1 Pathophysiology Acute Chronic Pain

Embed Size (px)

Citation preview

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    1/66

    Pathophysiology of Acute &Chronic Pain

    Steven Stanos, DOCenter for Pain Management

    Rehabilitation Institute of Chicago

    Dept. of PM&R, Northwestern

    University Medical SchoolFeinberg School of Medicine

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    2/66

    Nociceptive vs. Neuropathic

    Receptors and channels

    Inflammation

    Peripheral Sensitization

    Central Sensitization

    Temperature Sensation

    Plasticity & Brain Changes

    Muscle Pain

    Cytokines: the Future

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    3/66

    Nociceptive vs. Neuropathic Pain

    *Complex regional pain syndrome type II.

    1. Portenoy RK, Kanner RM. In: Pain Management: Theory and Practice. Philadelphia, PA: FA Davis Company; 1996:4.

    2. Merskey H, Bogduk N, eds. Classification of Chronic Pain. 2nd ed. Seattle, WA: IASP Press; 1994.

    3. Galer BS, Dworkin RH.A Clinical Guide to Neuropathic Pain. Minneapolis, MN: McGraw-Hill; 2000.

    Other Mixed

    Pain Types?

    Nociceptive

    Pain

    (Inflammatory?)1

    Neuropathic

    Pain2,3

    Postoperative

    pain

    Mechanical

    low back pain

    Sickle cellcrisis

    Arthritis

    Postherpetic

    neuralgia

    (PHN)

    Neuropathic

    low back pain

    CRPSII*

    Sports/exercise

    injuries

    Central post-

    stroke pain

    Trigeminal

    neuralgia

    Distal

    polyneuropathy

    (e.g., diabetic, HIV)

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    4/66

    The BIOMEDICAL Model

    Pain as a

    sensory event

    reflecting

    underlying

    disease or

    tissue damage

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    5/66

    Gate Control Theory

    Melzack R. In: Cousins MJ, Bridenbaugh PO, eds. Neural Blockade in Clinical Anesthesia and Management of

    Pain. 3rd ed. Philadelphia, Penn: Lippincott Williams & Wilkins; 1998.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    6/66

    Gate Control Theory

    Melzack R, Wall PD. Science. 1965;150:971-976.

    A. Sensory

    B. Affective

    C. Evaluative

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    7/66

    Enteroceptive Sensations

    Pain

    Thirst

    Hunger Thermoception

    Neurophysiologic changes Neurochemical changes

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    8/66

    Biological Functions of Pain

    Sherrington (1906)

    Exteroceptive:

    Interoceptive:

    Escape and avoidance ofexternal threats

    protection of injured or

    dysfunctional tissues thatdisrupt homeostasis

    Price DD et al. Pain 2003, 106.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    9/66

    Physiological Pain

    Initiated and by specialized sensory

    nociceptors innervating peripheral tissues

    and responding only to noxious stimuli

    Projects to spinal cord and cortex

    Activates reflex withdrawal, increase in

    arousal, emotional, autonomic and

    neurohumoral responses

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    10/66

    ChronicPain

    Hyperalgesia Allodynia

    The Role of Plasticity

    in Chronic PainInjury

    Acute Pain

    Healing With PlasticityNormal Healing

    Pain Relief

    Adapted from Marcus DM.Am Fam Physician. 2000;61:1331-1338.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    11/66

    Neuronal Plasticity and Pain

    Normal adaptive function

    Neurons detecting and transmitting pain

    display plasticity

    A capacity to change function, chemical profile,or structure

    A response to painful stimuli and inflammation

    A contributor to altered sensitivity to pain

    When persistent can lead to permanent

    neuropathic pain

    Woolf CJ, et al. Science. 2000;288:1765-1768.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    12/66

