28
100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility isassumed by Analog Devicesfor its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specificationssubject to changewithout notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices . Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Operating frequency from 100 MHz to 4000 MHz Digitally controlled VGA with serial and parallel interfaces 6-bit, 0.5 dB digital step attenuator 31.5 dB gain control range with ±0.25 dB step accuracy Gain block amplifier specifications Gain: 19.7 dB at 2.14 GHz OIP3: 41.0 dBm at 2.14 GHz P1dB: 19.5 dBm at 2.14 GHz Noise figure: 2.9 dB at 2.14 GHz Gain block or digital step attenuator can be first Single supply operation from 4.75 V to 5.25 V Low quiescent current of 93 mA Thermally efficient, 5 mm × 5 mm, 32-lead LFCSP The companion ADL5243 integrates a ¼ W driver amplifier to the output of the gain block and DSA APPLICATIONS Wireless infrastructure Automated test equipment RF/IF gain control GENERAL DESCRIPTION The ADL5240 is a high performance, digitally controlled variable gain amplifier (VGA) operating from 100 MHz to 4000 MHz. The VGA integrates a high performance, 20 dB gain, internally matched amplifier (AMP) with a 6-bit digital step attenuator (DSA) that has a gain control range of 31.5 dB in 0.5 dB steps with ±0.25 dB step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface. Both the gain block and DSA are internally matched to 50 Ω at their inputs and outputs and are separately biased. The separate bias allows all or part of the ADL5240 to be used, which facilitates easy reuse throughout a design. The pinout of the ADL5240 also enables either the gain block or DSA to be first, giving the VGA maximum flexibility in a signal chain. The ADL5240 consumes just 93 mA and operates from a single supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully specified for operation from −40°C to +85°C. A fully populated evaluation board is available. FUNCTIONAL BLOCK DIAGRAM ADL5240 AMP 9 NC 10 AMPOUT/VCC 11 NC 12 NC 13 NC 14 NC 15 AMPIN 16 NC SERIAL/PARALLEL INTERFACE 24 VDD 23 NC 22 NC 21 DSAOUT 20 NC 19 NC 18 NC 17 NC 0.5dB 1dB 2dB 4dB 8dB 16dB 32 SEL 31 D0/CLK 30 D1/DATA 29 D2/LE 28 D3 27 D4 26 D5 25 D6 1 VDD 2 NC 3 NC 4 DSAIN 5 NC 6 NC 7 NC 8 NC 09430-001 Figure 1.

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA

Data Sheet ADL5240

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices . Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES

Operating frequency from 100 MHz to 4000 MHz Digitally controlled VGA with serial and parallel interfaces 6-bit, 0.5 dB digital step attenuator 31.5 dB gain control range with ±0.25 dB step accuracy Gain block amplifier specifications

Gain: 19.7 dB at 2.14 GHz OIP3: 41.0 dBm at 2.14 GHz P1dB: 19.5 dBm at 2.14 GHz Noise figure: 2.9 dB at 2.14 GHz

Gain block or digital step attenuator can be first Single supply operation from 4.75 V to 5.25 V Low quiescent current of 93 mA Thermally efficient, 5 mm × 5 mm, 32-lead LFCSP The companion ADL5243 integrates a ¼ W driver amplifier to

the output of the gain block and DSA

APPLICATIONS

Wireless infrastructure Automated test equipment RF/IF gain control

GENERAL DESCRIPTION The ADL5240 is a high performance, digitally controlled variable gain amplifier (VGA) operating from 100 MHz to 4000 MHz. The VGA integrates a high performance, 20 dB gain, internally matched amplifier (AMP) with a 6-bit digital step attenuator (DSA) that has a gain control range of 31.5 dB in 0.5 dB steps with ±0.25 dB step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface.

Both the gain block and DSA are internally matched to 50 Ω at their inputs and outputs and are separately biased. The separate bias allows all or part of the ADL5240 to be used, which facilitates easy reuse throughout a design. The pinout of the ADL5240 also enables either the gain block or DSA to be first, giving the VGA maximum flexibility in a signal chain.

The ADL5240 consumes just 93 mA and operates from a single supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully specified for operation from −40°C to +85°C. A fully populated evaluation board is available.

FUNCTIONAL BLOCK DIAGRAM

ADL5240

AMP

9

NC

10

AM

POU

T/VC

C

11

NC

12

NC

13

NC

14

NC

15

AM

PIN

16

NC

SERIAL/PARALLEL INTERFACE24 VDD

23 NC

22 NC

21 DSAOUT

20 NC

19 NC

18 NC

17 NC

0.5dB 1dB 2dB 4dB 8dB 16dB

32

SEL

31

D0/

CLK

30

D1/

DA

TA

29

D2/

LE

28

D3

27

D4

26

D5

25

D6

1VDD

2NC

3NC

4DSAIN

5NC

6NC

7NC

8NC

0943

0-00

1

Figure 1.

Page 2: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 2 of 28

TABLE OF CONTENTS Features .............................................................................................. 1

Applications ....................................................................................... 1

General Description ......................................................................... 1

Functional Block Diagram .............................................................. 1

Revision History ............................................................................... 2

Specifications ..................................................................................... 3

Absolute Maximum Ratings ............................................................ 8

ESD Caution .................................................................................. 8

Pin Configuration and Function Descriptions ............................. 9

Typical Performance Characteristics ........................................... 10

Applications Information .............................................................. 16

Basic Layout Connections ......................................................... 16

SPI Timing................................................................................... 18

Loop Performance ...................................................................... 20

Amplifier Drive Level for Optimum ACLR ............................ 22

Thermal Considerations ............................................................ 22

Evaluation Board ............................................................................ 23

Outline Dimensions ....................................................................... 28

Ordering Guide .......................................................................... 28

REVISION HISTORY 6/13—Rev. 0 to Rev. A

Changes to Table 1 ............................................................................. 4 Changes to Table 3 ............................................................................. 9 Changes to Figure 3 ......................................................................... 11 Changes to Figure 16 ....................................................................... 12 Added Figure 29, Renumbered Sequentially ............................... 14 Changes to Table 5, Figure 35, and Figure 36 .............................. 18 Added Amplifier Drive Level for Optimum ACLR Section and Figure 39 .................................................................................... 22 Changes to Evaluation Board Section ........................................... 23 Changes to Figure 41 and Table 8 .................................................. 24 Added Figure 42 ............................................................................... 25 Changes to Figure 43 and Figure 44 .............................................. 26 Added Figure 45 ............................................................................... 27

