61
1 Chapter07 3-Dim Problems aka the Hydrogen Atom

1 Chapter07 3-Dim Problems aka the Hydrogen Atom

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

1

Chapter073-Dim Problems

akathe Hydrogen Atom

Outline

• 7.1 Application of Schro Eqn to H-atom• 7.2 Solution of Schro Eqn

• Angular Shapes of Wave Functions• Radial Dependence of Wave Functions

• 7.3 Orbital Angular Momentum & Quantum Numbers

• 7.4 Magnetic Effects upon the H-like atoms• 7.5 Intrinsic Spin• 7.6 Energy Levels

2

3

3-D Problems

• Separation of Variables– (r) = R(r) () ()– () solution– () solution– R(r) equation

• Effective Potentials

4

Separation of Variables

5

Coordinates & Normalization r

spaceall

dV 1

dddrrdV sin2

r

ddxdrr2

0

1

1

2

0

cos'' x

dddrrdV cos2

dddrr2

00

2

0

sin

ddxdrrdV 2

dddrr2

0

1

1

2

0

cos

6

EV

m

p

2

2

r

EV

m2

2

2

2222

22

2

sin

1sin

sin

11

rr

rr rr

2222

22

2 111

srs

srr

r rr

Note derivatives are cleanly separated

VEm2

2 2

rRr

7

VEm2

2 2

VE

m

srs

srr

r rr 22

2222

2

2111

2

22222

2

1211 sr

VEm

ssr

rr rr

2

222

222 211

VEm

ssr

rr

sr rr

RRVE

ms

srr

rsr rr

222

22

22 211

rRr

{a}

{b}

{c}

{d}

8

RRVE

ms

srr

rsr rr

222

22

22 211

222

22

22 211

R

RVEm

ssr

rr

sr rr

LHS = const = RHS

m2

2

222

222 211

mR

RVEm

ssr

rr

sr rr

2

2 m

{e}

{f}

{d}

9

2

2 m

Azimuthal Behavior

mie

2

2 imim ee

22 m

miemiimim eee 2

Intm Re

…, -2, -1, 0, 1, 2, …

Note: 1) EVP 2) Since no V involved only have to do this once forevermore

10

Other Piece

2

222

222 211

mR

RVEm

ssr

rr

sr rr

R

sr

mRVE

ms

srr

r rr 22

2

222

2

211

R

sr

ms

srRVE

mr

r rr 22

2

222

2

121

R

s

ms

sRVE

mrr rr 2

2

222 12

2

2

222 12

sm

ss

R

RVEm

rr rr

{f}

{g}

{h}

{i}

{j}

11

2

2

222 12

sm

ss

R

RVEm

rr rr

LHS = const = RHS

1

1

22

22

R

RVEm

rr rr

2

21

1sm

ss

{j}

{k}

{l}

12

Other Angular Piece (co-lattitude)

2

21

1sm

ss

1

12

2

s

ms

s

Note: 1) EVP 2) Since no V involved only have to do this once forevermore

Solns depend on choice of both l and m

mm Paka

Associated Legendre Polynomials

defer solving til later when we have nicer techniques

{l}

13

Summarizing the Angular Parts So Far

mie mm Por

mimm

m ePm

mY

!

!

4

121,

Since the angular basis functions are the same regardless of the potential chosen.

Define the “spherical harmonics”

John Day @ http://www.cloudman.com/gallery1/gallery1_2.html

http://asd-www.larc.nasa.gov/cgi-bin/SCOOL_Clouds/Cumulus/list.cgi

14

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

-0.1-0.0500.050.1

-0.1-0.05 00.050.1

-0.4

-0.2

0

0.2

0.4-0.1-0.05 00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1-0.05

00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1 00.1-0.100.1-0.04-0.0200.020.04

-0.1 00.1

http://asd-www.larc.nasa.gov/cgi-bin/SCOOL_Clouds/Cumulus/list.cgi

2,mY

(0,0)

(1,±1)

(2,±2)(2,±1)(2,0)

(1,0)

15

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

-0.1-0.0500.050.1

-0.1-0.05 00.050.1

-0.4

-0.2

0

0.2

0.4-0.1-0.05 00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1-0.05

00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1 00.1-0.100.1-0.04-0.0200.020.04

-0.1 00.1

2,mY

(0,0)

(1,±1)

(2,±2)(2,±1)(2,0)

(1,0)

16

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

-0.1-0.0500.050.1

-0.1-0.05 00.050.1

-0.4

-0.2

0

0.2

0.4-0.1-0.05 00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1-0.05

00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1 00.1-0.100.1-0.04-0.0200.020.04

