Upload
austin-wickens
View
232
Download
0
Embed Size (px)
12.1 – Arithmetic Sequences and Series
An introduction…………
1, 4, 7,10,13
9,1, 7, 15
6.2, 6.6, 7, 7.4
, 3, 6
Arithmetic Sequences
ADDTo get next term
2, 4, 8,16, 32
9, 3,1, 1/ 3
1,1/ 4,1/16,1/ 64
, 2.5 , 6.25
Geometric Sequences
MULTIPLYTo get next term
Arithmetic Series
Sum of Terms
35
12
27.2
3 9
Geometric Series
Sum of Terms
62
20 / 3
85 / 64
9.75
Find the next four terms of –9, -2, 5, …
Arithmetic Sequence
2 9 5 2 7
7 is referred to as the common difference (d)
Common Difference (d) – what we ADD to get next term
Next four terms……12, 19, 26, 33
Find the next four terms of 0, 7, 14, …
Arithmetic Sequence, d = 7
21, 28, 35, 42
Find the next four terms of x, 2x, 3x, …
Arithmetic Sequence, d = x
4x, 5x, 6x, 7x
Find the next four terms of 5k, -k, -7k, …
Arithmetic Sequence, d = -6k
-13k, -19k, -25k, -32k
Vocabulary of Sequences (Universal)
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
n 1
n 1 n
nth term of arithmetic sequence
sum of n terms of arithmetic sequen
a a n 1 d
nS a a
2ce
Given an arithmetic sequence with 15 1a 38 and d 3, find a .
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
x
15
38
NA
-3
n 1a a n 1 d
38 x 1 15 3
X = 80
63Find S of 19, 13, 7,...
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
-19
63
??
x
6
n 1a a n 1 d
?? 19 6 1
?? 353
3 6
353
n 1 n
nS a a
2
63
633 3S
219 5
63 1 1S 052
16 1Find a if a 1.5 and d 0.5 Try this one:
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
1.5
16
x
NA
0.5
n 1a a n 1 d
16 1.5 0.a 16 51
16a 9
n 1Find n if a 633, a 9, and d 24
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
9
x
633
NA
24
n 1a a n 1 d
633 9 21x 4
633 9 2 244x
X = 27
1 29Find d if a 6 and a 20
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
-6
29
20
NA
x
n 1a a n 1 d
120 6 29 x
26 28x
13x
14
Find two arithmetic means between –4 and 5
-4, ____, ____, 5
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
-4
4
5
NA
x
n 1a a n 1 d
15 4 4 x x 3
The two arithmetic means are –1 and 2, since –4, -1, 2, 5
forms an arithmetic sequence
Find three arithmetic means between 1 and 4
1, ____, ____, ____, 4
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
1
5
4
NA
x
n 1a a n 1 d
4 1 x15 3
x4
The three arithmetic means are 7/4, 10/4, and 13/4
since 1, 7/4, 10/4, 13/4, 4 forms an arithmetic sequence
Find n for the series in which 1 na 5, d 3, S 440
1a First term
na nth term
nS sum of n terms
n number of terms
d common difference
5
x
y
440
3
n 1a a n 1 d
n 1 n
nS a a
2
y 5 31x
x40 y4
25
12
x440 5 5 x 3
x 7 x440
2
3
880 x 7 3x 20 3x 7x 880
X = 16
Graph on positive window
12.2 – Geometric Sequences and Series
1, 4, 7,10,13
9,1, 7, 15
6.2, 6.6, 7, 7.4
, 3, 6
Arithmetic Sequences
ADDTo get next term
2, 4, 8,16, 32
9, 3,1, 1/ 3
1,1/ 4,1/16,1/ 64
, 2.5 , 6.25
Geometric Sequences
MULTIPLYTo get next term
Arithmetic Series
Sum of Terms
35
12
27.2
3 9
Geometric Series
Sum of Terms
62
20 / 3
85 / 64
9.75
Vocabulary of Sequences (Universal)
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
n 1
n 1
n1
n
nth term of geometric sequence
sum of n terms of geometric sequ
a a r
a r 1S
r 1ence
Find the next three terms of 2, 3, 9/2, ___, ___, ___
3 – 2 vs. 9/2 – 3… not arithmetic3 9 / 2 3
1.5 geometric r2 3 2
3 3 3 3 3 3
2 2 2
92, 3, , , ,
2
9 9 9
2 2 2 2 2 2
92, 3, , ,
27 81 243
4 8,
2 16
1 9
1 2If a , r , find a .
2 3
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
1/2
x
9
NA
2/3
n 1n 1a a r
9 11 2
x2 3
8
8
2x
2 3
7
8
2
3 128
6561
Find two geometric means between –2 and 54
-2, ____, ____, 54
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
-2
54
4
NA
x
n 1n 1a a r
1454 2 x
327 x 3 x
The two geometric means are 6 and -18, since –2, 6, -18, 54
forms an geometric sequence
2 4 1
2Find a a if a 3 and r
3
-3, ____, ____, ____
2Since r ...