7/11—Revision 0: Initial Version

Page 3: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 3 of 28

SPECIFICATIONS VDD = 5 V, VCC = 5 V, TA = 25oC

Table 1. Parameter Test Conditions/Comments Min Typ Max Unit

OVERALL FUNCTION Frequency Range 100 4000 MHz

AMPLIFIER FREQUENCY = 150 MHz Using the AMPIN and AMPOUT pins Gain 17.6 dB

vs. Frequency ±50 MHz ±1.0 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.04 dB

vs. Supply 4.75 V to 5.25 V ±0.04 dB Input Return Loss S11 −10.4 dB Output Return Loss S22 −7.7 dB Output 1 dB Compression Point 18.3 dBm

Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 30.0 dBm Noise Figure 2.8 dB

AMPLIFIER FREQUENCY = 450 MHz Using the AMPIN and AMPOUT pins Gain 20.3 dB

vs. Frequency ±50 MHz ±0.11 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.36 dB

vs. Supply 4.75 V to 5.25 V ±0.01 dB Input Return Loss S11 −18.3 dB Output Return Loss S22 −15.7 dB Output 1 dB Compression Point 20.2 dBm

Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 39.0 dBm Noise Figure 2.9 dB

AMPLIFIER FREQUENCY = 748 MHz Using the AMPIN and AMPOUT pins Gain 20.6 dB

vs. Frequency ±50 MHz ±0.01 dB

vs. Temperature −40°C ≤ TA ≤ +85°C ±0.31 dB vs. Supply 4.75 V to 5.25 V ±0.01 dB

Input Return Loss S11 −25.7 dB Output Return Loss S22 −23.7 dB Output 1 dB Compression Point 20.2 dBm

Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 40.0 dBm Noise Figure 2.7 dB

AMPLIFIER FREQUENCY = 943 MHz Using the AMPIN and AMPOUT pins Gain 19.0 20.5 22.0 dB

vs. Frequency ±18 MHz ±0.01 dB

vs. Temperature −40°C ≤ TA ≤ +85°C ±0.27 dB vs. Supply 4.75 V to 5.25 V ±0.01 dB

Input Return Loss S11 −30.3 dB Output Return Loss S22 −24.8 dB

Output 1 dB Compression Point 18.5 20.1 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 40.0 dBm Noise Figure 2.7 dB

Page 4: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 4 of 28

Parameter Test Conditions/Comments Min Typ Max Unit AMPLIFIER FREQUENCY = 1960 MHz Using the AMPIN and AMPOUT pins

Gain 19.8 dB

vs. Frequency ±30 MHz ±0.03 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.26 dB vs. Supply 4.75 V to 5.25 V ±0.03 dB

Input Return Loss S11 −11.9 dB Output Return Loss S22 −12.6 dB

Output 1 dB Compression Point 19.8 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 40.0 dBm Noise Figure 2.9 dB

AMPLIFIER FREQUENCY = 2140 MHz Using the AMPIN and AMPOUT pins Gain 18.0 19.7 22.0 dB

vs. Frequency ±30 MHz ±0.02 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.25 dB vs. Supply 4.75 V to 5.25 V ±0.04 dB

Input Return Loss S11 −11.0 dB

Output Return Loss S22 −12.0 dB Output 1 dB Compression Point 17.5 19.5 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 41.0 dBm Noise Figure 2.9 dB

AMPLIFIER FREQUENCY = 2630 MHz Using the AMPIN and AMPOUT pins Gain 18.0 19.6 22.0 dB

vs. Frequency ±60 MHz ±0.01 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.22 dB vs. Supply 4.75 V to 5.25 V ±0.04 dB

Input Return Loss S11 −11.0 dB

Output Return Loss S22 −13.3 dB Output 1 dB Compression Point 18.0 19.9 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 41.0 dBm Noise Figure 2.9 dB

AMPLIFIER FREQUENCY = 3600 MHz Using the AMPIN and AMPOUT pins Gain 19.6 dB

vs. Frequency ±100 MHz ±0.03 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.05 dB vs. Supply 4.75 V to 5.25 V ±0.10 dB

Input Return Loss S11 −15.1 dB

Output Return Loss S22 −12.2 dB Output 1 dB Compression Point 18.8 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 37.0 dBm Noise Figure 3.1 dB

DSA FREQUENCY = 150 MHz Using the DSAIN and DSAOUT pins Insertion Loss Minimum attenuation −1.5 dB

vs. Frequency ±50 MHz ±0.12 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.09 dB

Attenuation Range 28.8 dB Attenuation Step Error All attenuation states ±0.18 dB

Attenuation Absolute Error All attenuation states ±1.35 dB Input Return Loss Minimum attenuation −13.3 dB Output Return Loss Minimum attenuation −13.4 dB Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 47.9 dBm

Page 5: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 5 of 28

Parameter Test Conditions/Comments Min Typ Max Unit DSA FREQUENCY = 450 MHz Using the DSAIN and DSAOUT pins

Insertion Loss Minimum attenuation −1.5 dB

vs. Frequency ±50 MHz ±0.02 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.10 dB

Attenuation Range 30.7 dB Attenuation Step Error All attenuation states ±0.14 dB Attenuation Absolute Error All attenuation states ±0.42 dB

Input Return Loss Minimum attenuation −17.6 dB Output Return Loss Minimum attenuation −17.6 dB Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 45.0 dBm

DSA FREQUENCY = 748 MHz Using the DSAIN and DSAOUT pins Insertion Loss Minimum attenuation −1.6 dB

vs. Frequency ±50 MHz ±0.02 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.11 dB

Attenuation Range 30.9 dB Attenuation Step Error All attenuation states ±0.15 dB Attenuation Absolute Error All attenuation states ±0.32 dB Input Return Loss Minimum attenuation −17.4 dB

Output Return Loss Minimum attenuation −17.4 dB Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 43.5 dBm

DSA FREQUENCY = 943 MHz Using the DSAIN and DSAOUT pins Insertion Loss Minimum attenuation −1.6 dB

vs. Frequency ±18 MHz ±0.01 dB

vs. Temperature −40°C ≤ TA ≤ +85°C ±0.12 dB Attenuation Range 30.9 dB Attenuation Step Error All attenuation states ±0.13 dB Attenuation Absolute Error All attenuation states ±0.30 dB Input Return Loss Minimum attenuation −16.6 dB

Output Return Loss Minimum attenuation −16.5 dB Input 1 dB Compression Point Minimum attenuation 30.5 dBm Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 50.9 dBm

DSA FREQUENCY = 1960 MHz Using the DSAIN and DSAOUT pins Insertion Loss Minimum attenuation −2.4 dB

vs. Frequency ±30 MHz ±0.02 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.16 dB

