55
1.:" . ,I .. 1111111111111111111111111111111111I IIlllIllllllff 111111 I1I11111I 3 1.176 00159 6304 NASA CONTRACTOR REPORT 166323 Final Report - Multiplexed Extrinsic Silicon Detector Array James F. Yee Aeroject Electosystems Company CONTRACT NAS2-10643 March 1982 !yf)S/l (Jf- NASA-CR-166323 19820014409 .LI . .. .... 110T TO B: IHC.M 'thiS neot" COpy /, DR? ? 1982 LANGLEY RES::i\RCH CENTER NAS/\ HAMPTON, VIRGINIA NI\SI\ i 1111111111111 https://ntrs.nasa.gov/search.jsp?R=19820014409 2018-06-28T20:38:45+00:00Z

1111111111111 DIAGRAM FOR ONE READ FRAME SIGNAL-CONDITIONING AMPLIFIER, SCHEMATIC COMPONENT LAYOUT FOR SIGNAL …

Embed Size (px)

Citation preview

1.:"

.~ .

'~

,I ..

1111111111111111111111111111111111I IIlllIllllllff 111111 I1I11111I 3 1.176 00159 6304

NASA CONTRACTOR REPORT 166323

Final Report - Multiplexed Extrinsic Silicon Detector Array

James F. Yee

Aeroject Electosystems Company

CONTRACT NAS2-10643 March 1982

!yf)S/l (Jf- /~~/323

NASA-CR-166323 19820014409

·~""'O" ~... .LI . .. ]?~E'J?:EI~.ET'TC;~·~:~

.......,;..-.~~f'/:*~'.~'t ....

110T TO B: 'l'Al~r::. IHC.M 'thiS neot"

L~DRARY COpy /, DR? ? 1982

LANGLEY RES::i\RCH CENTER Llf3R~.R'(, NAS/\

HAMPTON, VIRGINIA

NI\SI\ i 1111111111111 ~~~I~!~!111111111111I1

https://ntrs.nasa.gov/search.jsp?R=19820014409 2018-06-28T20:38:45+00:00Z

-. "

....

'.

.,

'.

NASA CONTRACTOR REPORT 166323

Final Report - Multiplexed Extrinsic Silicon Detector Array

James F. Yee Aeroject Electrosystems Company Azusa, California .

Prepared for Ames Research Center under Contract NAS2-l0643

NI\SI\ National Aeronautics and Spar.o Administration

Ames Research Center Mollett Field. California 94035

tlgZ-222P3 #-

"

,.

. "

..

Section

1

2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.3

2.3.1

2.3.2

3

3.1

3.2

3.2.1

3.2.2

3.2.3

4

4.1

4.2

4.2.1

4.2.2

4.3

4.3.1

4.3.2

4.4

Report 6184

TABLE OF CONTENTS

INTR.ODUCTION •••••••••••••••••••••••••••••••••••••••••••••

DESIGN ................................................... DE'l'ECTOR AR.RA. Y •••••••••••••••••••••••••••••••••••••••••••

CRYOGENIC ELECTRONICS .................................... Pre ampli fie r •.•••••••.••••.••.••.••••.••••••.•••••.•••.••

Scanning Electronics •••••••••••••••••••••••••••••••••••••

Heater and Temperature Sensor ••••••••••••••••••••••••••••

AMBIENT-TEMPERATURE ELECTRONICS

Signal-Conditioning Amplifier ••••••••••••••••••••••••••••

Electronics Control Unit •••••••••••••••••••••••••••••••••

TESTING AND PERFORMANCE ••••••••••••••••••••••••••••••••••

NOISE IN AMBIENT ELECTRONICS ............................. DETECTOR AR.RA. Y •••••••••••••••••••••••••••••••••••••••••••

Responsivity •••••••••••••••••••••••••••••••••••••••••••••

Noise .•...•••..•....•..........•...•..••.•.....••.....•..

Relative Spectral Response •••••••••••••••••••••••••••••••

ECU DESCRIPTION AND MESDA OPERATION ••••••••••••••••••••••

ELECTRONICS CONTROL UNIT ................................. INITIAL CHECKOUT •••••••••••••••••••••••••••••••••••••••••

On-Focal-Plane Electronics (Cryogenic)

Ambient-Temperature Electronics

OPERATION

...................

General Procedures •••••••••••••••••••••••••••••••••••••••

Precautions ..•..••.•••.•...•.................•........•..

TEMPERATURE-SENSOR CALIBRATION ........ .. ' ................ .

iii

Page

1

2

2

3

3

3

4

4

4

5

7

7

7

7

8

9

10

10

10

10

10

16

16

17

18

Figure No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Report 6184

FIGURES

MESDA AHelD SYSTEM •••.••••••••••••••••••••••••••••••••••.

CROSS SECTION OF SINGLE CID CELL •••••••••••••••••••••••••

ARTWORK FOR FRONT-SURFACE METALlZATION •••••••••••••••••••

ORIGINAL ARTWORK FOR BACK-SURFACE METALlZATION •••••••••••

REVISED ARTOORK FOR BACK-SURFACE METALlZATION ••••••••••••

ARRAY IN MICROELECTRONICS CASE, SN 8101, 8106, AND 8107 ••

ARRAY IN MICROELECTRONICS CASE, SN 8108 .................. ARRAY IN MICROELECTRONICS CASE, SN 8115 ••••••••••••••••••

ON-FOCAL-PLANE SCANNING ELECTRONICS ••••••••••••••••••••••

TIMING DIAGRAM FOR ONE READ FRAME ••••••••••••••••••••••••

SIGNAL-CONDITIONING AMPLIFIER, SCHEMATIC •••••••••••••••••

COMPONENT LAYOUT FOR SIGNAL-CONDITIONING AMPLIFmR •••••••

COMPONENT LAYOUT FOR AMBIENT-TEMPERATURE ELECTRONICS •••••

SCHEMATIC FOR TIMING AND DRIVE CIRCUIT BOARD 1 ........... SCHEMATIC FOR TIMING AND DRIVE CIRCUIT BOARD 2 •••••••••••

TYPICAL TIMING DIAGRAM FOR MESDA S/H CIRCUIT •••••••••••••

S/H CIRCUIT, SCHEMATIC •••••••••••••••••••••••••••••••••••

COMPONENT LAYOUT FOR S/H BOARD •••••••••••••••••••••••••••

SIGNAL AND NOISE SPECTRA FOR FIRST AHCID-ARRAY/

SCAlE CU SET ••••••••••••••••••••••••••••••••••••••••••••

NOISE SPECTRA FOR AHCID SN 8101 ••••••••••••••••••••••••••

RESPONSE OF AMC ID SN 8101 •••••••••••••••• 0 ••••••••••••••••

RESPONSE OF AMCID SN 8106 TO DIFFERENT LED CURRENTS ••••••

RESPONSE OF AMCID SN 8107 AT DIFFERENT SAMPLING RATES

RESPONSE OF AMCID SN 8108 AT DIFFERENT SAMPLING RATES ••••

RESPONSE OF AMCID SN 8115 ................................ TYPICAL SPECTRAL RESPONSE FOR Si:Bi DETECTOR .............

iv

Page

19

20

21

21

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

\#

.,

'"

-.

...

Table No.

1

2

3

4

5

6

Report 6184

TABLES

SIGNAL AND NOISE FOR FIRST AMCID-ARRAY/SCA/ECU SET ••••••••

AVERAGE RESPONSIVITY AND OPERABILITY OF MESDA AMCID

PIXELS ••••••••••••••••••••••••••••••••••••••••••••••••••

FRONT PANEL OF E ctJ ••••••••••••••••••••••••••••••••••••••••

REAR pANEL OF ECU •••••••••••••••••••••••••••••••••••••••••

E CtJ IN"l'ERIOR ••••••••••••••••••••••••••••••••••••••••••••••

CALIBRATION OF TEMPERATURE SENSORS FOR MESDA !MelDs •••••••

v

Page

8

9

11

13

13

18

"

'~

Report 6184

Section 1

INTRODUCTION

This program was undertaken to design, develop, and test multi­

plexed extrinsic silicon detector arrays (MESDAs) with their associated cryo­

genic and ambient-temperature electronics for delivery to Ames Research Center

of the National Aeronautics and Space Administration and to Kitt Peak National

Observatory for evaluation in astronomical applications.