-0.1 00.1

Comparision of Y11 & Y22

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100120140160180200220240260280300320340360

C0-latitude Angle (deg)

Ab

solu

te S

qu

are

Y11 2̂

Y22 2̂

Comparision of Y11 & Y22

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100120140160180200220240260280300320340360

C0-latitude Angle (deg)

Val

ues Y11 2̂

Y22 2̂

2,mY

17

18

4, 3, 04, 3, 14, 3, 24, 3, 34, 2, 04, 2, 14, 2, 24, 1, 04, 1, 14, 0, 0

http://www2.physics.umd.edu/~gcchang/courses/phys402/common/notebooks.html

2,mY

19

Radial Piece

1

22

22

R

RVEm

rr rr

RRVEm

rr rr 12

222

RER

rmVr

rm rr

2

22

2

2 1

2

1

2

effective potential

Note: 1) EVP 2) This has to be solved for every different choice of V(r) 3) Will determine the allowed Etot ‘s

{k}

21

Summary So Far

http://asd-www.larc.nasa.gov/cgi-bin/SCOOL_Clouds/Cumulus/list.cgi

RER

rmVr

rm rr

2

22

2

2 1

2

1

2

,mnl YrRr

EV

m2

2

2

2222

22

2

sin

1sin

sin

11

rr

rr rr

22

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

-0.1-0.0500.050.1

-0.1-0.05 00.050.1

-0.4

-0.2

0

0.2

0.4-0.1-0.05 00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1-0.05

00.050.1

-0.1-0.05 00.050.1

-0.1-0.050

0.050.1

-0.1 00.1-0.100.1-0.04-0.0200.020.04

-0.1 00.1

2,mY

Summary So Far

(0,0)

(1,±1)

(2,±2)(2,±1)(2,0)

(1,0)

23

24

Effective Potential

2

2 1

2 rmrV

Depends on the forces involved

Atomic motion?Nuclear motion?

Centripetal Term

25

Bare Coulomb Potential

H-atom

positronium atom

HeLiBeBC***

r

ZeerV

o

))((

4

1

26

1 2 3 4 5 6 7 8rA

-20

-10

10

20

Energy eVEffective Potential: H atom

Atomic Potential ExampleVcoul := -14.42/r1 := 1Vorbital := 3.818 * 1* (1+1) /r^2Veff := Vcoul + VorbitalPlot[ {Vcoul, Vorbital, Veff}, {r, 0.3, 8},PlotStyle ~ {{RGBColor[0, 0,1]}, {RGBColor[0, 1,0]}, {RGBColor[l, 0,0]}},AxesLabel ~ {"r (A)", "Energy (eV)"}]

l = 0

Bound States Etot < 0

Free States Etot > 0

Etot

27

Effective Potential: H atom

2 4 6 8rA

-20

-10

10

20

Energy eV

Atomic Potential ExampleVcoul := -14.42/r1 := 1Vorbital := 3.818 * 1* (1+1) /r^2Veff := Vcoul + VorbitalPlot[ {Vcoul, Vorbital, Veff}, {r, 0.3, 8},PlotStyle ~ {{RGBColor[0, 0,1]}, {RGBColor[0, 1,0]}, {RGBColor[l, 0,0]}},AxesLabel ~ {"r (A)", "Energy (eV)"}]

l = 1

Bound States Etot < 0

28

2 4 6 8rA

-20

-10

10

20

Energy eV

2 4 6 8rA

-40

-20

20

40

Energy eV

l = 1

l = 2

Bound States Etot < 0

Probability Distribution Functions

2* rRRR

31

Electron Clouds – dot plots

http://www.uark.edu/misc/julio/orbitals/

Scatter plots of hydrogen-atom wavefunctions

This is a tentative project. The figures that you can link to from this page are made by choosing 2000 points at random, with a probability given by one of the hydrogen atom's wavefunctions. The resulting plots give an idea of the "shape" of the atomic wavefunctions. You can rotate them by clicking and dragging with the mouse; you can also magnify the figure by clicking and dragging vertically while holding down the "shift" key.

The points were generated in Mathematica and the interactive figures were generated using LiveGraphics3D. LiveGraphics3D is an applet (not written by me); for it to work, you need to have java enabled in your browser.