Attenuation Range 31.0 dB Attenuation Step Error All attenuation states ±0.15 dB

Attenuation Absolute Error All attenuation states ±0.29 dB Input Return Loss Minimum attenuation −12.0 dB Output Return Loss Minimum attenuation −11.5 dB Input 1 dB Compression Point Minimum attenuation 31.5 dBm Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 49.5 dBm

DSA FREQUENCY = 2140 MHz Using the DSAIN and DSAOUT pins

Insertion Loss Minimum attenuation −2.5 dB vs. Frequency ±30 MHz ±0.02 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.17 dB

Attenuation Range 31.0 dB Attenuation Step Error All attenuation states ±0.12 dB

Attenuation Absolute Error All attenuation states ±0.26 dB Input Return Loss Minimum attenuation −11.9 dB Output Return Loss Minimum attenuation −11.2 dB Input 1 dB Compression Point Minimum attenuation 31.5 dBm Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 49.2 dBm

Page 6: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 6 of 28

Parameter Test Conditions/Comments Min Typ Max Unit DSA FREQUENCY = 2630 MHz Using the DSAIN and DSAOUT pins

Insertion Loss Minimum attenuation −2.6 dB

vs. Frequency ±60 MHz ±0.04 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.19 dB

Attenuation Range 31.2 dB Attenuation Step Error All attenuation states ±0.16 dB Attenuation Absolute Error All attenuation states ±0.19 dB

Input Return Loss Minimum attenuation −13.1 dB Output Return Loss Minimum attenuation −12.0 dB Input 1 dB Compression Point Minimum attenuation 31.5 dBm Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 47.6 dBm

DSA FREQUENCY = 3600 MHz Using the DSAIN and DSAOUT pins

Insertion Loss Minimum attenuation −2.8 dB vs. Frequency ±100 MHz ±0.03 dB vs. Temperature −40°C ≤ TA ≤ +85°C ±0.21 dB

Attenuation Range 32.1 dB

Attenuation Step Error All attenuation states ±0.37 dB Attenuation Absolute Error All attenuation states ±0.31 dB Input Return Loss Minimum attenuation −20.2 dB Output Return Loss Minimum attenuation −18.2 dB Input 1 dB Compression Point Minimum attenuation 31.0 dBm

Input Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone, minimum attenuation 48.5 dBm

DIGITAL STEP ATTENUATOR GAIN SETTLING Minimum Attenuation to Maximum Attenuation 36 ns Maximum Attenuation to Minimum Attenuation 36 ns

AMP-DSA LOOP FREQUENCY = 943 MHz Using the AMPIN and DSAOUT pins, DSA at minimum attenuation

Gain 18.9 dB vs. Frequency ±18 MHz ±0.01 dB

Gain Range Between maximum and minimum attenuation states 30.8 dB

Input Return Loss S11 −20.5 dB Output Return Loss S22 −19.7 dB Output 1 dB Compression Point 18.6 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 1 dBm/tone 36.0 dBm Noise Figure 2.7 dB

AMP-DSA LOOP FREQUENCY = 2140 MHz Using the AMPIN and DSAOUT pins, DSA at minimum attenuation

Gain 18.2 dB vs. Frequency ±30 MHz ±0.01 dB

Gain Range Between maximum and minimum attenuation states 31.3 dB Input Return Loss S11 −14.9 dB Output Return Loss S22 −16.4 dB Output 1 dB Compression Point 17.9 dBm

Output Third-Order Intercept ∆f = 1 MHz, POUT = 1 dBm/tone 37.5 dBm Noise Figure 3.0 dB

Page 7: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 7 of 28

Parameter Test Conditions/Comments Min Typ Max Unit AMP-DSA LOOP FREQUENCY = 2630 MHz Using the AMPIN and DSAOUT pins, DSA at

minimum attenuation

Gain 17.7 dB vs. Frequency ±60 MHz ±0.11 dB

Gain Range 31.5 dB

Input Return Loss S11 −15.2 dB Output Return Loss S22 −9.6 dB Output 1 dB Compression Point 16.9 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 1 dBm/tone 33.7 dBm

Noise Figure 3.0 dB DSA-AMP LOOP FREQUENCY = 943 MHz Using the DSAIN and AMPOUT pins, DSA at

minimum attenuation

Gain 18.9 dB vs. Frequency ±18 MHz ±0.01 dB

Gain Range Between maximum and minimum attenuation states 30.8 dB Input Return Loss S11 −17.2 dB Output Return Loss S22 −23.7 dB Output 1 dB Compression Point 20.2 dBm

Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 40.0 dBm Noise Figure 4.4 dB

DSA-AMP LOOP Frequency = 2140 MHz Using the DSAIN and AMPOUT pins, DSA at minimum attenuation

Gain 18.0 dB vs. Frequency ±30 MHz ±0.01 dB

Gain Range Between maximum and minimum attenuation states 31.1 dB Input Return Loss S11 −13.7 dB

Output Return Loss S22 −10.0 dB Output 1 dB Compression Point 19.7 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 37.5 dBm Noise Figure 4.9 dB

DSA-AMP LOOP Frequency = 2630 MHz Using the DSAIN and AMPOUT pins, DSA at minimum attenuation

Gain 18.2 dB vs. Frequency ±60 MHz ±0.01 dB

Gain Range Between maximum and minimum attenuation states 31.7 dB

Input Return Loss S11 −15.7 dB Output Return Loss S22 −16.9 dB Output 1 dB Compression Point 19.8 dBm Output Third-Order Intercept ∆f = 1 MHz, POUT = 4 dBm/tone 40.8 dBm

Noise Figure 5.2 dB

LOGIC INPUTS CLK, DATA, LE, SEL, D0~D6 Input High Voltage, VINH 2.5 V Input Low Voltage, VINL 0.8 V Input Current, IINH/IINL 0.1 µA

Input Capacitance, CIN 1.5 pF POWER SUPPLIES Using the VDD and VCC pins

Voltage 4.75 5.0 5.25 V Supply Current

Amplifier 93 120 mA Digital Step Attenuator 0.5 mA

Page 8: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 8 of 28

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage (VDD, VCC) 6.5 V Input Power

AMPIN 16 dBm DSAIN 30 dBm

Internal Power Dissipation 0.5 W θJA (Exposed Pad Soldered Down) 36.8°C/W θJC (Exposed Pad is the Contact) 6.9°C/W Maximum Junction Temperature 150°C

Lead Temperature (Soldering, 60 sec) 240°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Page 9: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 9 of 28

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.