Each array consists of two parallel rows of accumulation-mode

charge-injection devices (AMCIDs) configured in a single bismuth-doped sili­

con chip. The cryogenic electronics consist of (a) timing and mUltiplexing

circuitry for use in array addressing, and (b) impedance-matching circuitry

for use in preamplifying the signals detected by each detector element. The

ambient-temperature electronics encompass the components used to drive the

timing circuitry, to amplify and demultiplex the signals, and to control the

-system.

Five arrays with their cryogenic electronics, and three ambient­

temperature electronics control units, were delivered under this program.

1

,.

"

Report 6184

Section 2

DESIGN

The MESDA system, shown diagramatically in Figure 1*, is composed

of the detector array, some focal-plane cryogenic electronics, and ambient­

temperature electronics for timing and drive use and for processing the sig­

nals of both linear arrays.

2.1 DETECTOR ARRAY

Each array consists of two parallel rows of AMeIDs fabricated

in a Si:Bi wafer. For each row, a transparent electrode forms a common read-

out-bus line on the front (incident) surface. Sixty-four gates over a native­

oxide thickness of about 0.2 micrometer form the storage and injection gates

on the back of the wafer. Figure 2 presents a cross-sectional view at one

of the gates.

During accumulation, a positive bias is applied to the gate to

store the photogenerated charge carriers (electrons). During readout, the

gates are biased negatively to inject the electrons back into the substrate

to the readout-bus line. The bus line is connected to the gate of a p-chan­

nel enhancement-mode cryogenic MOSFET operated in the source-follower mode.

The stored charge is seen as a voltage change on the source of the MOSFET

after readout.

The artwork for the front-surface metalization is shown in Fig­

ure 3. It includes a mask, electrically isolated from the readout-bus line,

that defines the pixel area in one dimension. This mask, called the "top

guard", is grounded to prevent crosstalk between the two rows. The metaliza­

tion between the two rows is 0.25 mm wide.

*AII figures are presented at the end of the report text.

2

Report 61B4

The artwork for the back-surface metalization incorporates gates

and a guard electrode, called the "bottom guard", to define the pixel area

in the orthogonal dimension. Each gate is about O.lB mm square. The origi­

nal artwork (Figure 4) was revised because charge accumulated under the gate

of one array could spill over to the corresponding gate of the other array,

causing crosstalk. This artwork was used on only one of the delivered arrays

[designated as Serial No. (SN) BI01J. The other four delivered arrays, made

with the revised artwork (Figure 5), have guard electrodes that completely

enclose each gate electrode, thereby preventing crosstalk between the two

rows.

The front side of each array is indiu~soldered to the inside

surface of a 32-~square 24-pin nickel-plated Kovar butterfly case as shown

in Figures 6, 7, and B. The case is slotted to provide access to the front

side of the chip. Each case has three holes for feedthroughs used to connect

the two readout-bus lines to the gates of the two cryogenic MOSFETs and to

connect the top guard to one of the feedthrough pins of the case. The Kitt

Peak cases (Figures 7 and B) have an additional hole for spectral-analysis

purposes.

2.2 CRYOGENIC ELECTRONICS

2.2.1 Preamplifier

Inside each case a cryogenic preamplifier is provided for each

of the two readout rows. Each preamplifier consists of a low-noise p-channel

enhancement-mode MOSFET operated as a source follower with a load resistor

that has a resistance of about 3.2 x 107 ohms at 10 K. The HOSFET gain is

about O.BO. Both preamplifiers are mounted on a sapphire substrate that has

gold stripes for wirebonding purposes. The preamplifiers are wirebonded to

the feed through pins of the Kovar cases with the pins as identified in Fig­

ures 6, 7, and B.

2.2.2 'Scanning Electronics

On the inside of each microelectronics case is a board for the

electronics that mUltiplexes the injection (read) pulses to the 64 pairs o~

3

'0

Report 6184

gates. As shown in Figure 9, the board consists of a 4-bit up/down-counter

chip (the MM54C193) and four 4-line to 16-line decoders (MM54C154) that are

powered by external store (positive) and read (negative) voltages. All are

complementary HOS (CMOS) chips, which require minimal power for operation.

External clock pulses load the bits to the counter in the up direction while

an external reset pulse clears the counter. External enable pulses are needed

to trigger the decoders.

A timing diagram for one read frame is shown in Figure 10. The

external clock causes the counter to count in the up direction on all four

decoder chips. There is no output on the decoders, however, until enable

pulses are applied to the enable inputs of each decoder. The enable pulses

are externally clocked sequentially through the four decoder chips--i.e.,

the enable pulses are applied as follows: on the first chip during the first

16 clock pulses, on the second chip during the second 16 clock pulses, etc.

2.2.3 Heater and Temperature Sensor

Also provided in each microelectronics case are a 100-ohm wire­

wound resistor that can be used to heat the case, and a 5.6-kilohm carbon-

glass resistor used as a temperature sensor. Calibrations for each tempera­

ture sensor are given in Section 4.4. If the heater is employed, then either

the case or the heat sink to which it'is attached must be isolated thermally

from the cold finger of the Dewar vessel. Stainless steel screws and washers

can provide the required thermal resistance.

2.3 . AMBIENT-TEMPERATURE ELECTRONICS

The ambient electronics consist of two entities--a signal-condi­

tioning amplifier (SCA) and an electronics control unit (ECU).

2.3.1 Signal-Conditioning Amplifier

This equipment was designed around the 5534 operational amplifier.

It is shown schematically in Figure 11, and a component layout is presented

in Figure 12. Two amplifiers, one for each channel, were constructed in a

cast-aluminum case to permit placement at close proximity to the test Dewar

4

Report 6184

containing the MESDA array. Each SCA has a gain of 200 from 700 Hz to 50

kHz. Included in the aluminum case are the source supplies for the two cryo­

genic MOSFETs.

2.3.2 Electronics Control Unit

The ECU contains the bulk of the ambient-temperature electronics.

It provides the timing and drive functions for the scanner, the sample-and-

hold circuitry used in measuring the AMeID output, and the controls for the

f~cal plane electronics. The major components are identified in Figure 13,

and Section 4 describes the operation of the unit in detail.

2.3.2.1 Tianng and Drive

The timing and drive circuitry is on Boards 1, 2, and 3. (Fig­

ures 14 and 15 present schematics for Boards 1 and 2.) A pulse generator

provides the clock input for the 4040 counter (ICl). By selecting N = 0 to

7, the 4051 multiplexer (IC4) divides the clock-pulse frequency by 2N. The

resultant clock is fed into the 74C193 4-bit counter (IC7) and is then sent

via the 4035 shift register (ICI4), the 4011 quad NAND gates (IC16), and the

two DG303 analog switches to generate enable pulses for the cryogenic scanner.

The output of IC7 is also fed into the 74C154 4-bit to 16-bit

decoder (IC8), which is always enabled. The outputs of this decoder are sent

to the 4067 16-channel multiplexer (IC6). By choosing 1 of 16 positions on

a selector switch, the digital-synchronizing pulse is selected on that pixel.

The output of IC4 is also sent to two more 4040 clocks (IC2 and IC3), Whose

outputs are routed to the inputs of another 4067 multiplexer (ICS). By se­

lecting M = 0 to 15, a delay time is introduced before the 74LS76 dual J-K

flip-flop (IClI) is loaded. This delay time is (2M-I) times the time for

one readout frame. The integration time is thus the sum of the read and de­

lay times--i.e., [2N + 2N(2M-l)] times clock time = 2M 2N times clock time.

The 4051 multiplexer (IC17) is used to select Which of the four

groups the SYNC SELECT is synchronized to.

5

'"

Report 6184

One 75451 dual AND driver (IC23) is used to provide digital syn­

chronization and another (IC24) is used to provide dc-restore and sample-and­

hold (StH) pulses for the StH circuitry. Further details are provided in

paragraph 2.3.2.2, below.

A potentiometer on Board 3 is connected to IC19 to vary the width

of the read-enable pulse. Another potentiometer on Board 3 is connected to

IC22 to vary the delay in the StH pulse.

A 7400 quad NAND gate (IC13) is used as an OR gate to allow the

StH circuit to function on all the pixels (~tH ALL) or on just one pixel (StH

SELECT).

2.3.2.2 Sample and Bold

Figure 16 presents a timing diagram for the StH function. The

dc-restore pulse sets a reference level for measurements. The StH pulse can

be delayed to any part of the read-enable pulse. Here it is appropriate to

define ~s as the time interval between the end of the dc-restore pulse and

the end of the SIR pulse, as illustrated in Figure 16.

