Click here to load reader
View
7
Download
1
Embed Size (px)
DESCRIPTION
Một nghiên cứu, so sánh về Phật giáo và khoa học
o Pht Siu Khoa Hc
1
o Pht Siu Khoa Hc Tc gi: Minh Gic Nguyn Hc Ti
MC LC Li Dn (1) Phn I - Chng 1 TM CU V TH NGHIM (4) Phn I - Chng 2 NGUYN T (11) Phn I - Chng 3 THI GIAN TIN CNH - THI GIAN H GII TIME PARADOX (18) Phn I - Chng 4 Ph Lc Vng quay ca tri t 3 (25) Phn I - Chng 5 CYBERNETICS 4 R B (25) Phn I - Chng 6 V TR CH L MT KHI NIM (29) Phn I - Chng 7 THUYT SIU T TRI STT V THUYT QUANG MINH CA NH PHT (32) Phn I - Chng 8 NEUTRINO (38) Phn I - Chng 9 I XNG V SIU I XNG (39) Phn II Chng 10 V TC DIU LC (41) Phn II Chng 11 NGI PHT T EINSTEIN (46 Phn II Chng 12 C PHT THY VI TRNG (49) Phn II Chng 13 C PHT THY NGUYN T V NHNG HT VI PHN TIM NGUYN T (50) Phn II Chng 14 KHP NI, KHP X, CH NO CNG C TH C NHNG LOI CHNG SANH C NG (52)
o Pht Siu Khoa Hc
2
Phn II Chng 15 THN THNG CA C PHT V B TT DUY-MA-CT (58) Phn II Chng 16 C PHT C PHI L BC I Y VNG KHNG? (61) Phn III Chng 17 PHT C PHI L MT BC I TON HC KHNG? (68) Phn III Chng 18 C PH HIN C PHI BC THIN VN A L KHNG? (73) Phn III Chng 19 C QUN TH M C PHI L BC I THIN VN VT L KHNG? (75) Phn III Chng 20 ARISTOLE V C PHT Bn i - By i (82) Phn IV Chng 21 O PHT V VIC TM RA VIN GCH XY DNG V TR CA KHOA HC (85) Phn IV Chng 22 NGUN GC V CU TO V TR (90) Phn IV Chng 23 I TM CHA M U TIN Ngun gc loi ngi (99) PHN V Chng 24 1 : QUANG MINH (105) Phn V Chng 25 2: SU CN H TNG (113) Phn V Chng 26 3: TAM TAI - TN TH (119) Phn V Chng 27 4: HA SANH V THP SANH (120) Phn V Chng 28 5: HO QUANG TAM MUI (121) Phn V Chng 29 6: NG VNG (124) Phn V Chng 30 7: NH NGHA (136) Phn V Chng 31 8: KINH SCH, BI BO, HNH NH, V BNG GING THAM KHO (145) Phn V Chng 32
o Pht Siu Khoa Hc
3
9 : Ti liu (148) Phn V Chng 33 10 : Danh sach n nhn (150)
Li Dn Ch ch ca cun sch ny l dn chng nhng iu c pht v ch v B Tt ni
cch y trn 25 th k m by gi khoa hc mi dn dn khm ph ra.
Th hai, trnh by nhng khm ph mi ca hoa hoc v lnh vc Khoa hc, Thin vn, Vt l,
Y hc, Nhn chng hc vv...
Th ba, thp sng uc tu ca Pht duy tr ngi Tam Bo vnh cu th gian.
Tu hnh l ph Ng chp cng nh Jean Paul Sartre ni, "Le moi est hassable" Ci ti tht
ng ght!. V vy, nhng iu ti ni v "ci ti ng ght" ny khng phi "nh bng" n
m ch c trnh by vi qu v rng Pht php tht nhim mu i vi nhng ai c thanh tm,
thin ch hi u theo Pht.
Hi cn nh i hc, ti rt dt v Ton, L Ha. Dt n ni gii phng trnh khng c, ly
bt st m vo tay n chy mu. Khi thnh nin, cng v "k" Ton, L, Ha nn phi hc
Vn Khoa.
V tu o ti t v mnh nh mt Pht t "mt gc" v mi n nm 63 tui mi tm v o Pht.
c kinh sch trong hai nm cng nhng sch bo M ni v Thin vn Vt l, ti ngc nhin
thy nhng iu ch Pht va ch B Tt dy cach y trn 25 th k by gi thy ng s
tht.
l l do th nht ti mnh dn vit cun sch ny.
L do th hai l nhc li li Pht dy rng chng ta khng bao gi tm c thc ti cui
cng ca s vt.
t nht c hai v khoa bng i ngi cho ti dm lm cng vic ny bi v:
"Tri gi bt ngn, ngn gi bt tri", ngha l, "Ngi bit khng ni, ngi ni khng bit".