PIN 1INDICATOR

1VDD2NC3NC4DSAIN5NC6NC7NC8NC

24 VDD23 NC22 NC21 DSAOUT20 NC19 NC18 NC17 NC

9N

C10

AM

POU

T/VC

C11

NC

12N

C13

NC

14N

C15

AM

PIN

16N

C

32SE

L31

D0/

CLK

30D

1/D

ATA

29D

2/LE

28D

327

D4

26D

525

D6

TOP VIEW(Not to Scale)

ADL5240

0943

0-00

2

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions Pin No. Mnemonic Description 1, 24 VDD Supply Voltage for DSA. Connect this pin to a 5 V supply. 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23

NC No Connect. Do not connect to this pin.

4 DSAIN RF Input to DSA.

10 AMPOUT/VCC RF Output from Amplifier/Supply Voltage for Amplifier. A bias to the amplifier is provided through a choke inductor connected to this pin.

15 AMPIN RF Input to Amplifier.

21 DSAOUT RF Output from DSA. 25 D6 Data Bit in Parallel Mode (LSB). Connect this pin to the supply in serial mode. 26 D5 Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. 27 D4 Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode.

28 D3 Data Bit in Parallel Mode. Connect this pin to ground or leave open in serial mode. 29 D2/LE Data Bit in Parallel Mode/Latch Enable in Serial Mode. 30 D1/DATA Data Bit in Parallel Mode (MSB)/Data in Serial Mode. 31 D0/CLK Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode.

32 SEL Select Pin. Connect this pin to the supply to select parallel mode operation; connect this pin to ground to select serial mode operation.

EPAD Exposed Pad. The exposed pad must be connected to ground.

Page 10: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 10 of 28

TYPICAL PERFORMANCE CHARACTERISTICS

0

5

10

15

20

25

30

35

40

45

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 4.03.6

OIP3

P1dB

GAIN

NOISE FIGURE

NO

ISE

FIG

UR

E,

GA

IN,

P1d

B,

OIP

3 (d

B,

dB

m)

FREQUENCY (GHz) 0943

0-00

3

Figure 3. AMP: Gain, P1dB, OIP3 at POUT = 4 dBm/Tone and Noise Figure vs. Frequency

17.5

21.0

20.5

20.0

19.5

19.0

18.5

18.0

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

–40°C

+25°C

+85°C

GA

IN (

dB

)

FREQUENCY (GHz) 0943

0-00

4

Figure 4. AMP: Gain vs. Frequency and Temperature

–40

–35

–30

–25

–20

–15

–10

–5

0

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

S12

S-P

AR

AM

ET

ER

S (

dB

)

FREQUENCY (GHz)

S11

S22

0943

0-00

5

Figure 5. AMP: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

16

30

28

26

24

22

20

18

10

45

40

35

30

25

20

15

P1d

B (

dB

m)

OIP

3 (d

Bm

)

FREQUENCY (GHz)

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

–40°C+25°C+85°C

0943

0-00

6

Figure 6. AMP: OIP3 at POUT = 4 dBm/Tone and P1dB vs. Frequency and Temperature

22

46

44

42

40

38

36

34

32

30

28

26

24

–5 1715131197531–1–3

OIP

3 (d

Bm

)

POUT PER TONE (dBm)

150MHz

450MHz

748MHz

943MHz

1960MHz 2140MHz

2630MHz

3600MHz

0943

0-00

7

Figure 7. AMP: OIP3 vs. POUT and Frequency

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 4.03.63.22.82.42.01.61.20.80.4

NO

ISE

FIG

UR

E (

dB

)

FREQUENCY (GHz)

–40°C

+25°C

+85°C

0943

0-00

8

Figure 8. AMP: Noise Figure vs. Frequency and Temperature

Page 11: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 11 of 28

–40

–35

–30

–25

–20

–15

–10

–5

0

0.1 4.13.73.32.92.52.11.71.30.90.5

ATT

ENU

ATI

ON

(dB

)

FREQUENCY (GHz)

0dB

31.5dB

0943

0-00

9

Figure 9. DSA: Attenuation vs. Frequency

–36

–31

–26

–21

–16

–11

–6

–1

0.1 4.13.73.32.92.52.11.71.30.90.5

ATT

ENU

ATI

ON

(dB

)

FREQUENCY (GHz)

0dB

4dB

8dB

16dB

31.5dB

–40°C+25°C+85°C

0943

0-01

0

Figure 10. DSA: Attenuation vs. Frequency and Temperature

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0 32282420161284

STEP

ER

RO

R (d

B)

ATTENUATION (dB)

450MHz748MHz943MHz

1960MHz2140MHz2630MHz3600MHz

0943

0-01

1

Figure 11. DSA: Step Error vs. Attenuation

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

STEP

ER

RO

R (d

B)

FREQUENCY (GHz) 0943

0-01

6

31.5dB30.5dB

16dB

31dB

Figure 12. DSA: Step Error vs. Frequency, All Attenuation States

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

0 32282420161284

AB

SOLU

TE E

RR

OR

(dB

)

ATTENUATION (dB)

450MHz

748MHz

943MHz

1960MHz

2140MHz

2630MHz

3600MHz

0943

0-01

2

Figure 13. DSA: Absolute Error vs. Attenuation

–40

–35

–30

–25

–20

–15

–10

–5

0

0.1 4.1

0dB

3.73.32.92.52.11.71.30.90.5

INPU

T R

ETU

RN

LO

SS (d

B)

FREQUENCY (GHz)

31.5dB

0943

0-01

3

Figure 14. DSA: Input Return Loss vs. Frequency, All States

Page 12: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 12 of 28

–40

–35

–30

–25

–20

–15

–10

–5

0

0.1 4.1

0dB

3.73.32.92.52.11.71.30.90.5

OU

TPU

T R

ETU

RN

LO

SS (d

B)

FREQUENCY (GHz)

31.5dB

0943

0-01

4

Figure 15. DSA: Output Return Loss vs. Frequency, All States

30

31

32

33

34

35

36

25

30

35

40

45

55

50

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6

IP1d

B (d

Bm

)

IIP3

(dB

m)

FREQUENCY (GHz)

IIP3

IP1dB

0943

0-01

5

Figure 16. DSA: Input P1dB and Input IP3 vs. Frequency,

Minimum Attenuation State

–150

–100

–50

0

50

100

150

200

0 4 8 12 16 20 24 28 32

PHA

SE (D

egre

es)

ATTENUATION (dB)