The StH circuitry is shown schematically in Figure 17, and a com­

ponent layout is presented in Figure 18. The dc-restore and S/H pulses from

the timing and drive functions are coupled to the StH circuitry with the HPL

2630 optical isolator (U6). The digital synchronizer is used to produce ana­

log synchronization via another HPL 2630 optical isolator (U7). Electrical

isolation of the analog and digital electronics is crucial for maintaining

low noise in the output stages. A pair of HA2425 sample-and-hold operational

amplifiers (U1 and U2) provide the SIR function, While LH0002 current ampli­

fiers (U3 and U4) can drive an output of 200 mA with a 50-ohm load.

2.3.2.3 Focal Plane Control

The ECU also contains the controls for two of the focal plane

components--the heater and the bottom-guard voltage. The heater power is

tapped off the -15 V supply as shown in Figure 17. The bottom-guard voltage

is powered from the analog voltage supply on the back panel.

6

."

Report 6184

Sec:tion 3

TESTING AND PERFORMANCE

For test and evaluation purposes it is convenient to partition

a MESDA system between the ambient electronics and the cryogenic AMCID arrays.

3.1 NOISE IR AMBIENT ELECTRONICS

After the first AMCID-array/SCA/ECU set was constructed, noise

spectra and signals were measured with amplifier bandwidths of 30, 50, and

80 kHz and with As (as defined in paragraph 2.3.2.2) set to 10, 12, and 14

microseconds, in order to determine the optimum amplifier configuration.

A typical plot is shown in Figure 19. Table 1, below, summarizes the sig­

nal, noise, and signal-to-noise ratio (SIN) data. The MOSFET gate capaci­

tance is 5.7 pF. On the basis of the results, a compromise 50-kHz bandwidth

was selected for all three amplifiers. It can be seen that operation at' lower

backgrounds may benefit from the use of smaller As values to minimize noise.

Noise spectra of the warm electronics were measured with the SIH

input and the amplifier input shorted. Typical data are shown in Figure 20;

they indicate that the noise contributions of the SIH circuit and the amplifier

are significantly smaller than those of the cryogenic preamplifier (see Fig­

ure 19).

3.2 DETECTOR ARRAY

3.2.1 Responsivity

The infrared response of each detector array was checked under

low-background conditions using an indium antimonide light-emitting diode

(LED) source. Whenever possible, response ~as measured as a function of LED

current [i. e., photon (ph) fluxes (~)J, temperature, store vOlt"age (VS), read

voltage (VR) , guard voltage (VG), integration time, As, and sampling frequency

(Fs ). Because no satisfactorily responsive arrays were fabricated until

7

Report 6184

TABLE 1 SIGNAL AND NOISE FOR FIRST AMCID-ARRAY/SCA/ECU SET

Values at Indicated

AmpJifier Bandwidths

Parameter 30 kHz 50 kHz 80 kHz

~s = 10 usec

Signal, V 7.4 x 10-3 9.Q x 10-3 1.0 x 10-2

Noise, V 6.0 x 10-5 7.5 x 10-5 9.0 x 10-5

SIN 122.3· 120 III

~s = 12 usec

Signal, V 7.2 x 10-3 8.8 x 10-3 8.9 x 10-3

Noise, V 6.5 x 10-5 1 x 10-4 1 x 10-4

SIN 111 88 89

~s = 14 J,tsec

Signal, V 7.0 x 10-3 8.0 x 10-3 8.0 x 10-3

Noise, V 8.0 x 10-5 1.0 x 10-4 1.1 x 10-4

SIN 88 80 72.7

Average Noise <e> electrons/sample

~s = 10 193 241 290

~s = 12 209 322 322

~s = 14 257 322 354

several months after the originally scheduled delivery dates, early delivery

of these working arrays became of paramount importance, and only cursory checks

were made on most of the arrays. Figures 21 through 25 present typical data

for the five arrays. Table 2, below, summarizes the average current res pons­

ivity (RI' in amperes/watt), and the operability of all pixels (gate pairs).

3.2.2 Noise

Under low-background conditions the limiting noise is that of

the cryogenic preamplifier. Because all output HOSFETs were selected for

their very low noise characteristics, the cryopreamplifier noise is dominated

by the Johnson ,noise of the load resistors. The fact that all the load resis­

tors were selected to have nearly identical values caused the limiting noise

8

Report 6184

of all the arrays to be likewise nearly identical. The noise shown in Fig­

ure 19 is thus typical of all the MESDA arrays.

TABLE 2 AVERAGE RESPONSIVITY AND OPERABILITY OF MESDA AHCIn PIXELS

AMCID Average ,

SN Array SN RI (A/W) Operability of Pixels i

8101 225-9.6-7 1.0 Gate pairs 25, 26, and 60 inoperative

8106 225-7.7-2 1.2 All gate pairs operative I

8107 299-6.7-4 0.8 Gate pairs 1, 22, 26, 41, 54, 56, 60, and 63

inope ra t i ve

810B 225-7.7-4 0.4 All gate pairs operative

8115 225-8.0-4 0.9 Gate pairs 24 a.n!i_~4_!noperative I

3.2.3 Relative Spectral Response

The relative spectral responses of the MESDA arrays were not di­

rectly measured. A typical relative spectral response for Si:Bi detector

material is shown in Figure 26.

9

Report 6184

Section 4

ECD DESCRIPTION AND MESDA OPERATION

4.1 ELECTRONICS CONTROL UNIT

The ECU contains the electronics for the timing-and-drive (Tin)

circuits, MOSFET preamplifiers, heater, and SIH circuits. It can be rack­

mounted and requires power from two dual supplies (~15 volts, 500 mAl. A

pulse generator is also required for the TID circuits. The ECU features ate

identified in Tables 3, 4, and 5, following.

4.2 IBITIAL CHECKOUT

4.2.1 On-Focal-P1ane Electronics (Cryogenic)

The scanner cannot be checked at room temperature because the

detector is grounded to the can, which prevents the observation of read pulses

through the preamplifier.

The preamplifiers can be checked by providing the source voltage

to them and measuring that voltage. In proper operation the source voltage

drops to about 4.5 V.

4.2~2 Ambient-Te!p!rature Electronics

The array is not required to be at cryogenic temperatures in order

to check out the Tin and SIH circuitry. The procedural steps are as outlined

below.

4.2.2.1 Front Panel of ECD

a. Power Check: With none of the BNC connectors connected to

the control panel, set the two external power supplies to +15 V and switch

the power-supply meter function to read currents. Now connect the digital

power suppplies to the appropriate double GR connectors. The current draw

on the +15 V supply should be about 260 mA; for the -15 V supply it should

10

Report 6184

TABLE 3 FRONT PANEL OF ECU

Label Purpose/Function/Description

CLOCK IN

READ CLOCK

RESET

EN 1 (or EN 2 or EN 3

or EN 4)

STORE

READ

OUTPUT SYNC

SAMPLE AND HOLD INPUT 1

(or 2)

SAMPLE AND HOLD OUTPUT 1

(or 2)

TM

SYNC

2N

BNC Connectors

Brings in ti~ng pulses from an external pulse

generator (2 microseconds to 50% duty cycle).

Sends timing pulses into the cryogenic counter.

Sends reset pulses to the cryogenic counter that

are synchronized with the first pixel.

Sends enable pulses to the decoder chip for the

1st (or 2nd or 3rd or 4th) group of 16 pixels.

Provides store voltage for the counter and

decoder chips.

Provides read voltage for the counter and decoder

chips.

Brings out a pulse synchronized with the digital

electronics at the pixel chosen by the SYNC

SELECT gwitch.

Sends the output of Amplifier 1 (or 2) into the

sample-and-hold circuit.

Extracts the output of Sample and Hold Circuit 1

(or 2) for analysis.

Takes the output of the temperature monitor to

the digital volt-ohmmeter.

Is synchronized with the digital electronics

through an optical· isolator.

Switches

An a-position thumbwheel switch used to set the

interval between read pulses of successive

pixels. This interval is 2N times the base

time set by the master clock (external pulse

generator).

(continued)

11

Report 6184

TABLE 3 FRONT PANEL OF ECU (CONT.)

Label Pur~ose/Function/Description

2M

P (or S)

EN 1 (or EN 2, 3, or 4)

RESET

SIH SELECT (or"S/H ALL)

SYNC SELECT

HEATER OFF

HEATER

Switches (cont.)

A l6-position thumbwheel switch used to set the

interval between the last read pulse of a read­

out and the first read pulse of the next read­

out. This interval is (2M-I) times the base

time. Therefore, the total integration time

is 2N x (2M-I) x base time.