3
4 83, 2, ,
3 9
2 4
8 10a a 2
9 9
9Find a of 2, 2, 2 2,...
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
x
9
NA
2
2 2 2r 2
22
n 1n 1a a r
9 1
x 2 2
8
x 2 2
x 16 2
5 2If a 32 2 and r 2, find a
____, , ____,________ ,32 2
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
x
5
NA
32 2
2n 1
n 1a a r
5 1
32 2 x 2
4
32 2 x 2
32 2 x4
8 2 x
*** Insert one geometric mean between ¼ and 4***
*** denotes trick question
1,____,4
4
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
1/4
3
NA
4
xn 1
n 1a a r
3 114
4r 2r
14
4 216 r 4 r
1,1, 4
4
1, 1, 4
4
7
1 1 1Find S of ...
2 4 8
1a First term
na nth term
nS sum of n terms
n number of terms
r common ratio
1/2
7
x
NA
11184r
1 1 22 4
n1
n
a r 1S
r 1
71 12 2
x12
1
1
71 12 2
12
1
63
64
Section 12.3 – Infinite Series
1, 4, 7, 10, 13, …. Infinite Arithmetic No Sum
3, 7, 11, …, 51 Finite Arithmetic n 1 n
nS a a
2
1, 2, 4, …, 64 Finite Geometric n
1
n
a r 1S
r 1
1, 2, 4, 8, … Infinite Geometricr > 1r < -1
No Sum
1 1 13,1, , , ...
3 9 27Infinite Geometric
-1 < r < 11a
S1 r
Find the sum, if possible: 1 1 1
1 ...2 4 8
1 112 4r
11 22
1 r 1 Yes
1a 1S 2
11 r 12
Find the sum, if possible: 2 2 8 16 2 ...
8 16 2r 2 2
82 2 1 r 1 No
NO SUM
Find the sum, if possible: 2 1 1 1
...3 3 6 12
1 113 6r
2 1 23 3
1 r 1 Yes
1
2a 43S
11 r 312
Find the sum, if possible: 2 4 8
...7 7 7
4 87 7r 22 47 7
1 r 1 No
NO SUM
Find the sum, if possible: 5
10 5 ...2
55 12r
10 5 2 1 r 1 Yes
1a 10S 20
11 r 12
The Bouncing Ball Problem – Version A
A ball is dropped from a height of 50 feet. It rebounds 4/5 of
it’s height, and continues this pattern until it stops. How far
does the ball travel?50
40
32
32/5
40
32
32/5
40S 45
504
10
1554
The Bouncing Ball Problem – Version B
A ball is thrown 100 feet into the air. It rebounds 3/4 of
it’s height, and continues this pattern until it stops. How far
does the ball travel?
100
75
225/4
100
75
225/4
10S 80
100
4 43
1
0
10
3
Sigma Notation
B
nn A
a
UPPER BOUND(NUMBER)
LOWER BOUND(NUMBER)
SIGMA(SUM OF TERMS) NTH TERM
(SEQUENCE)
j
4
1
j 2
21 2 2 3 2 24 18
7
4a
2a 42 2 5 2 6 72 44
n
n 0
4
0.5 2
00.5 2 10.5 2 20.5 2 30.5 2 40.5 2
33.5
0
n
b
36
5
0
36
5
13
65
23
65
...
1aS
1 r
6
153
15
2
x
3
7
2x 1
2 1 2 8 1 2 9 1 ...7 2 123
n 1 n
2n 1S a a 15
2
3
2
747
527
1
b
9
4
4b 3
4 3 4 5 3 4 6 3 ...4 4 319
n 1 n
1n 1S a a 19
2
9
2
479
784
Rewrite using sigma notation: 3 + 6 + 9 + 12
Arithmetic, d= 3
n 1a a n 1 d
na 3 n 1 3
na 3n4
1n
3n
Rewrite using sigma notation: 16 + 8 + 4 + 2 + 1
Geometric, r = ½ n 1
n 1a a r n 1
n
1a 16
2
n 1
n
5
1
116
2
Rewrite using sigma notation: 19 + 18 + 16 + 12 + 4
Not Arithmetic, Not Geometric
n 1na 20 2
n 1
n
5
1
20 2
19 + 18 + 16 + 12 + 4 -1 -2 -4 -8
Rewrite the following using sigma notation:3 9 27
...5 10 15
Numerator is geometric, r = 3Denominator is arithmetic d= 5
NUMERATOR: n 1
n3 9 27 ... a 3 3
DENOMINATOR: n n5 10 15 ... a 5 n 1 5 a 5n
SIGMA NOTATION: 1
1
n
n 5n
3 3