943MHz

1960MHz

2140MHz

2630MHz

0943

0-01

7

Figure 17. DSA: Phase vs. Attenuation

0943

0-01

8

CH3 2.00V CH4 200mV M10ns 10GS/sIT 1.0ps/pt

A CH3 1.24V

3

4

Figure 18. DSA: Gain Settling Time, 0 dB to 31.5 dB

0943

0-01

9

CH3 2.00V CH4 200mV M10ns 10GS/sIT 1.0ps/pt

A CH3 1.24V

3

4

Figure 19. DSA: Gain Settling Time, 31.5 dB to 0 dB

0

22

20

18

16

14

12

10

8

6

4

2

0.1 4.13.73.32.92.52.11.71.30.90.5

GA

IN A

ND

NO

ISE

FIG

UR

E (d

B)

FREQUENCY (GHz)

GAIN

NOISE FIGURE

0943

0-02

0

Figure 20. AMP-DSA Loop: Gain and Noise Figure vs. Frequency, Minimum Attenuation State

Page 13: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 13 of 28

–40

0

–5

–10

–15

–20

–25

–30

–35

0.1 4.13.73.32.92.52.11.71.30.90.5

S-PA

RAM

ETER

S (d

B)

FREQUENCY (GHz)

S11

S12

S22

0943

0-02

1

Figure 21. AMP-DSA Loop: Input Return Loss (S11), Output Return Loss (S22),

and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

20

40

38

36

34

32

30

28

26

24

22

–6 1612 141086420–2–4

OIP

3 (d

Bm

)

POUT (dBm)

943MHz

2140MHz

2630MHz

0943

0-02

2

Figure 22. AMP-DSA Loop: OIP3 vs. POUT and Frequency,

Minimum Attenuation State

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

–4 2012 14 16 181086420–2

GA

IN (d

B)

POUT (dBm)

943MHz

2140MHz

2630MHz

0943

0-02

3

Figure 23. AMP-DSA Loop: Gain vs. POUT and Frequency,

Minimum Attenuation State

0

22

20

18

16

14

12

10

8

6

4

2

0.1 4.13.73.32.92.52.11.71.30.90.5

GAI

N AN

D NO

ISE

FIG

URE

(dB)

FREQUENCY (GHz)

GAIN

NOISE FIGURE

0943

0-02

4

Figure 24. DSA-AMP Loop: Gain and Noise Figure vs. Frequency,

Minimum Attenuation State

–35

–30

–25

–20

–15

–10

–5

0

0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1

S12

S-PA

RAM

ETER

S (d

B)

FREQUENCY (GHz)

S11

S22

0943

0-02

5

Figure 25. DSA-AMP Loop: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

24

44

38

40

42

36

34

32

30

28

26

–6 1612 141086420–2–4

OIP

3 (d

Bm

)

POUT (dBm)

943MHz

2140MHz

2630MHz

0943

0-02

6

Figure 26. DSA-AMP Loop: OIP3 vs. POUT and Frequency,

Minimum Attenuation State

Page 14: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 14 of 28

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

–4 2012 14 16 181086420–2

GAI

N (d

B)

POUT (dBm)

943MHz

2140MHz

2630MHz

0943

0-02

7

Figure 27. DSA-AMP Loop: Gain vs. POUT and Frequency, Minimum Attenuation State

80

110

105

100

95

90

85

–40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90

SUPP

LY C

URRE

NT (m

A)

TEMPERATURE (°C)

5.25V

5.00V

4.75V

0943

0-02

8

Figure 28. AMP: Supply Current vs. Voltage and Temperature

80

110

105

100

95

90

85

–6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22

SUPP

LY C

UR

REN

T (m

A)

POUT PER TONE (dBm) 0943

0-10

0

+85°C

+25°C

–40°C

Figure 29. AMP: Supply Current vs. POUT and Temperature

0

35

30

25

20

15

10

5

PER

CEN

TAG

E (%

)

GAIN (dB)

18.8

18.9

19.0

19.1

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

20.0

20.1

20.2

20.3

20.4

20.5

0943

0-02

9

Figure 30. AMP: Gain Distribution at 2140 MHz

0

30

25

20

15

10

5

PER

CEN

TAG

E (%

)

P1dB (dBm)

18.8

18.9

19.0

19.1

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

20.0

20.1

20.2

20.3

20.4

20.5

0943

0-03

0

Figure 31. AMP: P1dB Distribution at 2140 MHz

0

30

25

20

15

10

5

PERC

ENTA

GE

(%)

OIP3 (dBm)33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0943

0-03

1

Figure 32. AMP: OIP3 Distribution at 2140 MHz

Page 15: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 15 of 28

0

70

60

50

40

30

20

10

PER

CEN

TAG

E (%

)

NOISE FIGURE (dB)2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

0943

0-03

2

Figure 33. AMP: Noise Figure Distribution at 2140 MHz

Page 16: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 16 of 28

APPLICATIONS INFORMATION BASIC LAYOUT CONNECTIONS The basic connections for operating the ADL5240 are shown in Figure 34.

NC

VDD

NC

NC

NCNC

NC

NC

D1/

DA

TA

NC

D2/

LE D3

D5

D4

DSAOUT

NC

NC

D6

NCNC

D0/

CLKSE

L

AM

PIN

NC

NC

VDD

DSAIN ADL5240 NC

NCNC

NC

SERIAL PARALLEL INTERFACE

AM

POU

T/VC

C

68pF

100pF

1.2nF

470nH

VDD

100pF

VDD

0.1µF

AMPOUT

DSAIN DSAOUT

0.1µF AMPIN

1µF

VCC

0.1µF

C1C2

C3

C4

C5

C6 C7

C8

L1

1

2

3

4

5

6

7

8

9 10 161514131211

24

23

22

21

20

19

18

17

32 31 252627282930

0943

0-03

3

Figure 34. Basic Connections

Page 17: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 17 of 28

Amplifier Bias

The dc bias for the amplifier in ADL5240 is supplied through Inductor L1 and is connected to the AMPOUT pin. Three decoupling capacitors (C3, C4, and C5) are used to prevent RF signals from propagating onto the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC test point on the evaluation board.

Digital Step Attenuator Bias

The bias for the DSA is provided through the VDD pin. At least one decoupling capacitor (C8) is recommended on the VDD trace. The voltage ranges from 4.75 V to 5.25 V and should be connected to the VDD test point on the evaluation board. The DSA is shown to work for dc voltages as low as 2.5 V.

Amplifier RF Input Interface

Pin 15 is the RF input for the amplifier of ADL5240. The amplifier is internally matched to 50 Ω at the input; therefore, no external components are required. Only a dc blocking capacitor (C1) is required.

Amplifier RF Output Interface

Pin 10 is the RF output for the amplifier of ADL5240. The amplifier is internally matched to 50 Ω at the output; therefore, no external components are required. Only a dc blocking capacitor (C2) is required. The bias is provided through this pin via a choke inductor.