Used to select parallel-mode (or serial-mode)

readout.

Sends an enable pulse to the 1st (or 2nd, 3rd, or

4th) group of 16 pixels when reading out in the

parallel mode. In the serial mode, these are

overridden so that all groups are enabled se­

quentially.

Used to reset the counter to the beginning when

an interruption is desired in a long integra­

tion-time interval.

Switches on the sample-and-hold circuitry on a

selected pixel (or on all pixels). In the SE­

LECT mode, the pixel is the one indicated by

the SYNC SELECT switch.

A dual thumbwheel switch (one 4-position and

another l6-position) used to select the pixel

to which" a synchronization pulse is synchro­

nized. The second number displayed indicates

the pixel group (1 through 4) and the first in­

dicates a pixel (1 through 16) in that group.

Turns on or off (up or down) the power to the re­

sistance heater in the Kovar can.

Potentiometer

Used to adjust the power supplied to the heater

to regulate the temperature of the Kovar can.

12

Report 6184

TABLE 4 REAR PANEL OF ECU

Label , Purpose/Function/Description BNC Connectors

HT Supplies power to the heater. TM Connects the temperature monitor to the control

panel. GD Supplies bias (+15 V to -15 V) to any guard. DC Rest. A test point used to bring out the dc-restore

pulse. S/H A test point used to bring out the sample-and-

hold pulse. Double General Radio (GR) Connectors

+15A (-15A) Used to connect a +15V(-15V) 100-200 mA supply for the analog circuitry.

+15D (-15D) Used to connect a +15V(-15V) 100-200 mA supply for the digital electronics.

Unlabeled Winchester Used to connect the control box to the SCA. Connector

Potentiometer GD ADJ I Adjusts the voltage supplied at the guard.

TABLE 5 ECU INTERIOR*

Label I Purpose/Function/Description BNC Connector

S/H Used for looking at the sample-and-hold input I

after it has been dc-restored. I

Switch I

I-ADJ/ONE (2-ADJ/ONE) In the ADJ position, switches a gain potentiom- !

eter into the sample-and-hold circuitry for Channell (or 2). The gain is adjustable from 1.5 to 2.0 times. In the ONE position, the gain is unity.

Potent10meters READ PW Used in adjusting the read-pulse width. SIH DELAY Adjusts the delay of the sample-and-hold pulse. 1 (2) Adjusts the sample-and-hold gain when in the ADJ

mode. *See Figure 13.

13

'.

Report 6184

be about 40 mAe Next connect the analog power supply. With the preamplifiers

in operation, the current draw should be about 120 and 25 mA for the +15 and

-15 V supplies, respectively.

b. STORE and READ Check: Connect the STORE output to a digital

voltmeter (DVM) and adjust to +2.00 Vdc. Connect the READ output to the DVM

and adjust to -2.00 Vdc.

c. READ CLOCK Check: Now connect an extemal clock (~S V square­

wave pulse at 64 kHz) to CLOCK IN. Connect the READ CLOCK output to an oscillo­

scope synchronized with the extemal clock. With N = 0 and M = 0, which gives

the fastest integration time, the output should be 1- to I.S-ndcrosecond pulses

of +2.00-Vdc height at IS.6-microsecond intervals.

d. RESET Check: Next connect the RESET output to the oscillo­

scope and synchronize intemally. Because the reset pulse should come just

before the first pulse, this output should be +2.00 Vdc, be 1 to 15 ndcro­

seconds wide, and occur at I-millisecond intervals.

e. OUTPUT SYNC Check: Next set SYNC SELECT to 1-1 and synchro­

nize with the reset pulse. Look at the output of the OUTPUT SYNC (digital

synchronization). Verify that this is a positive pulse going from ground

to +2.0 Vdc, is 1 to 1.5 microseconds wide, and occurs at I-millisecond inter­

vals.

f. S~C Check: Next verify that the (analog) SYNC is a negative

pulse going from. +5.0 Vdc to ground, is 1 to 1.5 microseconds wide, and occurs

at I-millisecond intervals.

g. EN Check: Next synchronize the oscilloscope with the OUTPUT

SYNC and look at the enable pulses. Looking at EN 1 with the read-pulse-width

(READ PW) control fully counterclockwise, the output should occur at 15.6-

microsecond intervals, with the group of 16 pulses repeating at I-millisecond

intervals. The same should be true for EN 2, EN 3, and EN 4.

14

Report 6184

h. SYNC SELECT Check: Keeping the output of EN 4 connected

to the oscilloscope and synchronized with the OUTPUT SYNC, change the SYNC

SELECT setting to 16-4 (16th pixel of 4th group). A single pulse should be

seen. Change the SYNC SELECT to 15-4; two pulses should be displayed. Con­

tinue reducing the first number of SYNC SELECT by increments of unity and

observe that one pulse is added each time until 1-4 is selected. This pro­

cedure should display all 16 pulses of the fourth group.

i. 2N and 2M Control Check: With Nand M set at 0-0, change

SYNC SELECT to 1-1. Connect the EN 1 and RESET outputs to the oscilloscope

to display alternately. Synchronize to OUTPUT SYNC. The time between the

reset pulse and the first read pulse should be about 2 microseconds. Adjust

the sweep of the oscilloscope to display two complete frames. Now change

N to 1; the read time should double and (because the delay is unchanged) the

total time for the entire frame will double. Consequently, only one complete

frame will be seen in the time that two frames were seen before. Now change

Nand M to 0-1. The read time should be the same as for 0-0, but the delay

time will be equal to the total read time (2M - 1 = 1). The first train of

read pulses will thus occur in the same time interval as When N,M = 0-0, but

there will be a delay interval to replace the second train of N,M = 0-0.

j. DC-Restored StH Input Check: Connect the EN 1 output to

StH inputs 1 and 2. With the oscilloscope synchronized to the analog SYNC,

monitor the StH BNC connectors inside the control panel. The read pulses

should be 0 to -4 V.

k. StH Slew Rate Check: With the StH switch on the front panel

in the StH ALL position, increase the read-pulse width to 6 microseconds.

Adjust the StH pulse to sample Where the read pulse reaches its maximum neg­

ative voltage. Now, looking at the S/H outputs, the output should go from

o to -4 V within about 1 microsecond. The slew rate is about 5 to 8 V/micro­

second. The output-voltage level should also return to zero after the previ­

ous read pulse.

15

Report 6184

4.2.2.2 Rear and Interior of ECU

The outputs in these locations can also be checked without the

array and scanning electronics!

a. aT Check: Connect to a DVM. With the HEATER switch on the

front panel in the up position, a potential of -15 V should be measured.

b. GO Check: Connect to a DVM. The voltage should be adjust­

able from -15 to +15 V by turning the guard (GD) control to its two extremes.

c. DC Rest. Check: Compare the dc-restore pulse with the read

pulse, using an oscilloscope. The pulse width should be 1.0 to 1.5 micro­

seconds, with a height of about 2.0 V. The dc-restore pulse should be set

about 100 nanoseconds before each read pulse.

d. SIH Check: Compare the S/H pulse with the read pulse. The

pulse width should be 2.0 to 2.5 microseconds, with a height of about 2.0

V. The S/H pulse can be set at 2 to 30 ~croseconds from the read pulse or

at the start of the next read pulse, whichever is a shorter period.

4.3 OPERATION

4.3.1 General Procedures

After the initial checkout has shown that the ECU is operating

properly, the following must be adjusted to the proper operating conditions:

a.

b.

c.

The

The

The

frequency of the pulse generator

store voltage (STORE») Do not exceed

read voltage (READ) differential!

a 15-V

d. The read-pulse width (READ PW) R:2 microseconds.

The following items are then connected to a cooled Dewar vessel

containing the array: RESET; EN 1, EN 2, EN 3, EN 4; STORE; READ; and (on

the back panel) HT and TH.

16

Report 6184

The timing pulses are monitored by means of one of the enable

inputs. Here the digital OUTPUT SYNC should be used.

The preamplifiers are connected to the SCA. The common drain

and the two loads are grounded. The power cable from the back of the ECU

is connected to the SCA. The two sources are connected to the inputs (IN)

of the SCA. The source voltage can be monitored here; it should be about

4.5 V. The outputs (OUT) of the SeA are connected to an oscilloscope in

order to monitor the read pulses of the MESDA. The analog SYNC should be

used to synchronize the oscilloscope.