Ti thuc loi th hai v khng bit m dm ni.
Cng vi l , c mt ln ti hi php mt bc tri thc, Ngi ni c hai ting ri ngi im.
Ri:
"Bn mt nhn nhau
Chng ni mt cu!"
Th mi bit li ni ca qu Ngi l vng ngc!
l Pht t, ai cng c c vng hong dng Pht php. Ngi c hng sn th lo vic t
tng, c chung, xy cha, b th, cng dng v.v... K c hng tm th lo lm php th. l
bn phn ti thng ca ngi Pht t i vi Tam Bo.
Trn mt nm qua, mc du vi ci tui 73 bnh han v lng tr; nhng khi vit sch, ti thy
tr tu thng sut l thng. Ti ngh rng ch Pht va ch v B Tt ban cho ti tr hu
lm cng vic php th ny.
Hi mi khi tu, c kinh Lng Nghim cng nhng kinh i tha khc, ti c hiu Gip t g
u? Nhng nh cc bng ging ca cc v tu s va c s - nht l c Nghim Xun Hng - ti
dn dn liu tri nhng ci ch yu ca o Pht. C Hng dy mi khi khng hiu kinh, nn
o Pht Siu Khoa Hc
4
khn nguyn nh sau:
"Xin c Th tn, Tn gi A Nan, B Tt Long Th v Vn th S li ban cho con tr hu
hiu kinh ng ni Php cho ngi khc nghe."
Ti lm v thy c ng nghim. Vy qu v hy lm th xem sao? Kinh dy:
"Nng l S l tnh khng tch
Cm ng o giao nan t ngh."
Ngi ly Pht va Pht u cng mt bn th nn khng c Nng Ngi ly v S Pht. Ni
mt cch khc, ch th v i tng l mt nn khng co i i. V o la Tm nn s cm
ng khng th din t bng ngn t c.
c i Th Ch B Tt ni rng ch Pht v ch v B Tt thng chng sinh nh cc con,
nhng v cc con c ngonh mt i th m bit lm sao c? Cng nh hai ngi i ngc
chiu th bao gi mi gp c nhau? Chng sinh khng oi hoi n ch Pht th lm sao
c "Cm ng o giao nan t ngh" c?
Trong cun o c Kinh, Lo T vit:
"o kh o phi thng o
Danh kh danh phi thng danh"
Nu l ci o ch tht phi l ci o tuyt vi v thng hng, khng th dng nim hay
ngn t din t ht c m ch c nhn thc qua cm ng.
Cng nm trong ngha ny c cu:
"Ngn ng o on, Tm hnh, x dit".
Khi hng Tm chiu cm, cng ht v li cng cn, v li cng cn, v li khng th
din t ht ci Tm thnh y c.
Kinh Lng Nghim dy, "Phm hu ngn thuyt giai phi thc ngha", ngha l li ni khng co
ngha tht.
Cng v vy m c Pht dy rng, "Trong 49 nm thuyt php, ta khng h ni mt li
no."
Cng c cu, "c tin l m thnh cng". c thin kinh vn quyn m "bn tn bn nghi" th
du c tu n v lng v kip s khng c qu cng nh mun "nu sn thnh cm" vy.
chm dt Li Dn ny, theo chim nghim ca ng gi 72 tui, Pht php tht mu nhim
v nh m ti dm vit v nhng lnh vc cha bit n hoc ch c i cht kin thc.
Nhng v ht lng tin tng Pht php v c thin mun lm Php th nn ch Pht v ch
v B Tt ban cho ti tr hu vit nn cun sch ny.
Phn I - Chng 1 TM CU V TH NGHIM
Cc khoa hc gia v trit gia suy t, tm cu, v th nghim tm hiu ngun gc ca v tr, ca Thi dng h, ca cc i dng, cc Thin Th; nht l ngun gc ca loi ngi
o Pht Siu Khoa Hc
5
ni ring v ca nhng sinh vt ni chung. Khng ai ph nhn cng lao ca khoa hc trong vic ci thin nhn sinh. Nhng cng vic tm cu thc ti cui cng ca s vt thuc lnh vc khoa hc hay tn gio, nht l o Pht. Ni mt cch khc, liu n mt ny no , cc khoa hc gia c th t n mc tiu cui cng ca h khng? iu ny, Pht dy r rng chng ta khng bao gi c th tm cu c thc ti cui cng ca s vt. Gn 500 nm qua, nht l trong 100 nm gn y, trong ng hng tm cu thc ti cui cng, mt s trng phi khoa hc tranh lun ro rit, v trng phi ny ln lt nh trng phi kia. Sir Isaac Newton 1642-1727, khi kho cu v nh sng cho rng nh sng khng c ln, nhng c Ht Particle. Max Planck li cho rng nh sng do Bc x Radiation, l Quanta Lng t, Nng T. Albert einstein va Max Plack l nhng ngi u tin vit v Nguyn lng C hc Quantum mechanics. Nhng sau nay Einstein li cho rng nhng thuyt v lng t u l nhng thuyt Bt nh Incomplete theory. "Neil Bohr 1885-1950, nh bc hc an Mch, ch trng rng i tng ca Vt l lng t khng th gii thch va l Sng v l Ht, v chng l hai dng ca mt thc ti b tc cho nhau. Nguyn l y c suy rng ra cho mi phm vi t tng trit hc, iu m Bohr chu nh hng ca Trung Hoa". Ri ngi sao sng Albert Einstein 187-1955 ra i. ng l dn c gc Do Thi v tr thnh cng dn M nm 1940. ng xng thuyt v Chuyn ng Brown Brownian Movement, p dng thuyt ny vo Thuyt Lng t vi nhng Nng t, v pht hin cc Quang T Photon. Nm 1915, ng hon tt thuyt Tng i Chung General Relativity Theory v thuyt ny nh Lut Hp Dn V V Theories of Universal Gravitation ca Newton. Newton nng khoa hc va nn vn minh u Chu ln mc tuyt nh. Trong mt thi gian lu di, thuyt C hc Newton mechanics ca ng c coi nh c th gii thch c mi hin tng thin nhin. Cho n khi in kh v in t lc c khm ph, ngi ta thy C hc ca ng cn thiu xt v khng ni n sc cn hay c st ca khng kh, m ch gii thch mt cch hn ch mt s hin tng thin nhin nh vic di ng ca mt s vt cht rn khc. T nm 1880 n 1900, khoa Vt l Nguyn t Neuclear physics khm ph ra nhiu hin tng rt l khin thuyt C hc ca Newton khng th gii thch c. V d vn vn tc nh sng khng thay i. Niel Bohr 1885-1962, mt Vt l gia an Mch l khun mt sng gi trong vic xng thuyt Nguyn t, v thuyt ny m u cho Nguyn lng C hc Quantum mechanics. Sau 50 nm tri 1900-1950, cc Vt l gia gii thch v hiu bit rt nhiu v m inT Electron. T , mi bt u chuyn qua vic nghin cu Li Core ca ht Nguyn t Atom. Thuyt Tng i ca Einstein c chia lm hai giai on: 1/- Nm 1905, ng cng b thuyt Tng i Hp Special Relativity, v thuyt ny da vo thuyt Tng i ca Galileo c trin khai t phm vi C hc sang in t hc. iu khc bit l Nguyn tc ny quyt nh mi nh lut ca chuyn ng, v c gii hn trong phm vi nhng chuyn ng chng u. 2/- Nm 1915, thuyt Tng i Chung General Relativity ra i. "Vi thuyt ny, Einstein chm dt thi i Vt L hc m cn lm o ln nn np suy t ca nhn loi trong mi phm vi t tng, v dn n v tr quan lng t hin i..." Thuyt C hc c in ca Newton cho rng Khng gian v Thi gian hon ton c lp, v khng lin h g vi nhau. Thuyt Tng i ca Einstein ch trng rng Khng gian va Thi gian Lin tc Tng i vi nhau. Vic khm ph ny rt ph hp vi li gii thch v "S s v ngi php gii" trong kinh Hoa Nghim rng Khng gian v Thi gian dung thng vi nhau.
o Pht Siu Khoa Hc
6
Ngoi ra, Vt l gia Matt Visser thuc i Hc Hoa Thnh n vit v thuyt Tng i Chung ca Einstein nh sau: "Einstein bin i vt l hc bng cch chng t rng Khng gian v Thi gian tht ra ch l hai v khc nhau ca cng mt mi trng c th dn di, un cong, v vn vo hnh thi bi Trng trng". Nm 1980, Vt l gia Murray Gellmann quan nim rng Dng in t Proton va Trung ha t Neutron nm trong Li ca Nguyn t li c cu to bng nhng Ht t nh nhim hn m ng t tn la Quark Cc vi, Ht o. ln ca n ch bng 10-33 cm, hay 1/1000 t t ht Nhn. Thng 3 nm 1995, cc Vt l gia tm c Quark nh Top Quark bng cch bn v nhng Dng in t v i Dng in t Anti-proton khin chng tiu dit ln nhau v pht sinh Nng lng, trong c nhiu Ht t v Quark nh. "Trn 20 nm qua, Geoffrey v Fritjof Capra p dng thuyt Boostrap i ng khm ph ra chiu su ca th gii ht nhn." Khong nm 1960 dn 1970, Salam v Weiberg lp ra thuyt i Tng Hp Grand Unification Theory - GUT. Thuyt ny l bc u ca Nguyn lng C hc Q