M.; Liu, P.W.G.; Ma, C.C.; Cheng, S.S. Application of biosurfactant,

rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated

water and soil. J. Hazard. Mater. 2008, 151, 155–163.

223. Wikipedia; Infrared Spectroscopy correlation table.

224. Wilkinson S.G., and L. Galbraith. Studies on lipopolysaccharides from

Pseudomonas aeruginosa. Eur. J. Biochem; 1975; 52; pp 331–343.

225. Williams and Wilkins, Baltimore. Bergey’s Manual of Determinative Bacteriology;

1994; 9th ed.

226. Willson, J.T. and Willson B.H. Biotransformation of trichloroethylene in soil.

Appl. Environ. Microbiology1985; 49; pp 242-243.

227. Willson,J.T., Leach,L.E., Henson.M. and Jones, J.N. Insitu biorestoration as a

ground water remediation technique. Ground water Mon. Rev; 1986; 1; pp 56-64.

228. Wrabel, M.L., Peckol, P.,. Effects of bioremediation on toxicity and chemical

composition of no. 2 fuel oil: growth responses of the brown alga Fucus

vesiculosus. Marine Pollution. 2000; 40; pp 135-139.

229. Wu Jane-Yii, Yeh Kuei-Ling, Lu Wei-Bin, Lin Chung-Liang and Chang Jo-Shu.

Rhamnolipid Production with Indigenous Pseudomonas aeruginosa EM1 Isolated

from Oil-Contaminated Site. Bioresource Technology; 2008; 99; 5; pp 1157-1164.

230. Yoemans, J.C., Bremner, J.M. A rapid and precise method for routine

determination of organic carbon in soil. Communication in Soil Science and Plant

analysis; 1989; 19; pp 1467-1476.

231. Yu-Hong Wei, Chien-Liang Chou, Jo-Shu Chang, Wei Y H, Chou C L and Chang

J S. Rhamnolipid Production by Indigenous Pseudomonas aeruginosa sJ4

Originating from Petrochemical Wastewater. Biochemical Engineering Journal;

2005; 27, pp 146-154.

232. Zaccheo, P.; Ricca, G.; Crippa, L. Organic matter characterization of composts

from different feedstocks. Compost Sci. Util. 2002, 10 (1), 29–38.

Page 21: 185 Ch. Rajani Kumari, Ph.D., Thesis 2010 Referencesshodhganga.inflibnet.ac.in/bitstream/10603/4514/14/14_references.p… · Ch. Rajani Kumari, Ph.D., Thesis 2010 References 48.Clark.C.G

Ch. Rajani Kumari, Ph.D., Thesis 2010 References

205

233. Zagula. S.J, E.W. Beltinger. Developing a remediation strategy for contaminated

sediments: selecting, removal, treatment, disposal and re-use alternatives; in:

Proceedings of the 48th Purdue Industrial Waste Conference, Lewis Publishers,

Chelsea, MI, 1993; pp 199–213.

234. Zak,J., Willig, M.R., Moorhead ,D.L., Wildman, H.G .Functional diversity of

microbial communities : a quantitative approach .Soil Biol .Biochem ; 1994; 26;

pp 1101-1108.

235. Zdenek Filip, Susanne Hermann. An attempt to differentiate Pseudomonas

species and other soil bacteria by FT-IR spectroscopy Eur. J. Soil. Biol; 2001; 37;

pp 137 – 143.

236. Zhang .Y, Wu RSS, Hong H-S, Poon K-F, Lam MHW. Field study on the

desorption rates of polynuclear aromatic hydrocarbons from contaminated marine

sediment Environ Toxicol Chem; 2000; 19(10):5; pp 24-31.

237. Zhang. Y, Miller RM; Effect of rhamnolipid (biosurfactant) structure on

Solubilization and biodegradation of n-alkanes. Appl Environ Microbiol; 1995; 61;

pp 2247-2251.

238. Zhang. Y., Miller, R.M., Enhanced octadecane dispersion and biodegradation by

a Pseudomonas rhamnolipid surfactant. Appl. Environ. Microbiol; 1992; 58; pp

3276–3281.

239. Zhao .B, Zhu L, Li W, Chen B; Solubilization and biodegradation of

phenanthrene in mixed anionic–nonionic surfactant solutions; Chemosphere;

2005; 58; pp 33–40.

240. Zhu. L, Chen B. Interactions of organic contaminants with mineral-adsorbed

surfactants. Environ Sci Technol; 2003; 37; pp 4001–4006.

241. Zhuang. Y, Allen HE, Fu G. Effect of aeration of sediment on cadmium binding.

Environ Toxicol Chem; 1994; 13(5):7; pp17– 24.

242. Zoumis .T, Schmidt .A, Grigorova .L, Calmano .W. Contaminants in sediments:

remobilisation and demobilisation. Sci Total Environ; 2001; 266; pp 195– 202.

243. Zukerberg A., A. Diver, Z. Peeri, D. L. Gutnick, and E. Rosenberg. Emulsifier of

Arthrobacter RAG-1: chemical and physical properties. Appl. Environ. Microbiol;

1979; 37; pp 414–420.