Presuming that the operation is still proper, the outputs of the

SCA are connected to the S/H inputs. The SIH BNC connectors on the sample­

and-hold board are connected to the oscilloscope so that the dc-restored sam­

ple-and-hold inputs may be monitored. The SIH delay is adjusted with the

S/H DELAY potentiometer to the desired amount. The S/H outputs are then con­

nected to the oscilloscope or to other data-collecting equipment for measure-

ments.

At this point the sampling rate may be adjusted. The temperature

of the array should be monitored, because higher sampling rates result in

higher heat loads.

4.3.2 Precautions

It is emphasized that the differential values of the store and

read voltages must not exceed 15 V or the scanner may latch up.

The READ CLOCK must always be connected last and be disconnected

first, to prevent possible CMOS-chip destruction.

To maintain separate grounds for the analog and digital electron­

ics, the OUTPUT SYNC should be used When digital electronics are monitored

and SYNC (near the HEATER OFF switch) should be used When analog electronics

are monitored.

17

...

Report 6184

4.4 TEMPERATURE-SENSOR CALIBBATION

The temperature sensors are carbon-glass resistors with nominal

room-temperature resistances of 5.6 kilohms. Each was calibrated at cryogenic

temperatures. The results are presented in Table 6.

TABLE 6 CALIBRATION OF TEMPERATURE SENSORS FOR MESDA AMCIDs

Part or

Temp (K) Resistance (kilohms) for Indicated Serial Nos.

Array SN 225-9.6-7 225-7.7-2 299-6.7-4 225-7.7-4 225-8.0-4

AMCID SN 8101 8106 8107 8108 8115

Temp Sensor SN 188 190 189 197 201

7 121.2 118.0 120.1 122.6 118.5

8 92.1 89.7 91.5 93.2 90.1

9 73.7 11.8 73.3 74.6 72.1

10 61.2 59.7 61.0 62.0 59.9

11 52.3 51.0 52.2 52.9 51.2

12 45.6 44.5 45.6 46.2 44.7

13 40.5 39.6 40.5 41.1 39.8

14 36.5 35.7 36.6 37.0 35.8

15 33.3 32.5 33.4 33.8 32.7

16 30.6 29.9 30.7 31.1 30.1

17 28.4 27.8 28.5 28.9 27.9

18 26.6 26.0 26.7 27.0 26.1

19 25.0 24.4 25.1 25.4 24.5

20 23.6 23.1 _ .. ___ ..t3.~ 24.0 23.2

18

S

DC RESTORE

MIPLE AND HOLD

I-- READ CLOCK -

MASTER

CLOCK --TIMING

AND

DRIVE

+15 Com -15

DIGITAL POWER SUPPLY

EN 1

EN 2

EN 3

EN 4

RESET

VR Vs

SOURCE 1

-FOCAL

PLANE

- SOURCE 2

-

FIGURE 1. MESDA AMCm SYSTEM

SIGNAL

PROCESSING

CHANNEL

1

SIGNAL

PROCESSING

CHANNEL

2

+15 Com -15

ANALOG POWER SUPPLY

ROW 1 OUTPUT

ROW 2 OUTPUT

~

...

TOP GUARD

'-

i~

I

-125 JLm

-175 I-Lm

Si02

Report 6184

TOP GUARD

-J ... ,

-350 ILm

.J

BOTT~-I----~~--~-- ---~~--l GATE I [BOTTOM

GUARD MET~LIZATION GUARD

FIGURE 2. CROSS SECTION OF SINGLE CID CELL

20

to.) .....

~~: ---------=:1:1 FIGURE 3. ARTWORK FOR FRONT-SURFACE METALIZATION

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

FIGURE 4. ORIGINAL ARTWORK FOR BACK-SURFACE METALIZATION

• • • • • •

FIGURE 5. REVISED ARTWORK FOR BACK-SURFACE METALIZATION

--.

LOAD 1 c=:4

0 0 ~ TEMP MONITOR

~ SOURCE 1 d ~ TEMP MONITOR

COMMON DRAIN ENABLE 4

SOURCE 2 : : ENABLE 3

~ LOAD 2 ENABLE 2 : : I

, . TOP GUARD c=:I ~ I i

f==' ENABLE 1 ; I ~

\' ,j

j' I: . 'I N BOTTOM GUARD ~ i: ' t::==::I STORE N ! ,

CASE -=I

\' ; I

r ! , , I===a READ

HEATER ===I I ;f

~ ~ t=====t CLOCK

~ '=== RESET HEATER ===I

CASE -==I F CASE

CASE s:::::t 0 0 I===a CASE ~ III

'tJ 0 11 rt

'" .... FIGURE 6. "ARRAY IN MICROELECTRONICS CASE, SN 8101, 8106, AND 8107

Q) .po

---------_. CASE

0 0 CASE

CASE r---:

i' f ENABLE 4

I

HEATER ENABLE 3

HEATER ENABLE 2

BOTTOM GUARD ... ! ENABLE 1

TOP GUARD STORE

N SOURCE 2 ; READ w

.LOAD 1 CLOCK

LOAD 2 RESET

COMMON DRAIN TEMP MONITOR

SOURCE 1 TEMP MONITOR

CASE 0 0 ~ CASE 11)

'tJ 0 --_.- ---- tot rt

0\ ..... 00

FIGURE 7. ARRAY IN MICROELECTRONICS CASE, SN 8108 .to-

r

CASE c:::==::t

0 0 1===== CASE

CASE~ r rr J===I ENABLE 4

HEATER c::::=t I : I 1===== ENABLE 3 I j !

HEATER~ ~ ENABLE 2 : .

I

BOTTOM GUARD ~ • .! r- ENABLE 1 · .

TOP GUARD d t===' STORE

N oil-

SOURCE 2 · . READ

LOAD 2 CLOCK

LOAD 1 RESET

COMMON DRAIN c:=::I \.-J / ~ TEMP MONITOR

SOURCE 1 ~

~ 1===== TEMP MONITOR

0 0 ~ CASE

~ III

CASE ---. '0 0 '1

" 0\

FIGURE 8. ARRAY IN MICROELECTRONICS CASE, SN 8115 .... 00 ~

Pixels Pixels Pixels Pixels

49-64 33-48 17-32 1-16 -

C154 C154 C154 C154 C193

A A A A C .n ~A u

Read Clock

Bi- B- BI-- B ~BQ QR <> S D C S D C S D C S D C C D

Reset

• 0

4 0 () c) () 0 Enable 4 Enable 3 Enable 2 Enable 1

FIGURE 9. ON-FOCAL-PLANE SCANNING ELECTRONICS

,

~~KFlG1~ 48 rJ:1M ENABLE SlUFf U u u Ir

...., 0\

ENABLE 1

ENABLE 2

ENABLE 3

ENABLE 4

LOAD

RESET

-----------------------~ ____ ... _._._. __ ~. .. __ , ___ ...... _._~_.____________ L

FIGURE 10. TIMING DIAGRAM FOR ONE READ FRAME

~ 'tI o t1 rt

0\ .-00 ~

IN RI PWR +0 IS ~-G.I SoUp

IN ISICQ' I 2.0 )+ 15 " ~" T tnf • -IS ,

2.0

COM 1 I etn;' ) . CHS

o rh

,1 ~20?2SK tnf tnf

+15

.50 P~5

CH

6 R.S '\/'VI

IS ZOK \-10

,SO Pf

C.6 ".2-5 pf

CH

+15 2.OK

-15

Report 6184

OUT

2

OUT

FIGURE 11. SIGNAL-CONDITIONING AMPLIFIER, SCHEMATIC

27

1 os "

\Q 11. 1'; "lb .;IO.ll. ~'i. ~r. 303:1 "3~Ua 3'1 .. 11 · • • • • . ... • • ~. . . . • • •

(~"' IT~II~ ~

~~ • ~ I · • . . .

gl);IILi : rr ~ )~

Co\ IS •

N I, • 00

. 6 A,

jO • ;)\ • _./1 _ , ...., ,,. , " , 12

~

j~1 • .;t •

I -~~~~----::::::==::::::ar~::::::=-... Q-" : .~J'==;:~~.;;;;;;;;:-;~~!======~~I~:::TIC ?l~"~

~

FIGURE 12. COMPONENT LAYOUT FOR SIGNAL-CONDITIONING AMPLIFIER

j:Q /I) ." o 11

" 0\ .... 00 .po

IOAID 1 IOAID 2 IOA.'ID 3 IOAID .. IOA1UI 5 IOAID 0

~--~--------~r~----~----~~~~--------~----~------~----~~-------~------- ~ I' N I II ::: J:?i ~ ~ ,!-.<I .... ~ ,Q, -g-- (:0 +g -:;- CO'"