    Pain Pathophysiology

    Nociceptive pain Believed to be related to ongoing activation of an

    intact nervous system by tissue injury

    Somatic Visceral

    Neuropathic pain Believed to be related to aberrant somatosensory

    processing in the peripheral nervous system, thecentral nervous system, or both

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    13/66

    Nociception

    Transduction: detection of noxious or

    damaging stimuli

    Conduction: passage of resulting sensory

    input from peripheral terminals to the

    spinal cord

    Transmission: synaptic transfer of input

    to neurones within specific laminae of DH

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    14/66

    Physiology of Pain Perception1-3

    1. Galer BS, Dworkin RH.A Clinical Guide to Neuropathic Pain. Minneapolis, MN: McGraw-Hill; 2000.

    2. Irving GA, Wallace MS. Pain Management for the Practicing Physician. New York, NY: Churchill Livingstone; 1997.

    3. Woolf CJ, et al.Ann Intern Med. 2004;140:441-451.

    Injury

    Peripheral

    Nerve

    Brain

    DescendingPathway

    Ascending

    Pathway

    Spinal

    Cord

    Dorsal

    Horn

    Dorsal

    Root

    Ganglion

    C-Fiber

    - Fiber

    - Fiber

    Conduction

    Transduction

    Transmission/

    Modulation

    Perception

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    15/66

    Kidd, Urban. Br J Anaesthesia 2001;87(1).

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    16/66

    Pathologic vs. Physiologic

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    17/66

    C-nociceptors; C-polymodal;

    warmth, mechano;postganglioic

    autonomic; enteric nerve fibers

    No0.5-2.0C

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    18/66

    Conduction Velocity: A & C fibers

    A (Fast pain)1

    C-fibers (Slow pain)1

    Age relatedimpairment in fast

    pain fibers2

    1. Julius D, Basbaum A, Nature 2001(413).

    2. Chakour M,, et al. Pain 1996; 64:143.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    19/66

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    20/66Kidd, Urban.Br J of Anaesth 87, 2001.

    Receptors

    Non-painful stimuli: Specificity for a particular stimulus

    High degree of gain to amplify weak signals

    Rapid adaptation to increasing intensities

    Painful stimuli:

    Specificity less important

    High threshold receptors: thermal, chemical andmechanical stimuli (polymodal)

    Threshold for firing may decrease

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    21/66

    Caterina, Cur Op in Neurobiology (9), 1999.

    CutaneousC-fiber

    Small diameter Slow conducting

    Unmyelinated

    1. Proinflammitory peptides

    Subst P

    CGRP

    Lamina I/II

    * tissue inflammation

    (NGF)2. Specific enzymes/ Lectin IB4

    *chronic neuropathic pain

    (GDNF)

    A-

    Medium diameter Fast conducting

    Lightly myelinated

    Polymodal

    Type I

    Long response latency

    > 50C

    Persistent pain

    2. Type II

    Short response

    43C

    Initial burn

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    22/66

    Millan,Progress in Neurobiology, 1999.

    Primary Afferent C & A Fibers

    Sensation MediatedFibre

    Class

    Threshold

    For

    Activation

    Principal

    Transmitters

    Receptors

    Engaged

    Physiological Pathological

    C High SP/NKACGRP

    EAA

    NK

    CGRP

    NMDA

    AMPA

    mGlu

    Noxious

    (pain)

    Highly noxious

    (hyperalgesia)

    Cold Allodynia

    (pain)

    A LowEAA AMPA Innocuous

    (no pain)

    Mechanical

    allodynia

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    23/66

    Receptor types on sensory neurons

    Transduction mechanism Example Cellular effect

    Ligand-gated channel Capsaicin-heat Excitation

    H , 5HT, ATP

    Glutamate, GABA-A

    G-protein linked GABA-B Inhibition of

    Opiated, Adenosine transmitter &

    Adrenoreceptors peptide release

    NPY, 5HT

    Bradykinin(B2) ExcitationHistamine (H1) and/or

    Adrenoreceptors (2) sensitization

    PGE2

    Tyrosine kinase linked NGF (Trk A) Control of gene

    expression

    Bevan S. Textbook of Pain, 4 th ed. Wall, Malzack, 1999.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    24/66

    Dynamic, constantly changing

    Plasticity reflects sensitivity needed for

    survival

    Injury: amygdala, hippocampus, and DRG

    Normal peripheral nerves (resist)

    Demyelination: density

    Ion Channels

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    25/66

    Receptors

    Capsaicin/ Vanilloid Purinergic (P2X)

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    26/66

    Ion Channel Linked Receptors

    Receptors

    Vanilloid (VR-1)

    Acid-sensing (ASIC) Purinergic (P2X)

    Cannabinoid

    Ion Channels

    Sodium

    TTX-S TTX-R

    Calcium

    Kidd BL, Urban LA,Br J of Anaesthesia (1). 2001.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    27/66

    Caterina. Cur Op in Neurobiology(9), 1999.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    28/66

    Nociception in Other Organs

    Less differentiation

    Autonomic component

    Poorly localized Referred pain

    Absence of A in viscera

    Skeletal muscle: group III, group IV Joint: group III & group IV respond to

    stretch

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    29/66

    Cervero F, Laird J,Lancet353, 1999.

    Visceral PainPsychophysics

    Not evoked from all

    viscera

    Not always linked to

    injury

    Referred to body wall

    Diffuse & poorly

    localized

    Intense motor &autonomic reactions

    Neurobiology

    Not all innervated by

    sensory receptors

    Functional properties of

    afferents

    Viscerosomatic

    convergence in CNS

    Few sensory visceral

    afferents, diverge CNS

    Warning system,

    capacity for

    amplification

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    30/66

    Siddal, Cousins. Neural Blockade in Clinical Anesthesia and Management of Pain, Third Ed.,1998.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    31/66

    Milan MJ, Progress in Neurobiology66, 2002.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    32/66

    Inflammation

    Redness (rubor)

    Heat (calor)

    Swelling (tumor) Loss of function (function lasea)

    Pain (dolor)

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    33/66

    Inflammation

    Macrophages:

    Cytokines(IL1, IL6, TNF-)

    Nerve Growth Factor

    Damaged Cells: ATP and protons

    Mast Cells:

    Histamine, serotonin, prostaglandins, arachidonic

    acid metabolites Upregulation of receptors

    VR1, SNS, SNS-2 & Peptides

    Phenotypic Switch ( A-fiber into C-fiber)

    Jensen et al.Acat Anaesthesiol Scand45, 2001.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    34/66

    Inflammation

    Short-term

    Modifications in excitation & sensitization of

    peripheral sensory terminals

    Longer-term

    Changes in properties of afferents

    Decrease in threshold for firing

    Increase in excitability of spinal neurons

    Mamet et al. J of Neuroscience, 22(24), 2002.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    35/66

    Hyperalgesia Sensitization

    pain threshold threshold for response

    pain to suprathreshold response to

    stimuli suprathreshold stimuli

    Spontaneous pain Spontaneous activity

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    36/66

    SENSITIZING SOUP

    Hydrogen Ions Histamine Purines

    Noradrenaline Potassium Cytokines

    Bradykinin Prostaglandins NGF

    Leukotrienes 5-HT Neuropeptides

    Tissue Damage

    Woolf, Chong.Anesth. Analgesia (77), 1993.

    Peripheral Sensitization

    Inflammation Sympathetic Terminals

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    37/66

    SKIN

    Peripheral Sensitization

    PeripheralNerve

    Terminal

    Pressure ?

    Plasma ExtravasationVasodilation

    Heat5-HT3 PGE2

    Bradykinin

    VR1 5-HT3 EP B1/B2

    IL1

    MastCell

    Macrophage

    (PKC)

    TNF-IL-6LIF

    IL1-R TrkA

    H+

    PKC

    TTXr(SNS/SNS2)

    Sub P

    GeneRegulation

    TTXr

    TTXs

    H+

    P2X ASIC

    Adapted from Woolf CJ, et al. Science. 2000;288:1765-1768.