33

What We Know So Far

RER

rmVr

rm rr

2

22

2

2 1

2

1

2

,mnlmn YrRr

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

1

12

2

s

ms

s

,...3,2,1,0;

,...3,2,1;

repetitionazimuthalcountsm

isitwhutdunno

numbersolutionradialthecountsn

2

2

6.13n

ZeVEn

En independent of l, m

34

Electron Clouds – dot plots

http://www.uark.edu/misc/julio/orbitals/

Scatter plots of hydrogen-atom wavefunctions

This is a tentative project. The figures that you can link to from this page are made by choosing 2000 points at random, with a probability given by one of the hydrogen atom's wavefunctions. The resulting plots give an idea of the "shape" of the atomic wavefunctions. You can rotate them by clicking and dragging with the mouse; you can also magnify the figure by clicking and dragging vertically while holding down the "shift" key.

The points were generated in Mathematica and the interactive figures were generated using LiveGraphics3D. LiveGraphics3D is an applet (not written by me); for it to work, you need to have java enabled in your browser.

7.3 Orbital Angular Momentum

z

y

x

xy

xz

yz

zyx L

L

L

ypxpk

zpxpj

zpypi

ppp

zyx

kji

prL

)(ˆ)(ˆ)(ˆˆˆˆ

yipy

...2222 zyx LLLL

iLz ...

xipx

z

ipz

Orbital Angular Momentum

mnmnmnmnzmnz mYRmYRiYRLL

ime

mnmnmnmn YRYRLL 2222 )1()1(

mLx

)1( L

Vector Model Picture

mLx

)1( L

2

Vector Model≠

Quantum Mechanical Ang Mom.

38

What We Know So Far

,mnlmn YrRr

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05 0 0.05

-0.050

0.05

-0.2

0

0.2

-0.050

0.05

-0.1-0.05

00.05

0.1-0.1

-0.05

0

0.05

0.1

-0.04-0.02

00.020.04

-0.1-0.05

00.05

0.1

...,,0...,,

,...,,,,1...,,1,0

,...3,2,1;

m

gfdpsn

numbersolutionradialthecountsn

2

2

6.13n

ZeVEn

7.4 Magnetic Effects

BnOrientatioofEnergyPotential

external appliedBz

7.4 Magnetic Effects

Lm

e 2

Bohr

external appliedBz

m

m

em

m

eL

m

ezz 222

Bohr magneton

Lm

e 2

BnOrientatioofEnergyPotential

LBohr

7.4 Magnetic Effects

7.4 Magnetic Effects

7.5 Intrinsic Spin

smsS

Lm

egorbital

2

external appliedBz

S

Sm

egsspin

2

gyromagnetic ratios1g 2sg

The 21-cm Line

http://physics.gmu.edu/~lhorne/research1.html

http://intro.chem.okstate.edu/1314f00/Lecture/Chapter7/Lec11300.html

Locates hot H in stars

Locates cool H in clouds

MHzf

cm

eVE

1420

21

106~ 6

http://www.cv.nrao.edu/course/astr534/HILine.html

http://www.naoj.org/Pressrelease/2009/09/08/index.html

http://www.astras-stargate.com/light_credits.html Caption: http://images.nrao.edu/object/index.php?id=267

55

‘Mean’ Nuclear Potential

V(r)

56

Effective Potential: Nuclear Examples

2 4 6 8 10rfm

-40

-20

20

40

60

80

Energy MeV

Vo := -50R := 4a:= 0.67VNcentral = Vo / (l+Exp[(r-R)/a])VNorbital := (197*197/2/940) * 1* (1+1) / r^2VNeff : = VNcentral + VNorbitalPlot[ {VNcentral, VNorbital, VNeff}, {r, 0.3, 10.0},PlotStyle ~ {{RGBColor[0, 0,1]}, {RGBColor[0, 1,0]}, {RGBColor[l, 0,0]}},AxesLabel ~ {"r (fm)", "Energy (MeV)"}]

l = 1

57

2 4 6 8 10rfm

-40

-20

20

40

60

80

Energy MeV

2 4 6 8 10rfm

-40

-20

20

40

60

80

Energy MeV

2 4 6 8 10rfm

-40

-20

20

40

60

80

Energy MeV

l = 1

l = 0

l = 2

Bound States Etot ~< 0

58

2.5 5 7.5 10 12.5 15 17.5 20rfm

-30

-25

-20

-15

-10

-5

5Energy MeVl = 2

free particles Etot > Vtop

quasi-free Vtop > Etot > 0 quasi-bound

a small positive barrier appears“Centripetal barrier”

59

2.5 5 7.5 10 12.5 15 17.5 20rfm

-4

-2

2

4

Energy MeV Application to RadioactiveAlpha Decay

238U = ( 234Th + ) 234Th +

Etot

60

2.5 5 7.5 10 12.5 15 17.5 20rfm

-4

-2

2

4

Energy MeVNeutron-Induced Reactions

Neutrons with l = 0 have NO centripetal barrier and are most efficient for creating nuclear reactions

Etot

61