"t:KIl e

• £i:J] •

·1 t:.1/ I·

~ I/O ",t

t-~ ~. r-- - --, :--

:!I!! !IC= r:'1 ~ ~ IC Ie 7 9

"-~5] ~ Ie tc'· I' i ! .1 1, 11 •

,.~; m :C1:; I-:.--! • IC: I • :.. ! I

IC i ! I! ,I 2

1 II " I I

-'I' '! :--' ~~~I 11io6'r1

I.... 1-11 1-13 I... I. I. I.C. IC COlI IC Split lC

12 16 19 25

I.... 1-12 2-13 I... I.. I_ IC IC t-OIIIP Spar IC Ie 11 14 16 26

Tc rca ~ tr It" \! 15 17 22 21 20 27

Ii i1il ~. rt !,l 0 [! ':'r -Q!±}- -{E]-

IC

::re4tl ~ .... "c': r"DIIIP 13 COIIP

,0 f'r.A 0 P'tv'

o S/H DE'L4Y

o 0 (\('1) +S'"

o o

SIll GoA/AI

II OJ

o CH/E.,

B EJ B o

B El

o

0-- --0 (;;- -Po ~ ________________ ~I~ ______________ ~~~ ______________ ~~ ______________ -4~ _________________ ~L-____ -- ----____ ~

CONP,

R I,Z C. I J 3 C. lJfo

VAW£ I K

D.IM.~

IDOA-II

:r:c.... ()c"/~ P .. "I I ~o"o II

2. 1(01(0 Zt.

3 qOqO " ". ~O~I ,,,

~ I/O (.1 2.' " '10 ,. T z.f 7 7i1C'U .3

8 7'1"Sf. ," '1 '105"0 ~

10 1(01(9

CelfP 'l1'lC.I03X 10

rc~

II

'''''' 1'1 /~

/(,

17 /8-ZZ

~!J2' %~2",Z1

[;~ ."o! r 7 i'/.S l' 11il$OO

4IO'~ ~oS"'o

(/0 'I 'Ion 1"1UIlJ 15'¥~1

DC; .lOJ

FIGURE 13. COMPONENT LAYOUT FOR AMBIENT-TEMPERATURE ELECTRONICS

:r.<!.* VI

VI. u, U¥ uS" lJ' c.J7

D.""t:.­Hlf :J"'~S' 111. J,."J,S i.HODO'2.

LlloOO2-DG-.1oa HPL.2U, HPL 1'30

w o

10-1

211

410G9

3 % ,. rJ,

1 <D.

~ q

W

" A 0 ,

r---f! 8

~ C. Ell

Cr.-I t , 101(.

lit vv

In I. .A",--

~- I_N\-

1

,. B ,.

1',,:. 7

lfo '/0 CD

G .. <9 .. I?t': Or- Q" (;).,

7 " s- f l!: l'

"" 2 I ~ 2 " :L !> '1'- S- " 7 'f05t)

40~/ @ our 3 f>I 3 .

~ .. / 1,0 ~RC' 0, Q~ I~ 9 0

Q? I", I I

K>--~~' ~D 08 ~ -2 lor il2- ,

3 ~ ® Q, IliI S " K>--rc •

G.o ... T

,.J! ~ .!L ~s f5 Q., I .3 GIl. " 1 ~f?<-jt ~o/?7

k @ ¢, Q, 19 --2. .,

~LOAl> c:I. ''7. ....t1 8 0111' '

';OJ'. G, " %.2 4

D 0,. r 'll 'e ~

@) Of' 13 ...2D " C C!.P.-J Q, lz. JJ. ,z r " ,. -I",

lil II 5

e " ~ a,. " " . -.. Rs G. In. .LZ ,oJ C ,t/. t- vw_

G? t%. It. ,<, II /5 .7

J 101(.

...11 _41 I 7 1/0 -I 2. It\

5

, .

~I 'I liL c._" ~b VR C. liP CAr", 7~-.!. 193

(!) CL#'ff(.

:tttL ~_lS . __ 2_~ _'-1 o!o II e (! ~

7'YC- /~"7' ® D I 2 "

, ;c

I ;'t-,

., 0/2.2 '1''-("' 7"/-

~c~7 ~)

~SHIFT

~R' ... ·r z.

'I ': '1 /r T

'l ,. ,~ +' ~r

EN"

I! D 111

I. '/

,., 'f7

I, IS

.1 f!'-I

~

~ _"-A-

,/ -AA"--

JS III -5

£/0-1 Cc~l> "

,

SI'""a., S~"",C.T

FIGURE 14. SCHEMATIC FOR TIMING AND DRIVE CIRCUIT BOARD 1

$It! (1)

'tJ o '1 rt

0\ .... co ~

w ....

. S#ll~ ----+--------IRt .. "f(t ••

r-----------1=~~~----O~ •

FIGURE 15. SCHEMATIC FOR TIMING AND DRIVE CIRCUIT BOARD 2

W N

,

PIXEL 3 PIXEL 4 PIXEL 5 . I

READ CLOCK J ,"------in n I DC RESTORE ~ I ~ I n I rL

READ ENABLE ,. ,

I

SAMPLE/HOLD n n n ... _______ _ \+-As...f

FIGURE 16. TYPICAL TIMING DIAGRAM FOR MESDA sIR CIRCUIT

~ 'tJ o 11 rt

Q\ ..... 00 .po

1N?\ST­Z

~~\.oc;. @ S'(~

~

1_

~~ ! ,,,

HA~~~~ U1

t

....,..----------

~~ ~1 'TP'2. ~Cr "!o~

u~

L -.11\, - \~ J ~~ ~~~ .-:1. ~~ '. =::I a_ ~

w\G-. -= , !I .~~e..

J ~~ HVL. ~'!o "--...... ·t u'

~

\~

Report 6184

sll-\ ~2. O\.\~.'l>UT

~1 L~OOO~ U3

·1 , ' a~SV

s(\-\

~<\ 1~ O\.l\?\S\"-

"G L\\O.~~ 1 U4\­

·u_ • .~sv

/ Ii; ,.... -50 "\11 ,,-w:. -1'i.V ~ " ~~ ..e. ell

_ • _ .' ...-'V\IIa ~ . R"J :i::

FIGURE 17. SIH CIRCUIT, SCHEMATIC

33

"

o

to :1 0...,4

~ C ~

¢I

to. ~N to

(0 Ct~ ,,2 :te 0

'Be c ;i.i-"'II' c(l 0

Ul

Ll"

us

\ ~

'@ T~1

..... '5 o

U'3

U4

-IS CZ)

G J.-" III ~.

~a: p elf a

@ 'Tl>~.

o-§]---o

G o 0 ~sv GR\)

FIGURE 18. COMPONENT LAYOUT FOR siR BOARD

34

Report 6184

~I ~~ ~)

oj N~

o 0)

'1 ~~

~" u-.j 0"c!.

0)

') 0:r

"iii 0)

o )

~ 0)

o }tJ cJ:l -'7 Or/'

0)

Report 6184

10-2

,... > ..... 10-3

:;! :z; t:I .... III

co: 0 ,... ~ -CD

S >~ ..... III 10-4 III .... 0 :z;

10-5

PUOIJEHC! (1&)

FIGURE 19. SIGNAL AND NOISE SPECTRA FOR FIRST AMCID-ARRAY/SCA/ECU SET

35

"

..

,..,.

~ -en S

:;:.$.1

'-'

~ CIJ ~ 0 z

Report 6184

.L~:~i~::r.:', .r·Y T:rr: : '~L~ ::::Hr::tF::l"+J:L~: . i· '+:T:r~~~J~~l~ ~. --:;t- "-'I" .,.j., I; : .. 'T'l' .. -1---- '---I-j"~'''f'' -.'::j .: -:;- t .. ·,· " . Jh·;:-:r-·:t " -n ........ '

10-2 =:~~:~:~i:~::~~:":_1 :j<:i ~~l· ;1-, :~~~F;~ :~~--~~·~1.:,· <F:~.hT-~1 .::!: :J':'~; __ J~J~:~~~' :+:i~:1

10-3

10-4

~~~'-~l·U·~~~::· ':;<·1:; ;::-j.: .!.::'.' :'~ ".: 1 ~~~ :;~:t;:··I.:::r:::j:; ::-~l. 'J.::: .:;~~~:~ ... ;·:~;~~;~L;~:L~!;;:t:.;::~ cic:i'r:;"!: -.: :i ;.-! .. : . :,:i:: ';'J:H:i':l::!':' i:'J ·t~! :. ,',' '.; :~ .. ::;~.j::'~ :J:o:t~~}::"h.:i.i

~~[l~t:%,.:::;·f~i:.1 ';'::::: j .:~.; :'}j~~t~.::·~!~rf=i::·:i::~:(·~;i::~r:r-~~·~ ::~~:: ': ~~!:<·~~H;~l;.~j~p~~;i:l:n F.:-~·:'!:~';i7'~·'\' ! . '-r -, "".~' E"·: ":'Ff,:~~":: ,,'-' "C'-:'.":"!'-· ~. 0 t".'·, "':!iii' ,.,>0:,:"-.':;' ":t'~E'i:'·': ~=-"H~~,-U':Ak:.,"::;:~±:.J::~+':"-j::::F+i "~~:~ ::: :~:~ ::': ':;-g';-;'·:'E:'1'2F:;"" :.:~.: :-':':~'''':i'''H\d'~-::~+!

