79
1 I.B Soil Conservation Systems Rabi H. Mohtar Professor, Environmental and Natural Resources Engineering Executive Director, Strategic Projects, Research & Development Qatar Foundation [email protected] or [email protected] July 2013

1 I.B Soil Conservation Systems Rabi H. Mohtar Professor, Environmental and Natural Resources Engineering Executive Director, Strategic Projects, Research

Embed Size (px)

Citation preview

  • Slide 1
  • 1 I.B Soil Conservation Systems Rabi H. Mohtar Professor, Environmental and Natural Resources Engineering Executive Director, Strategic Projects, Research & Development Qatar Foundation [email protected]@purdue.edu or [email protected]@qf.org.qa July 2013
  • Slide 2
  • 2 Materials To Be Covered 1. Principles of Soil Physics 2. Sediment Transport 3. Erosion Control 4. Soil Mechanics 5. Slope Stabilization This review will provide you with an overall understanding and not necessarily makes you an expert! I.B Mohtar
  • Slide 3
  • 3 Sources 1. Environmental Soil Physics; Hillel; 1998 Hillel (1998) 2. Essentials of Soil Mechanics & Foundations, 7 th ed.; McCarthy; 2007; McCarthy (2007) 3. Soil and Water Conservation Engineering a) 4 th ed. Schwab, Fangmeier, Elliott, Frevert: Schwab et al (1993) b) 5 th ed. Fangmeier, Elliott, Workman, Huffman, Schwab: Fangmeier et al (2006) 4. Design Hydrology & Sedimentology for Small Catchments; Haan, Barfield, Hayes: Haan et al (1994) 5. USLE/RUSLE: USDA Agricultural Handbook No. 537 (1978) 6. Cuenca, R. H. 1989. Irrigation System Design - An Engineering Approach. Prentice-Hall, Inc., Englewood Cliffs, NJ. 552 pp. Cuenca (1989). 7. Ward, Elliot 1995 (Environmental Hydrology, Lewis Publishers). 8. http://cobweb.ecn.purdue.edu/~abe325/: Mohtar soil and water resources conservation course. http://cobweb.ecn.purdue.edu/~abe325/ I.B Mohtar
  • Slide 4
  • 4 Soil Physics & Mechanics 1. Soil classes and particle size distributions 2. Basics of soil water a) Water Content b) Water Potential c) Water Flow 3. Soil strength & mechanics I.B Mohtar
  • Slide 5
  • 5 Soil Classes & Particle Sizes Hillel (1998) page 61 I.B Mohtar
  • Slide 6
  • 6 Soil Classes & Particle Sizes - 2 ISSS classification is easiest 1. Sand 0.02-2.0mm (20-2000) 2. Silt 0.002-0.02mm (2-20) 3. Clay deposition I.B Mohtar
  • Slide 31
  • 31 USLE/RUSLE A = R * K * LS * C * P A = average annual soil erosion (T/A/Y) R = rainfall erosivity (long empirical units) K = soil erodibility (long empirical units) R * K gives units of T/A/Y LS = topographic factor (dimensionless, 0-1) C = cover-management (dimensionless, 0-1) P = conservation practice (dimensionless, 0-1) I.B Mohtar
  • Slide 32
  • 32 USLE/RUSLE background Empirical approach been in use since 1960 >10000 plot-years of data International use Unit Plot basis; LS = C = P = 1 Near worst-case management R from good fit rainfall-erosion K from K = A / R C and P from studies Sub-factors in later versions I.B Mohtar
  • Slide 33
  • 33 USLE/RUSLE approach Lookup Maps, tables, figures Databases Process-based calculations Show changes over time Where dont have good data I.B Mohtar
  • Slide 34
  • 34 R factor rainfall erosivity Maps R(customary SI) = 17.02 * R(customary US) S4 I.B Mohtar Haan et al (1994) pp:251; Haan et al (1994) Appendix 8A; Schwab et al (1993) 99(SI); Fangmeier et al (2006) pp:143(SI); USDA (1978) pp:1-5
  • Slide 35
  • 35 K factor soil erodibility Soil surveys, NASIS, Haan et al (1994) 261-262; USDA 6 Erodibility nomograph: Haan et al (1994) 255; Schwab et al (1993) 101; Fangmeier et al (2006) pp144; USDA (1978) pp: 7 No short-term OM I.B Mohtar
  • Slide 36
  • 36 LS Topography Factor New tables & figures Haan et al (1994) 264; USDA (1978) 8 Know susceptibility to rilling High for highly disturbed soils Low for consolidated soils I.B Mohtar
  • Slide 37
  • 37 C cover-management factor Part of normal management scheme Lookup: Schwab (1993) 102; Fangmeier et al (2006) pp: 146; Haan et al (1994) 266; Hillel (1998) Appendix 8; USDA (1978) 9 It Changes over time I.B Mohtar
  • Slide 38
  • 38 C Cover-Management Factor - 2 Subfactor approach (RUSLE) C = PLU * CC * SC * SR * SM; all 0-1 PLU = prior land use roots, buried biomass, soil consolidation CC = canopy cover; % cover & fall height SC = exp(-b * % cover) b = 0.05 if rills dominant; 0.035 typical; 0.025 interrill SR = roughness; set by tillage, reduces over time SM = soil moisture; used only in NWRR I.B Mohtar
  • Slide 39
  • 39 P Conservation Practice Factor Common practices Contouring, strip cropping, terraces Change flow patterns or cause deposition Lookup tables Schwab (1993) pp:103; Fangmeier et al (2006) pp:146; Haan et al (1994) pp: 281; USDA (1978) pp:10 I.B Mohtar
  • Slide 40
  • 40 Calc.: USLE/RUSLE Example 9: Given: Materials in handout 3-Acre construction site near Chicago Straw mulch applied at 4 T/A Average 20% slope, 100 length Loamy sand subsoil Fill (loose soil) Find: Erosion rate in T/A/Y I.B Mohtar
  • Slide 41
  • 41 Calc: USLE/RUSLE 2 R = 150 (HO.1) K = 0.24 (HO.7) LS = 4 (HO.8-high rilling) C = 0.02 (HO.9) P = 1.0 A = R * K * LS * C * P = 2.9 T/A/Y I.B Mohtar
  • Slide 42
  • 42 Calc: USLE/RUSLE 2.1 Example 10: Given: Materials in handout 16-A site near Dallas, TX Silty clay loam subsoil Average 50% slope, 75 length Cut soil Find: By what percentage will the erosion be reduced if we increase our straw mulch cover from 40% cover to 80% cover? I.B Mohtar
  • Slide 43
  • 43 Calc: USLE/RUSLE 2.2 Only thing different is C Only subfactor different is SC SC = exp(-b * %cover) For consolidated soil, b = 0.025 SC 1 = exp(-0.025 * 40%) = 0.368 SC 2 = exp(-0.025 * 80%) = 0.135 Reduction = (0.368 0.135)/0.368 = 63% I.B Mohtar
  • Slide 44
  • 44 Sediment Delivery USLE/RUSLE for hillslopes Erosion Delivery Erosion critical for soil resource conservation Delivery critical for water quality Movement through channel system I.B Mohtar
  • Slide 45
  • 45 Sediment Delivery 2 I.B Mohtar
  • Slide 46
  • 46 Sediment Delivery 3 SDR (Sediment Delivery Ratio) Hillslope erosion Empirical fit for watershed delivery Channel erosion/deposition modeling Erosion Transport Deposition I.B Mohtar
  • Slide 47
  • 47 Sediment Delivery Ratio Haan et al (1994) pp:293-299 SDR = SY / HE SDR = sediment delivery ratio SY = sediment yield at watershed exit HE = hillslope erosion over watershed I.B Mohtar
  • Slide 48
  • 48 Sediment Delivery Ratio 2 Area-delivery relationship Haan et al (1994) pp:294 I.B Mohtar
  • Slide 49
  • 49 Sediment Delivery Ratio 3 Relief-length ratio Relief = elev change along main branch Length = length along main branch Haan et al (1994) page.294 I.B Mohtar
  • Slide 50
  • 50 Sediment Delivery Ratio 4 Forest Service Delivery Index Method Haan et al (1994) pp:295 I.B Mohtar
  • Slide 51
  • 51 Sediment Delivery Ratio 5 MUSLE ( Haan et al (1994) pp: 298 and 298 Y = 95(Q * q p ) 0.56 (K a )(LS a )(C a )(P a ) Y = storm yield in tons Q = storm runoff volume in acre-in q = peak runoff rate in cfs K, LS, C, P = area=weighted watershed values SDR = 95(Q * q p ) 0.56 /(R * area) R = storm erosivity in US units Routing for channel delivery I.B Mohtar
  • Slide 52
  • 52 Calc: SDR Example 11: Given: Flow path length in watershed = 4000ft Elevation difference = 115ft Find? SDR I.B Mohtar
  • Slide 53
  • 53 Calc.: SDR 2 R/L = 115/4000 = 0.029 From figure SDR = 0.45 I.B Mohtar
  • Slide 54
  • 54 Channel Erosion-Deposition Modeling Process-based small channel models Foster-Lane model Haan et al (1994) pp285-289 Complicated and process-based Ephemeral Gully Erosion Model EGEM Fit to Foster-Lane Model results I.B Mohtar
  • Slide 55
  • 55 Channel Erosion-Deposition Modeling 2 Large-channel models Sediment transport Channel morphology I.B Mohtar
  • Slide 56
  • 56 Sediment Transport Settling ( Haan et al (1994) pp:204-209 ) Stokes Law V s = settling velocity d = particle diameter g = accel due to gravity SG = particle specific gravity = kinematic viscosity Simplified Stokes Law SG = 2.65 Quiescent water at 68 o F d in mm, V s in fps I.B Mohtar
  • Slide 57
  • 57 Calc.: Stokes Law Settling Example 12: Given: ISSS soil particle size classification Find: Settling velocities of largest sand, silt, and clay particles I.B Mohtar
  • Slide 58
  • 58 Calc.: Stokes Law Settling 2 ISSS classification Largest particles size Clay = 0.002mm Silt = 0.2mm Sand = 2mm V s,clay = 1.12*10 -4 fps = 0.04 ft/hr = 0.97 ft/day V s,silt = 0.11 fps = 405 ft/hr = 1.83 mi/day V s,sand = 11.24 fps = 7.66 mph = 184 mi/day I.B Mohtar
  • Slide 59
  • 59 Calc.: Stokes Law Settling Example 13: Given: Stokes Law settling Find: particles larger than what size can be assumed to settle 1 ft in one hour? I.B Mohtar
  • Slide 60
  • 60 Calc.: Stokes Law Settling 2 V s = [(1 ft)/(1 hr)](1 hr/3600s) = 2.778*10 -4 fps d = (V s /2.81) 1/2 = 0.00994mm I.B Mohtar
  • Slide 61
  • BREAK I.B Mohtar61
  • Slide 62
  • 62 Soil Strength and Mechanics From McCarthy (1982) pages 233-237,373-379 Soil stresses Normal Stress = F n /A = Shear Stress = F t /A = F n = normal force F t = tangential or shear force As normal stress () , sheer stress ( ) to cause failure ( f ) i.e. shear strength tan = f / ; where = angle of internal friction I.B Mohtar
  • Slide 63
  • 63 Soil strength and mechanics 2 McCarthy (1982) page 234 I.B Mohtar
  • Slide 64
  • 64 Calc.: Soil strength Example 6: Given: Well-graded sand; density 124 lb/ft 3 Find: Ultimate shear strength 6 ft below surface? I.B Mohtar
  • Slide 65
  • 65 Calc.: Soil Strength 2 From table 10-1, for well-graded sand, = 32-35 o = 33.5 o Normal stress = (124 lb/ft 3 )(6 ft) = 744 lb/ft 2 tan = f / ; f = * tan = f = 744 lb/ft 2 * tan(33.5 o ) = 492 lb/ft 2 I.B Mohtar
  • Slide 66
  • 66 Footing bearing loads q ult = a 1 *c*N c + a 2 *B* 1 *N + 2 *D f *N q total support=soil cohesiveness+ below footing +soil bearing c = soil cohesion beneath footer 1,, 2 = effective soil unit weight above and below footer B = footer size term N c, N , N q = capacity factors D f = footing depth below surface q design = q ult / FS Length/width Ba1a1 a2a2 1 (square)Width1.20.42 2Width1.120.45 3Width1.070.46 4Width1.050.47 6Width1.030.48 StripWidth1.000.50 CircularRadius1.20.60 McCarthy (1982) page 374-379 I.B Mohtar
  • Slide 67
  • 67 Footing Bearing Loads 2 McCarthy (1982) page 375 I.B Mohtar
  • Slide 68
  • 68 Calc.: Footing Load Example 7: Given: Strip footing 3 ft wide Wet soil with density of 125 lb/ft 3 Angle of internal friction = 30 o Cohesive strength of 400 lb/ft 2 Use factor of safety of 3 Find: q design in lb/ft 2 I.B Mohtar
  • Slide 69
  • 69 Calc.: Footing Load 2 a1 = 1.0, a2 = 0.5, B = width = 3 1 = 125/2 = 62.5 lb/ft3; 2 = 125 lb/ft3 c = 400 lb/ft2 N c = 30, N = 18, N q = 20 q design = 23,700/3 = 7900 lb/ft 2 I.B Mohtar
  • Slide 70
  • 70 Soil Compaction and Density Soil compaction Greater strength and reduced permeability Dependent on water content dry soil cannot be compacted well Proctor test Pack soil into mold with pounding at various moistures. Find soil moisture for maximum compaction and density. Modified Proctor > 56000 ft-lbs of energy exerted. I.B Mohtar
  • Slide 71
  • 71 Slope Stability & Failure Possible Forms of Failure McCarthy (1982) page 440 McCarthy (1982) page 437-455 I.B Mohtar
  • Slide 72
  • 72 Slope stability & failure 2 Terms =max. slope angle before sliding =angle of internal friction Cohesionless soil tan() = tan( ) Saturated: tan( ) = (1/2)tan( ) I.B Mohtar
  • Slide 73
  • 73 Slope Stability & Failure 3 Cohesive soil *z*sin()*cos() = c + *tan() z = assumed depth c = cohesive force = effective compressive stress Rotational or sliding block I.B Mohtar
  • Slide 74
  • 74 Slope Stability & Failure 4 For clay soil For soil with cohesion and internal friction > 0 McCarthy (1982) page 474 I.B Mohtar
  • Slide 75
  • 75 Slope Stability & Failure 5 N s = c / ( * H max ) c = cohesion force = soil unit weight H max = max depth without sliding I.B Mohtar
  • Slide 76
  • 76 Calc.: Slope Stability Example 8: Given: Cohesion strength = 500 lb/ft 2 Unit weight = 110 lb/ft 3 Slope steepness = 50 o Internal friction angle = 15 o Find: Max. slope height I.B Mohtar
  • Slide 77
  • 77 Calc.: Slope Stability 2 Fig. b, = 15 o, i = 50 o H max = c / ( * N s ) = (500 lb/ft 2 )(1ft 3 / 10)(1/ 0.095) = 48 ft I.B Mohtar
  • Slide 78
  • 78 Materials Covered Principles of Soil Physics Sediment Transport Erosion Control Soil Mechanics Slope Stabilization I.B Mohtar
  • Slide 79
  • Thank You and Best Luck I.B Mohtar79