    TissueDamage

    ATPNGF

    H1

    Histamine

    Ca2+

    PKA

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    38/66

    Central Sensitization: wind up

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    39/66

    With permission. Jensen TS et al.Acta Anaesth Scand, 45, 2001.

    M h i f N i i

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    40/66

    Mechanisms of Nociceptive

    Central Pain Autosensitization of receptors

    Ectopic firing of DRG cells

    Calcium-induced molecular cascades fromexcess glutamate

    Phenotypic change of A- cells and DRG

    Changes in gene expression of sodiumchannels and neuropeptides

    Anatomic changes at dorsal horn

    Schwarzman et al.Neurological Review, 58, 2001.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    41/66

    With Permission. Woolf,2000.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    42/66

    Mechanisms of nociceptive central pain

    1. Autosensitization of receptors

    2. Ectopic firing of DRG cells

    3. Calcium-induced molecular cascadesfrom excess glutamate

    4. Phenotypic change of A- cells and DRG

    5. Changes in gene expression of sodiumchannels and neuropeptides

    6. Anatomic changes at dorsal horn

    Schwarzman et al. Neurological Review, 58, 2001.

    N thi P i I D fi d

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    43/66

    Neuropathic Pain Is Defined

    asPain caused by a lesion or dysfunction

    of the nervous system1

    Nerve sensitization or damage

    can be located in the peripheralor central nervous system1

    Manifests with sensory symptoms

    and signs2

    May have both positive andnegative sensory and motor symptoms and

    signs2

    1. Merskey H, Bogduk N, eds. Classification of Chronic Pain. 2nd ed. Seattle, WA: IASP Press; 1994.2. Backonja MM.Anesth Analg. 2003;97:785-790.

    Examples of Peripheral vs Central

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    44/66

    Examples of Peripheral vs. Central

    Sensitization

    Adapted from Woolf CJ, Mannion RJ. Lancet. 1999;353:1959-1964.

    Sensory function after nerve injury with spontaneous firing along axon

    No

    StimulusPain

    SensationNociceptorDorsal Horn

    Neuron

    To Brain

    Central sensitization occurs as a result of increased nociceptor drive or disinhibitionafter nerve injury, leading to exaggerated dorsal horn response

    Disinhibition

    Innocuous

    or Noxious

    StimulusDorsal Horn

    Neuron

    To

    Brain

    Increased Nociceptor Drive

    Innocuous

    StimulusDorsal Horn

    Neuron

    Inhibitory Input Is

    Downregulated

    P i t t P i Di

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    45/66

    Persistent Pain as a Disease

    Entity: Increase peripheral input: increase DH

    firing

    Increase firing: increased NMDA, Ca,

    PKC, Nitric Oxide

    Increase PKC, Ca: genetic changes

    Increase NO: decreased GABA neurons

    Increase Neurotrophins: sprouting

    Cousins, MJ, 2009 AAPM

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    46/66

    Beydoun A, Backonja. J Pain Symp Management2003.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    47/66

    Temperature

    Th ti

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    48/66

    Thermosensation

    Julius D, Proc 10th Word Conference of Pain, 2003.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    49/66

    Thermosensation

    TRP channel family

    TRV2 >53 C Noxious heat

    TRPV1 (Vanilloid) >43 C Heat, capsaicin, acid

    TRPV3/TRPV4 >30-40 C Warm

    TRPM8 (CMRI) >25 C Cold, menthol

    TRPA1

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    50/66

    Thermosensation

    Cold 10-15% C & A-delta

    Specificity vs. modulation

    of excitatory & inhibitory

    channels K, Na, Ca channels

    CMRI (cold- and menthol-

    sensitive receptor) cloned

    TRP (transient receptorpotential)

    Heat Capsaicin

    Vanilloid receptor

    subtype 1 (VR1 or

    TRPV1) Thermal activation

    threshold ~43C

    Polymodal, influenced by

    a variety of substances

    Julius D,Proc 10th Word Conference of Pain, 2003.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    51/66

    Capsaicin

    genus Capsicum:

    mildest (bell) to hottest (habanero)

    Capsaicin: 16,000,000 SHU habanero: 200,000 SHU

    Classic:

    Activates, desensitize (Ca), and exert neurotoxic

    effects on polymodal nociceptors

    release of Subst P & CGRP, nerve degeneration

    (NGF), loss of intraepidermal fibers

    pharmacological & functional desensitization via

    VR1 receptor

    Anand P. Gut52, 2003. Robbins

    W. Clin J Pain 16(2), 2000.

    TRPV Ch l

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    52/66

    TRPV Channels:

    Szalassi et al. Nature Rev2007;6.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    53/66

    Menthol: natural analgesic

    Mentha species

    peppermint plant, cornmint oil,

    citronella, eucalyptus & Indian

    turpentine oil

    coolness: stimulation of coldreceptors by (-) Calcium currents of

    neuronal membranes, increasing

    pain thresholds

    Activation of central Opioid

    system

    Galeotti N. Neuroscience Letters 322 (2002). McKeny, Nature 416, 2002.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    54/66

    Pain Neurochemistry

    To brain

    Dorsal

    horn

    Substance P, aspartate,

    neurotensin, glutamate

    Spinal cord

    Dorsal root

    ganglion

    Tissue injury

    Bradykinin

    Leukotrienes

    Ion fluxes

    (H+/ K+)

    Prostaglandins

    Transmission viaspinothalamic tract

    to brain

    Substance P

    Histamine Sensitized

    nociceptor

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    55/66

    Neuromatrix

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    56/66

    Apkarian AV, et al. J of Neuroscience, 24(46), 2004.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    57/66

    Price DD. Science 2000.

    Price DD. Science. 2000;288:1769-1772.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    58/66

    Price DD. Science. 2000;288:1769-1772.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    59/66

    Pain Matrix

    Moseley GL. Man Ther. 2003;8(3):130-140.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    60/66

    Pain Matrix

    Anterior cingulate cortex (ACC)

    Insular cortex (IC)

    Thalamus

    Sensorimotor cortex (SSI, SSII)

    Cerebellum

    Moseley GL. Man Ther. 2003;8(3):130-140.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    61/66

    Petrovic P, et al. Science 2002;295:1737-1740.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    62/66

    Petrovic P, et al. Science. 2002;295:1737-1740.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    63/66

    Opioid Systems

    Reynolds: (1969)

    Endogenous opioid system

    PAG & NMM: funnel

    Homeostatic andbehavioral adjustments

    Mason P. J Neurophysiol. 2005;94:1659-1663.

    Finniss DB, Benedetti F. Pain. 2005;114:3-6.

    Petrovic P, Ingvar M. Pain. 2002;95:1-5.

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    64/66

    Tracey, 2008

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    65/66

    INJURY SYMPTOMS

    Tissue Damage

    Nerve Damage

    HyperalgesiaSpontaneous

    PainAllodynia

    PERIPHERAL

    ACTIVITY

    CENTRAL

    SENSITIZATION

    Decreasedthreshold to

    peripheral stimuli Expansion of

    Receptive field

    Increased

    Spontaneous

    activity

  • 7/30/2019 1 Pathophysiology Acute Chronic Pain

    66/66

    Summary: a gain in pain

    Nociceptive vs. Neuropathic pain

    Chronic changes in the nervous systemmay not be reversible

    Understanding of channels and receptorsevolving

    Medications and therapies targeted at

    specific mechanisms Pain is not just a passive transfer of input

    along a fixed system