~~~;~i~-;:~\.;·:::1.:;~i::::I:··J:~~.:r1.-:~~~;i~~f~~~~~::-;L:;i';~L~1~1 ··,~:.·~;;':·~.:.;l;:~~-;~~c:~~~~~~~:j ~=-.··~~'::~~\!n}~bf::t~IJ~~~J~~r~~:~t~~~~~t~~0~~t{~ ~~':; ~:~';~~~'~l~~~:~~~~ -~-t- .-.-c .. +.\-., .... l.-t,.-T-c,---::i::·.-J----... -t-.. L-r· t ;:±t'l '. ,-.,1'-1'- ·,·-:·±£:1+:r' =:.:.:.-:-::: =j::·:r :~., ···~·~·:r~::--·~:~~·~ .~.:-~-~~-~~=~t=1:·+=;-~-·~··:r::t··:;····~··-' ~ ;."-:-.'.~' --~: :~~·-+t-t~:;:~ ~ "';''i--:-.-:. :'~; 1.; .;'-:' •• ;' .-- •• -,, ·,::..:i:.o :_-: ;.~, .:.:-.!" ... '!'~'" !-: ,.ff~;t~::,,·: " ~. 1.; .. :--:-;.~ , .. .. '!'~". -.·-·'·1-- ~~r:~f~:-::-' ·,~..:.j....o

·....:.~·:=:.tt~.;··_;. .i ,1.'- ::l::-'j .... !: ';:.: ,;. :::-::-< =-::..,i.··' : .. ~ . .1.:-f~ " .': .. ~

~~'~:"'-1'=.";i2·,:r ··t:·:1 "l'H':,'+~i ·,·...;·:...::.'~;~o"'~~?h"jd~'''t;~:l';,i·:-·r':'; =,:-;;; .. :.i. ·'-;"+~~~f;::·~'-", ,;£+c:.,~

-7·-·:~·-~.r~~~:~·t~~~~~·:J. 7'~~"'! • ~-~:i~,~~ r;,~ '.~ .. ":' .: :-~.~:~--~~~ ~~f;;:f_~=i:~j··~~.::t~~:j:·:::!:: .~ .. ~ ·'~~~::F::~~--:~-:·~ _~::.i~F~···-:.:·~

=-==,i::~ ;~!.:::;:'::::;=f:;:::~ . ;:~~~:~}'~I:';"~,~:~: --:::;;.~ :~:f=:'+::: ;u;~;+:: : L: ::~:: ~~:i:::F:;7c,,~ r:::.I:~~F;':.::: ~1 :T.::s"'f:::::':; ':::T:r:]~::E:'L:" ::c-l::::: ._"~-:;r: .. -·:j-::~'F:;i~::f:r ::cc:'--f;:=.-::r::::::,:'F.: :":T~· ~:i-:j ~i;n~jn!i .• ;'~~:t.:~c '~;~ltJtU{~~~l~~~': ~~~~;~}~IiW±t+H i;>~';J"c~::~C~;/" ·~i~~~~~;.~ :7'~·::~i~::' :~~;f·"'=r:~T :~:+:+J:f-+~~~~d='::~~~~-=-"~~:~I:'n::ilL[:';: ~.::~ ;:.:.:;t-::~J:~: 3.~,:~,,-::: 'i(-==-f:iY.:::: ~., -:.; :~::~:l:~~~ F:::l':I:f:T!c·...;::~:.t-;· f=: '=':':x:f:-=t:~1'~FT :-j::~::::+:::·:::t:::;::: ':~f;::1:::~: ~:§:::f]

~~-fPj'ft;~~~~~~~{~~~~:l-~~~·~;; .~-~!-~';,~"";':'~-r:.'-:' '1:' f::';---::.;t:"" .="..;-..:' .',- - ~~ ~~f'::~~:..t:-::~.:~~o·· .. €T:-':., .-::.-';-t~:·.,·f"-:--:-'""·~~ ... ·--:-·~·""l-~7-:r_.:;. ::-:~,"'t~i..;:

.;":.~::: :.~':~:. .~. ~ .. :'I.._-.:.'"'"':.l __ '~_:,il::--: ~~';=-!.~:-: ~~:~:. ·C··,: :.; :.''--!';"'~'.::;-: .. : :- .;..,.~.:. "-;~.;'::-: . .f ',": .. ~ ·:·h:.;:::":l" --:.:.;; :,,;': ~4;'-";":'" ,.: ... ; .j ,','j:"';-.*" =- ":;:"I>~:' ;~, '::;.;·:O:''':,;c;-f'j ·'-~c.:~. 'Ict :::~~,.:~ ~~~t~r=,f-:; .~, :~'-'c'i'.: F'j.,

~i;,~.H':;~:i".':I: j:-'1 !~I':~'jj :.'.: ·~:...:.:~\:::!·::;:.:!"i~ili.1 ',l': f:l,± C',,;:,: ,:t<'::::: ,;:!:~,~~::lt';;t':'';l

=~f~·~i: ~~~f~r~~;:f:::H :::~L::t,:.[j :~~-;. ::~ ~f':+::f:;-:~fl~ i~~='l:~~~~+ :;:~.!:~t~:F~=':~~ :~j-:t:-f:

~+=i-:.: :.:~~= ~~~~y:;'c ~"?-rr'tci ~c~ ::1:'::~~ :;;ct::::F~f~-tJtFt;.,:': ~';'~:'~ ::~F>:::: ::::f.'f::~ ;:~~=-=g-t ~"-:?' ~;~ :-~" !'''F,:;::=;=~''r:· c '.}':l4c"'·c ,~~~~ i;=~?E~-;::o'.{F-; ~'i ""i-oc't'.:',.' .. , ; ~.'"--, !.~ '~1':': '~:;o""~;!;"~3:~"E;"_ ~~: =-'.1:';'., :::::;::Ji:',I'''~:'~·i'·i ~~,,~+: ":.: :-,~~:t':::::c"':~: ':'YI:!: ,::: t..;~c}'\,,:;:~=~;o!-::~: 'rof~1:"E: ~':-':'(:': ~~~:;::::';:;:-F:~: :~: '::i:J;":i.; : . - "L';', ,,_:::::,,-_;_~: :_: ::;1· :.: ·.~':~i'~~~:;:~::::1~:-:. :::L¥t:~~:,

§~l:O-=?= :::~i:~~:::C~:T:::~=:~f~1~!·t1 ~~=t~r~:~:X::~ :~':i:;::!::t:+_! ~:::'::;i~i:~-::13:'~~:~§~:

-:c-.-"--r:;::. .. ,-. ~.""-'" .. --.1:... . -i-' -;:::1 . -- - r:=1::-"r-::= .--. - .. -- ., .. T..; --- -.- -_. --... '-' "':- '-.-t-"::r'i-:-- -~ ~ ·-+-_····.···i-····· - ..... , ....... -j.._. ·.···, .. .,..1 .. -·, -----·-1- .- ... ,. .. '.+0'

-- ._t::::::!; __ ·---t:·:,· ;1:::: '~:;:'::f'~~ --.-- ~f----t-,·-1=-"":::::-f-Ei--"·r--::::·:t:~· -'::9-:.:':-: -~1\J.l:·~ -~ --= ·:::t=::::=:!:1·:

_ --'-,=~:_~_~;IA:--~~ '±:f~:t ta.lli~ =--,!:.' ::.::'" -:_t:: ~:r~t:; :::::::;.:-=:: ~:=;::::1~\ -"T' 10 5 ---ri" -. --'i'- ··+·l-· r-- --h-H'-·- --T""f'li-f:X· -~- .- .-+. --r+ 1 . --I' -- '-'-7--l-" .. ~ .• ~.

