36
1 Thevenin’s theorem, Thevenin’s theorem, Norton’s theorem and Norton’s theorem and Superposition theorem Superposition theorem for AC Circuits for AC Circuits 3/2/09

1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

Embed Size (px)

Citation preview

Page 1: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

1

Thevenin’s theorem, Norton’s Thevenin’s theorem, Norton’s theorem and Superposition theorem and Superposition

theorem for AC Circuitstheorem for AC Circuits

3/2/09

Page 2: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

2

Problem10-60(b)Problem10-60(b)

20V

D

0

j5

C

4A 0

4

10

0

-j4

1. Find TEC at terminals c-d

TEC: Thevenin Equivalent Circuit

Page 3: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

3

Problem10-60(b)Problem10-60(b)

(i) To obtain VTH

20V

0

j5 4A

Vc

0

4

10

0

Vd

-j4

+ Voc -

Voc =VTH

Page 4: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

4

Problem10-60(b)Problem10-60(b)

nod c: Vc 20

10

Vc

5j

Vc Vd

4j 0

nod d: Vd Vc

4j

Vd

4 4

Nodal equations:

Page 5: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

5

Problem10-60(b)Problem10-60(b)

Vc

Vd

Find Vc Vd Vc

Vd

13.333 13.333i

8 5.333i

Vcd Vc Vd Vcd 5.333 8i

Vcd 9.615 arg Vcd 56.31deg

VTH Vcd VTH 5.333 8i

Page 6: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

6

Problem10-60(b)Problem10-60(b)

j5

10

4

-j4

(i) To obtain ZTHZTH

ZTH =[(10//j5)+4]//-j4

Page 7: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

7

Problem10-60(b)Problem10-60(b)

In Mathcad:

First we define a function to decribe the result of two parallel impedances:

ZP x y( )x yx y

ZTH ZP ZP 10 5i( ) 4 4i ZTH 2.667 4i

ZTH 4.807

arg ZTH 56.31 deg

Page 8: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

8

Problem10-60(b)Problem10-60(b)

(iii) Using TEC to find Vo

+- ZL

ZTHVTH

+

Vo

-

ZL = 10+j10Let

THTHL

THo V

ZZ

ZV

ZL 10 10j ZTH 2.667 4i VTH 5.333 8i

Vo

ZL

ZTH ZLVTH Vo 2.353 9.412i

Vo 9.701 arg Vo 75.964deg

Let’s assume,

Page 9: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

9

Problem10-60(b)Problem10-60(b)

20V

D

0

j5

C

4A 0

4

10

0

-j4

2. Find NEC at terminals c-d

NEC: Norton Equivalent Circuit

Page 10: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

10

Problem10-60(b)Problem10-60(b)

(i) To obtain IN

20V

0

j5 4A 0

4

10

0

-j4

IN

V1

Page 11: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

11

Problem10-60(b)Problem10-60(b)

(i) To obtain IN

V1 20

10

V1

5j

V1

4 4

V1 Find V1 V1 12.923 7.385i

IN

20 V1

10

V1

5j IN 0.769 1.846i

IN 2arg IN 112.62deg

Page 12: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

12

Problem10-60(b)Problem10-60(b)

(ii) To obtain ZN

ZN = ZTH

ZN = ZTH= 2.667 – j4

Page 13: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

13

Problem10-60(b)Problem10-60(b)

(iii) Using NEC to find Vo

ZLZN

IN

+

Vo

-

ZL = 10+j10

Let’s assume,

Vo = (ZN//ZL)IN

IN 0.769 1.846i ZN 2.667 4i ZL 10 10i

Vo ZP ZN ZL IN Vo 2.353 9.412i

Vo 9.701 arg Vo 75.964deg

Page 14: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

14

Problem10-60(b)Problem10-60(b)

3. Find Vo using superposition theorem

20V

j10+

0

10

j5 4A 0

4

Vo

10

0

-j4

-

Page 15: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

15

Problem10-60(b)Problem10-60(b)

(i) 4A acting alone

j10+

0

10

j5 4A

V2

0

4

Vo1

10

V1

-j4

-

Page 16: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

16

Problem10-60(b)Problem10-60(b)

Nodal Equations

V11

10

1

5j

V1 V2 1

4j1

10 10j

0

V2 V1 1

4j1

10 10j

V2

4 4

V1

V2

Find V1 V2 V1

V2

3.548 9.267i

7.167 0.869i

Vo1 V1 V2 Vo1 3.62 10.136i

Page 17: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

17

Problem10-60(b)Problem10-60(b)

(i) 20V acting alone

j10+

0

10

j520V

V2

4

Vo2

10

V1

0

-j4

-

Page 18: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

18

Nodal Equations

V1 20

10

V1

5j V1 V2 1

4j1

10 10j

0

V2 V1 1

4j1

10 10j

V2

4 0

V1

V2

Find V1 V2 V1

V2

7.747 3.91i

1.774 4.633i

Vo2 V1 V2 Vo2 5.973 0.724i

Vo Vo1 Vo2 Vo 2.353 9.412i

Vo 9.701 arg Vo 75.964deg

Page 19: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

19

Find vo

2H

10cos 2t

+ vo -

1 4

0.1F 5V2sin 5t

This circuit operates at the different frequencies:

• = 0 ; for the DC Voltage source• = 2 rad/s ; for the AC voltage source• = 5 rad/s ; for the AC current source

Page 20: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

20

We must use superposition theorem

Different frequencies problem reduces to single-frequency problem.

321 oooo vvvv

Due to 5V Due to 2sin 5t A

Due to 10cos 2t V

Page 21: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

21

(i) 5V ( = 0) acting alone

+ vo1 -

1 4

5 V

= 0 ; jL = 0 ; Short-circuited

1/jC = infinity ; Open-circuited

Vvo 1)5(41

11

Page 22: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

22

(ii) 10V ( = 2 rad/s) acting alone

2H

0.1F

t2cos10 o0104jLj

51

jCj

Convert time-domain quantities to phasor quantities:

Page 23: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

23

(ii) 10V ( = 2 rad/s) acting alone

+ vo2 - 4

1 j4

-j5 100

951.1439.2

4//5

j

jZ

o

o02

79.30498.2

)010(41

1

Zj

V

In time domain:

V02(t)=2.498cos(2t-30.79)

Page 24: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

24

(iii) 2A ( = 5 rad/s) acting alone

2H

0.1F

t5sin5 o0510jLj

21

jCj

Convert time-domain quantities to phasor quantities

Page 25: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

25

(ii) 2A ( = 5 rad/s) acting alone

6.18.0

4//2

j

jZ

o

o1

10328.2

)02(110

10

Zj

jI

In time domain:

V03(t)=2.328sin(2t+10)o

103

10328.2

1

IV

J10

1 4

-j2

+ vo3 -

Page 26: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

26

Total response of the circuit:

Note that we can only add the individual responsesin the time domain, not in the phasor.

v0(t)= -1 + 2.498cos(-30.79)+2.328sin(5t+10)

321 oooo vvvv

Page 27: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

27

Total response of the circuit:

Note that we can only add the individual responsesin the time domain, not in the phasor.

v0(t)= -1 + 2.498cos(-30.79)+2.328sin(5t+10)

321 oooo vvvv

Page 28: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

28

Find vo

2H

2cos (4t+30)

+vo

-

6

1/12 F

6 cos 4t

Case #1:

This circuit operates at a single frequency.

The sources are represented by a cosine function.

1

4

Page 29: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

29

2H

1/12 F

)304cos(2 ot

o06

8jLj

31

jCj

Convert time-domain quantities to phasor quantities:

t4cos6o302

= 4 rad/s

Page 30: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

30

A phasor circuit

230

+vo

-

6

-j3

1

j8 4

60

Page 31: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

31

Find vo

2H

2sin (4t+30)

+vo

-

6

1/12 F

6 sin 4t

Case #2:

This circuit operates at a single frequency.

The sources are represented by a sine function.

1

4

Page 32: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

32

2H

1/12 F

)304sin(2 ot

o06

8jLj

31

jCj

Convert time-domain quantities to phasor quantities:

t4sin6o302

= 4 rad/s

We use the sine function as the reference for the phasor.

Page 33: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

33

A phasor circuit

230

+vo

-

6

-j3

1

j8 4

60

Page 34: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

34

Find vo

2H

2sin (4t+30)

+vo

-

6

1/12 F

6 cos 4t

Case #3:

This circuit operates at a single frequency.

One source is represented by a sine function;

Another source is represented by cosine function.

1

4

Page 35: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

35

2H

1/12 F

)90304cos(2 oo t

o06

8jLj

31

jCj

Convert time-domain quantities to phasor quantities.Use the cosine function as a reference.

t4cos6o602

= 4 rad/s

Page 36: 1 Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09

36

2H

1/12 F

)304sin(2 ot

o906

8jLj

31

jCj

Convert time-domain quantities to phasor quantities.Use the sine function as a reference.

)904sin(6 oto302

= 4 rad/s

OR