DSA RF Input Interface

Pin 4 is the RF input for the DSA of ADL5240. The input impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C6) is required.

DSA RF Output Interface

Pin 21 is the RF output for the DSA of ADL5240. The output impedance of the DSA is close to 50 Ω over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C7) is required.

DSA SPI Interface

The DSA of the ADL5240 can operate in either serial or parallel mode. Pin 32 (SEL) controls the mode of operation. To select serial mode, connect SEL to ground; to select parallel mode, connect SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are the data bits, with D6 being the LSB. Connect Pin 31 (D0) to ground during the parallel mode of operation. In serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used in serial mode and should be connected to ground. Pin 25 (D6) should be connected to VDD during the serial mode of operation. To prevent noise from coupling onto the digital signals, an RC filter can be used on each data line.

Page 18: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 18 of 28

SPI TIMING Table 5 provides details about the timing characteristics for the SPI signals—namely, the clock (CLK), latch enable (LE), and data (DATA) signals—and Figure 35 shows the corresponding SPI timing diagram.

SPI Timing Sequence

Figure 36 is the timing sequence for the SPI function using a 6-bit operation. The clock can be as fast as 20 MHz. In serial mode, Register B5 (MSB) is first and Register B0 (LSB) is last.

Table 4. Mode Selection Table Pin 32 (SEL) Functionality Connect to Ground Serial mode Connect to Supply Parallel mode

Table 5. SPI Timing Setup Parameter Limit Unit Test Conditions/Comments

fCLK 10 MHz Data clock frequency t1 25 ns min Clock high time t2 25 ns min Clock low time t3 10 ns min Data to clock setup time

t4 10 ns min Clock to data hold time t5 10 ns min Clock low to LE setup time t6 30 ns min LE pulse width

0943

0-03

4

t3 t1t2

t5

t6

t4

DON'T CARE

DON'T CARE B4 B3 B2 B1

DON'T CARE

DON'T CARE

LE

MSBB5

CLK

DATA LSBB0

Figure 35. SPI Timing Diagram (Data Is Loaded MSB First), Serial Mode

0943

0-03

5

DON'T CARE

DON'T CARE B4 B3 B2 B1

DON'T CARE

DON'T CARE

D2/LE

MSBB5

D0/CLK

D1/DATA LSBB0

D6 Figure 36. SPI Timing Sequence, Serial Mode

Page 19: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 19 of 28

Table 6. DSA Attenuation Truth Table—Serial Mode Attenuation State (dB) B5 (MSB) B4 B3 B2 B1 B0 (LSB)

0 (Reference) 1 1 1 1 1 1 0.5 1 1 1 1 1 0 1.0 1 1 1 1 0 1 2.0 1 1 1 0 1 1 4.0 1 1 0 1 1 1

8.0 1 0 1 1 1 1 16.0 0 1 1 1 1 1 31.5 0 0 0 0 0 0

Table 7. DSA Attenuation Truth Table—Parallel Mode Attenuation State (dB) D1 (MSB) D2 D3 D4 D5 D6 (LSB) 0 (Reference) 1 1 1 1 1 1 0.5 1 1 1 1 1 0

1.0 1 1 1 1 0 1 2.0 1 1 1 0 1 1 4.0 1 1 0 1 1 1 8.0 1 0 1 1 1 1

16.0 0 1 1 1 1 1 31.5 0 0 0 0 0 0

Page 20: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 20 of 28

LOOP PERFORMANCE The ADL5240 can be configured so that either the DSA precedes the amplifier (see Figure 37) or the amplifier precedes the DSA (see Figure 38). The performance of the loop configurations is presented in Figure 20 to Figure 27. To improve the overall return loss, a shunt capacitor can be placed between the amplifier and DSA. This helps to align the phases of the two blocks.

NC

VDD

NC

NC

NCNC

NCN

CD

1/D

ATA

NC

D2/

LE D3

D5

D4

DSAOUT

NC

NC

D6

NCNC

D0/

CLKSE

L

AM

PIN

NC

NC

VDD

DSAIN ADL5240 NC

NCNC

NC

SERIAL PARALLEL INTERFACE

AM

POU

T/VC

C

68pF

100pF

1.2nF

470nH

VDD

VDD

0.1µF

RFOUT

RFIN

100pF

1µF

VCC

0.1µF

C1C2

C3

C4

C5

C6

C7

L1

1

2

3

4

5

6

7

8

9 10 161514131211

24

23

22

21

20

19

18

17

32 31 252627282930

0943

0-03

6

Figure 37. DSA-AMP Loop Configuration

Page 21: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 21 of 28

NC

VDD

NC

NC

NCNC

NC

NC

D1/

DA

TA

NC

D2/

LE D3

D5

D4

DSAOUT

NC

NC

D6

NCNC

D0/

CLKSE

L

AM

PIN

NC

NC

VDD

DSAIN ADL5240 NC

NCNC

NC

SERIAL PARALLEL INTERFACE

AM

POU

T/VC

C

68pF

1.2nF

470nH

VDD

100pF

VDD

0.1µF

RFOUT

0.1µF RFIN

1µF

VCC

C1

C3

C4

C5

C6

C7

C2100pF

L1

1

2

3

4

5

6

7

8

9 10 161514131211

24

23

22

21

20

19

18

17

32 31 252627282930

0943

0-03

7

Figure 38. AMP-DSA Loop Configuration

Page 22: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 22 of 28

AMPLIFIER DRIVE LEVEL FOR OPTIMUM ACLR It is usually required to drive the amplifier as high as possible in order to maximize output power. However, properly driving Amplifier at the ADL5240 is required to achieve optimum ACLR performance. Once output power approaches P1dB and OIP3, there is ACLR degradation. The driving level of amplifier with a modulated signal should be backed off properly from P1dB by at least the amount of a signal crest factor for optimum ACLR. So assuming a gain and output P1dB of Amplifier at 2140 MHz are 19 dB and 19 dBm respectively, the output power, which is backed off by 11 dB crest factor at the modulated signal case, is 8 dBm. Therefore, the proper input driving level should be under −11 dBm.

–90

–30

–40

–50

–60

–70

–80

–40 –35 –30 –25 –20 –15 –10 –5

AC

PR (d

Bc)

PIN (dBm) 0943

0-10

1

AMP_ADJ

AMP_ALT

Figure 39. Single Carrier WCDMA Adjacent Chanel Power Ratio vs. Input

Power at Amplifier, 2140 MHz

THERMAL CONSIDERATIONS The ADL5240 is packaged in a thermally efficient, 5 mm × 5 mm, 32-lead LFCSP. The thermal resistance from junction to air (θJA) is 36.8oC/W. The thermal resistance for the product was extracted assuming a standard 4-layer JEDEC board with 25 conductive, epoxy filled thermal vias. The thermal resistance from junction to case (θJC) is 6.9oC/W, where case is the exposed pad of the lead frame package.

The ADL5240 consumes approximately 93 mA with a 5 V supply voltage. Even though the part dissipates less than 0.5 W, for the best thermal performance, it is recommended to add as many thermal vias as possible under the exposed pad of the LFCSP. The thermal resistance values given in this section assume a minimum of 25 thermal vias arranged in a 5 × 5 array with a diameter of 13 mils and a pitch of 25 mils. Figure 40 shows a close-up of the thermal via distribution under the exposed pad.

0943

0-03

8

Figure 40. Exposed Pad with Thermal Via Distribution

Page 23: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 23 of 28

EVALUATION BOARD The schematic of the ADL5240 evaluation board is shown in Figure 41, the evaluation board configuration options are detailed in Table 8, and the layout of the ADL5240 evaluation board is shown in Figure 43 and Figure 44. Each RF trace on the evaluation board has a characteristic impedance of 50 Ω and is fabricated on Rogers3003 material. In addition, each trace is a coplanar waveguide (CPWG) with a width of 25 mils, a spacing of 20 mils, and a dielectric thickness of 10 mils. The input to and output from the DSA and amplifier should be ac-coupled with capacitors of appropriate values to ensure the broadband performance. The bias to the amplifier is provided by connecting a choke to the AMPOUT pin. Bypassing capacitors are recommended on all supply lines to minimize the RF coupling. The DSA and the amplifier can be individually biased or connected to the VDD plane using Resistors R2 and R1.

The ADL5240 can be operated in two ways: the amplifier can precede the DSA (AMP-DSA loop configuration) or the DSA can precede the amplifier (DSA-AMP loop configuration). The evaluation board can be configured to handle either option. In normal operation, R12 and R13 are open, and R10 and R11 are 0 Ω and are used to terminate any RF coupling onto the bypass trace. To configure the ADL5240 in AMP-DSA loop configuration, R12 should be replaced with a capacitor, R13 should be replaced with a 0 Ω resistor, and R10 and R11 should be left open. Similarly, to configure the ADL5240 in the DSA-AMP loop configuration, R16 should be replaced with a capacitor, R17 should be replaced with a 0 Ω resistor, and R14 and R15 should be left open.

The digital signal traces incorporate a footprint for an RC filter to prevent potential noise from coupling onto the signal. In normal operation, series resistors are 0 Ω and shunt resistors and capacitors are open.

The evaluation board is designed to control DSA in either parallel or serial mode by connecting the SEL pin to the supply or ground by a switch.

For adjusting attenuation at DSA, the ADL5240 can be programmed in two ways: through the on-board USB interface from a PC USB port, or through an SDP board, which will become the Analog Devices common control board in the future. The on-board USB interface circuitry of the evaluation board is powered directly by the PC. USB based programming software is available to download from the ADL5240 product page at www.analog.com. Figure 45 shows the window of the programming software where the user selects serial or parallel mode for the attenuation adjustment at DSA. The selection of the mode in the window should match the mode of the evaluation board switch.

It is highly recommended to refer the evaluation board layout for the optimal and stable performance of each block as well as for the improvement of thermal efficiency.

Page 24: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 24 of 28

0943

0-03

9

5 4 3 2

1AMPIN

5 4 3 2

1DSAOUT

C8

C5

R15

R17

R14

R16

R2

C17

23

1

S1

VDD

241

32

1211

9

8765

32322

20191817

161413

2

PAD

214

2526272829303110 15

U1

R1

5432

1AMPOUT

C13

VCC

C4

5432

1DSAIN C1

C14 C15

R11

R10

R13

R12

2 1L1

VDD

VDD

D5D4

D6

CLK_D0DATA_D1LE_D2

D3

0DNI

1µF

RED

1200pF

0.1µF

100pF

DNI0

DNI0

0.1µF

DNI0

68pF

470nH

0DNI

0DNI

ADL5240ACPZ

RED

DNI0

DNI0

0.1µF

0DNI

0DNI

100pF

EPA

DSE

LD

0/C

LKD

1/D

ATA

D2/

LE D3

D4

D5

D6

VDDNCNC

DSAOUTNCNCNCNC

NC

AM

PIN

NC

NC

NC

NC

AM

POU

T/VC

CN

C

NCNCNCNCDSAINNCNCVDD

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND AGND

Figure 41. ADL5240 Evaluation Board

Table 8. Evaluation Board Configuration Options Component Function/Notes Default Value

C1, C2 Input/output dc blocking capacitors for DSA. C1, C2 = 100 pF C3, C4 Input/output dc blocking capacitors for AMP. C3, C4 = 0.1 µF C5, C6, C7 Power supply decoupling for amplifier. The bias associated with the AMPOUT pin is

the most sensitive to noise because the bias is connected directly to the output. The smallest capacitor (C7) should be the closest to the AMPOUT pin.

C5 = 1 µF C6 = 1.2 nF C7 = 68 pF

C8 Power supply decoupling for the DSA. C8 = 0.1 µF

L1 The bias for the amplifier comes through L1 when VCC is connected to a 5 V supply. L1 should be high impedance for the frequency of operation while providing low resistance for the dc current.

L1 = 470 nH

R1, R2 Resistors to connect the supply for the amplifier and the DSA to the same VDD plane. R1, R2 = open R10, R11, R14, R15 These resistors are used to terminate RF coupling onto the traces and to close the loop. R10, R11, R14, R15 =

0 Ω

R12, R13, R16, R17 R12 and R16 are replaced with capacitors, and R13 and R17 are replaced with 0 Ω to close the loop.

R12, R13, R16, R17 = open

S1 Switch to change between the serial mode and parallel mode of operation. Connect to supply for parallel mode and to ground for serial mode operation.

S1 connected to ground

Page 25: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 25 of 28

DEC

OU

PLIN

G F

OR

U1

PLA

CEH

OLD

ER

R29

C19

R28

C18

R27

C16

C12

R26

R25

R23

R20

R19

R46

AC

CR

2R

8R

55

R24

R54

R53

C53

R13

C55

R14

C56

98765432 101P3

4

5

44

554332271711

1615 42 14

21

52515049484746452524232221201918

PAD

403938373635343313

565341282612

8 9 31302954

73

106

U4

C35

C36

C38

C39

C45

C46

C48

R45

AC

D1

R4

C37

6 PAD

2187

5

3U3

R3C44

R9

C47

7

8

56

4

321U

2R

5

C49

C34

R47

R7

C31

C50

54321 G4

G3

G2

G1

P1

C51

31

42

Y1

C52

C33C9

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

330p

FD

NI

DN

I1.00kΩ

JED

EC_T

YPE=

QFN

56_8

X8_P

AD

5_2X

4_5

DN

ID

NI

DN

I 330p

FD

NI

330p

FD

NI

330p

FD

NI

330p

F

1.00kΩ

SML-

210M

TT86

330p

F33

0pF

100kΩ

DN

I100kΩ

CY7

C68

013A

-56L

TXC

PA5

PA6

PA4

PB0

PA1

PA3

PA2

LE_D

2

DA

TA_D

1

CLK

_D0

PA7

PB3

CTL

2_FL

AG

C

24LC

64-I-

SN

LE_D

2

CLK

_D0

TSW

-105

-08-

G-D

897-

43-0

05-0

0-10

0001

DA

TA_D

1

CTL

1_FL

AG

BC

TL0_

FLA

GA

DM

5V_U

SB

PD5

D4

D3

D6

D6

D5

D5

D4

D3

DN

I1.00kΩ

DN

I1.00kΩ

DN

I

1.00kΩ

DN

I

PA0 0Ω 0Ω 0Ω

0Ω 0Ω

DP

2kΩ

PD1

PD2

CLK

OU

T

RES

ETN

PD7

PD4

PD6

PD3

PD0

PB7

PB5

PB6

PB2

PB4

PB1

IFC

LK

2kΩ

AD

P333

4AC

PZ

3V3_

USB

XTA

LIN

22pF

1.00kΩ

DN

I1.00kΩ

DN

I

0.1µ

F

10pF

0.1µ

F

2kΩ

DN

I

0.1µ

F0.

1µF

0.1µ

F0.

1µF

0.1µ

F0.

1µF

SML-

210M

TT86

2kΩ

78.7kΩ

1000

pF140kΩ

FB

E013

815

10pF

0.1µ

F22

pF

XTA

LOU

T

0.1µ

F

SDA

WA

KEU

P

SCL

1µF

1µF

24.0

0000

0MH

Z

3V3_

USB

5V_U

SB

0.1µ

F

OU

T

PIN

SG

ND

DG

ND

DG

ND

CA

SE

DG

ND

AG

ND

DG

ND

PAD

CLK

OU

T

PD7_

FD15

PD6_

FD14

PD5_

FD13

PD4_

FD12

PD3_

FD11

PD2_

FD10

PD1_

FD9

PD0_

FD8

WA

KEU

P

RES

ET_N

PA7_

FLA

GD

_SLC

S_N

PA6_

PKTE

ND

PA5_

FIFO

AD

R1

PA4_

FIFO

AD

R0

PA3_

WU

2PA

2_SL

OE

PA1_

INT1

_NPA

0_IN

T0_N

VCC C

TL2_

FLA

GC

CTL

1_FL

AG

BC

TL0_

FLA

GA

GN

D

PB7_

FD7

PB6_

FD6

PB5_

FD5

PB4_

FD4

PB3_

FD3

PB2_

FD2

PB1_

FD1

PB0_

FD0

SDA

SCL

RES

ERVE

D

IFC

LKD

MIN

US

DPL

US

AG

ND

XTA

LIN

XTA

LOU

TA

VCC

RD

Y1_S

LWR

RD

Y0_S

LRD

DG

ND

DG

ND

IN

IO

IN1

IN2

OU

T2O

UT1

PAD

FBG

ND

SD_N

DG

NDG

ND

SCL

SDA

WC

_N

A2

A1

A0

VCC

ININ IN

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

OU

T

(FR

OM

MA

IN B

OA

RD

; 200

mA

MIN

IMU

M)

1D

GN

D1

1

5V_S

DP

R21

R22

R17

R42R6

R18

R43

R44

7

48

56321

U5

112

113

114

61115

62636465666768697071116

72737475767778798081117

82838485868788899091118

9293949596979899100

101

119

102

103

104

105

106

107

108

109

110

111

120

P2

987 606 595857565554535251505 494847464544434241404 393837363534333231303 292827262524232221202 191817161514131211101P2

DG

ND

DG

ND

LE_D

2

CLK

_D0

TBD

0603

DN

I

100kΩ

100kΩ

DN

I

24LC

32A

-I/M

S

JED

EC_T

YPE=

MSO

P8E0

1416

0

0ΩD

NI

FX8-

120S

-SV(

21)

DN

I

0ΩD

ATA

_D1

0Ω 0Ω

DN

ID

5D

4D

3

RED

5V_S

DP

FX8-

120S

-SV(

21)

D6

BLK

DG

ND

DG

ND

VSS

VCC

WP

A2

A1

A0

SCL

SDA

OU

T

OU

TO

UT

OU

TO

UT

OU

TO

UT

OU

T

OU

TO

UT

OU

TO

UT

09430-102

Figure 42. USB/SDP Interface Circuitry on the Customer Evaluation Board

Page 26: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 26 of 28

0943

0-04

0

Figure 43. Evaluation Board Layout—Top

0943

0-04

0

Figure 44. Evaluation Board Layout—Bottom

Page 27: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

Data Sheet ADL5240

Rev. A | Page 27 of 28

0943

0-10

3

Figure 45. Evaluation Board Control Software

Page 28: 100 MHz to 4000 MHz RF/IF Digitally Controlled VGA Data ...€¦ · RF/IF Digitally Controlled VGA Data Sheet ADL5240 Rev. A Document Feedback Information furnished by Analog Devices

ADL5240 Data Sheet

Rev. A | Page 28 of 28

OUTLINE DIMENSIONS

3.453.30 SQ3.15

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2

132

89

2524

1716

COPLANARITY0.08

3.50 REF

0.50BSC

PIN 1INDICATOR

PIN 1INDICATOR

0.300.250.18

0.20 REF

12° MAX 0.80 MAX0.65 TYP

1.000.850.80 0.05 MAX

0.02 NOM

SEATINGPLANE

0.500.400.30

5.00BSC SQ

4.75BSC SQ

0.60 MAX0.60 MAX

0.25 MIN

05-2

3-20

12-A

TOP VIEW

EXPOSEDPAD

BOTTOM VIEW

Figure 46. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]

5 mm × 5 mm Body, Very Thin Quad (CP-32-3)

Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADL5240ACPZ-R7 −40°C to +85°C 32 Lead LFCSP_VQ, 7" Tape and Reel CP-32-3

ADL5240-EVALZ Evaluation Board 1 Z = RoHS Compliant Part.

©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09430-0-6/13(A)