"'E!.:orF·,;: ; ,> c'" .- , .... , .•. : . '~' .. - ~.:. ,," "'T'c .. ;;" <.... '." ""t.';: .. ''I. 'JI ;'"'2':.f>: ,.;::::- :~':~.:":' ::;;··I;:·':=. ~:~: :.~ .-;:':'-: :.- -=-:-- ;::.-..: ": .. - -::-l "!"' ·-;:1' ,.'_ .. ! .. : ~ :.:'-:..~ ~:i.:..l;·.:..·t·· :~: .

. -,;± .:: i~ !':~I:::' ,,,±,:~;o, ':,' ,~: ':"Fi ·~t~c~"~"= '='t-. ~ :~'" ;:~; ,~~; ;:: ::~cJ-:::j. :,.:;.=~ h="-' ~"'~J"':t':;'£"· fil, :=;,~,'q ·~Ef ;~:r;: :::;: :~:J'Cj: :.:::~~:'H.= t~t ,~~;~ ~~, ~J ~i'l~ :::: ,,::::, ::.r ;'~ ... f ~',i: '::L~:':FH" __ i ,-j.: !.; ~5~~~~;:,~~~~~· ~.~~ ;~6~ ;f~: -:I:i~ -=~~ :~ :~ ~1~: ~~ ~:: ::+_:::.~-:~-~~.;f::;~ t~~{~~~~~~ f :~ :~~-C ~ _. __ ..... .1.. __ .. __ .... ±J:L_ ':O~:. t=±. . . _ ......... F..:f:$~ .. --l. .-t._t .. ~-a:i~ rL:f~:j::~~

.. -,.

10-6

FREQUEN'CY . (J{z J

FIGURE 20. mISE SPECTRA FOR AMem SN 8101

36

w .....

FIGURE 21. RESPONSE OF AMCID SN 8101

. + ~I:tj,·" jl i!.'.I'p ~l!!'!ll! ;t~p itf~mlf!rH:1 :Wmn l ~ !to: .! lll"tj ill ;1 r I 11 II I ,if, t 1 it ! l' rtf! WI nil i! :: r i ~H++++H+1~I"fl+!r?l+tiJ *H-IH-H+m~ •. " +t II . II t ,.. I I LH ., IfF 8i

~! 1 liI~i; 'It Wtl'!I'ti:! ~~I"llIJljll !:11111 lit #H+H1f.H+H-t+lru~~ l il·; ~ H ~.I t . I It!l! 411 +!.:' ttl~ II H ·1 !!1 {"I I "t t. ". I"';"' 1t II ~t I!! 'I' f 1

. Ii' I" I' I " : 1:1 I !: . ," q!. J I rl • . : J,.. , • ~, " I· • I 'I.. if,

en f-4 Z

~ B ~

~ f-4 Z

~

E H ~

0 f-4

\0 0 .... co z co en C"'I

e ~ f&4 0

tJ ~ Po. en

= . N N

~ H f&4

,

N W .

,

i '

r

iHH++++.t ,- iii j' i . - I-!j

mI~me!U!m'YmmmM'mtmm~~mm~~mm-'~mmmm~mmi~mmlf~-~mmmgl

I-HH-I#Hf-- .

~r' ~ i

Ji

- .

It it

.I , .,

7

, I ;.Iow - I! - I, r,' I, Ir1 I i1 t : - "'I"': ; J U+H-U-tl i+H' ~'H.I+lf+H.H~H-H++++H+H+J1 tt+t+H+tHr++ttt: tHttt+H+Irl+

i, ++Ht:Htt+i+tttttt'!ttl

fi I ~ ! ! f -: II i ~ r riii ! II I Ii! : I i I t

..

"

..

~~~TT- ..

f-t ~~ -t~....,... .' ~ --4-~-m-+ -~ ~t!±. _J_ .... '.

-:'-'1"

~ H" .~-

~~ .....,....

~H ~ -. I ,: .-.- !i~ ..-

4-0--,.+

~~~ .. -!:

I~--~ ... ~

~l'

r -r::;::' - :J~-

t9=-""'

~;s-~ R:;

....

-

-+-~

E8HiiI .~~ ~~

-++

Report 6184

-i-:---~--'

-F i

t--:.

, ~-~

"£$--"---.~; .-4--

~ JnEt t! -+o:;::f--

~-+=- ... ! j'

ad~:&r~::·~-~ . ~--. ---_ ... . . _. ... ..... _----....~~

.--~

.:±:::::

FIGURE 24. RESPONSE OF AMCID SN 8108 AT DIFFERENT SAMPLING RATES

40

:l

.:

fa".,/'

.,\ 1 U. i .:. ~ .. ) : I . J [ 'II l:/u i J u u.r)J ,

• 4"

:f':'

Report 6184

~. !l

":::.

i \.~ a N

! • 1;1

: H , n ~ Ii

QJ("BCl~~ to.."J

i~ il .J.. I~- -,., 0: .% ~ 10" pl./eUtz ... s~c. i1 'I j: 1\

!: ;P . ' V:

"I

~s ~ .,. liZ V VR ":. - g.1t V I

I i

~ i , V:-fol.o'{

'"I I ct, i~ rJ:J: ... -... A,...,. - fe' n ~ . '" ~ ; , I I"; 'J \ I , , !

...; ,J 1.1,), il . .Jv1)J... /, , \i~ 'J : U ; ):: ) I I • .. )\.i

• f r tV;J S:: J

,,..:,.1 t,J, A.~0 1 " "'-

r I I Fs _,: '2,~ 1/3

FIGURE 25. RESPONSE OF AMCID SN 8115 (Before Decoder No.2 Was Repaired)

41

,0'

-#

,J:­N

..

." Z g III II: III > ~

1.0

j 0.1 III II:

0.01

')

J , I

1 J

/ / ~

2 3 "

~ L"

./' ~

./ ~

V ,., rv I

/

V V

- - -- ---_ .. - ~ - --- - -- - -- -

s 6 7 8 9 10 11 12 13 .14 15 16

WAVELENGTH (micromellr"

FIGURE 26. TYPICAL SPECTRAL REBPONSE FOR Si:Bi DETECTOR

~ ,

1 17 18 19 10 21

~ 'tl o '1 rt

0\ ..... co ~

1. Report No. 2. Government Accession No. 3. Recipient's Citalog No.

NASA CR-166323 4. Title and Subtitle . 5. Repon O.te

Final Report - Multiplexed Extrinsic March 1982 Silicon Detector Array 6. Performing Org.1nization Coda

)I

1. Authorlsl 8. Performing Organization Report No.

James F. Vee 10. Work Unit No.

.. 9. Performing Organization Name and Address

I-SJf9~ . Aerojet E1ectrosystems Company 11. Contract or Grant No:

Azusa, California NAS2-10643

13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address .

Contractor Final Report National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546 50 " - G/-SI 15. Supplementary Notes

Char1es·M. Winget, Mail Stop 239-7, NASA Ames Research Technical Monitor: Center, Moffett Field, CA 94035 (415) 965-5753 or FTS 448-5753

16. Abstrlct

This report covers work by Aeroject E1ectroSystems Company (AESC) on the development and testing of multiplexed extrinsic silicon detector arrays (MESDAs) for infrared astronomical applications. The work was performed under National Aeronauti cs and ·Space Administration (NASA) Contract NAS2-l0643 for the Ames Research Center and Kitt Peak·Nationa1 Observatory during the period from May 1980 through January 1982.

The AESC design and fabrication efforts for detector arrays and cryogenic electronics were directed by Dr. James F. Vee, and for ambient-temperature electronics by Robert R. Quaintance. Both collaborated in MESDA system testing, and together they acknowledge the contributions of Dr. Christopher M. Parry in many helpful discussions throughout the program.

In addition, dialogues with and the cooperation of Dr. Craig McCreight of NASA-Ames and Dr. Fred Gillette of Kitt Peak are greatly appreciated.

., 17. Key Words (Suggested by Author(s" 18. Oimibution Statement

Detector arrays Unclassified - Unlimited Cryogenic electronics Extrinsic silicon STAR Category - 89

19. Security Oassif. (of this report) 20. Security C:.ssif. (of this page) 21. No. of Pages 22. Price·

Unclassified Unclassified 45

"For sale by the Nltional Technic.llnformation Servi,:e. Springfield. Virginia 22161

: