41
TP, Page 1 FLIGHT OPERATIONS ENGINEERING Takeoff Performance

07a Takeoff Performance

Embed Size (px)

Citation preview

Page 1: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 1/41

TP, Page 1

FLIGHT

OPERATIONS

ENGINEERING

Takeoff Performance

Page 2: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 2/41

TP, Page 2

Takeoff Performance

• Field length requirements

• Tire speed requirements

• Brake energy requirements

• Climb requirements

• Obstacle requirements

Page 3: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 3/41

TP, Page 3

Field Length Considerations

• Ground acceleration capability

• Takeoff speeds

• Accelerate - Go considerations

• Accelerate - Stop considerations

• Field length calculation and considerations

Page 4: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 4/41

TP, Page 4

Ground Acceleration Capability

FSlope

Σ Forces = Mass * Acceleration

Friction Drag Thrust

Page 5: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 5/41

TP, Page 5

Ground Roll Acceleration Equation

Σ Forces = Mass * Acceleration

Thrust - Drag - Friction - Fslope = Mass * Acceleration

T - D - µ ( W - L ) - Wsin φ = aWg

small angles sin φ = φ in radians

T - D - µ ( W - L ) - W φ = aW

g

Page 6: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 6/41TP, Page 6

Ground Roll Acceleration Equation

Rearranging

T - D - µ ( W - L ) - W φ = aW

g

a = [ T - D - µ ( W - L ) - W φ ]

g

W

Combine Drag and Lift term into one since both are a

function of dynamic pressure

a = [ T - µ W - (D - µ L ) - W φ ]g

W

Page 7: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 7/41TP, Page 7

Ground Roll Acceleration Equation

• Factors effecting airplane acceleration capability

 – Thrust - rating, altitude, temperature, bleeds

 – µ, rolling friction, function of the airplane’s gear  – CD, CL airplane configuration, flap setting, CDL items

 – q, dynamic pressure, the faster the airspeed the worsethe acceleration

 – Weight, less weight results in better acceleration

 – Hand calculations assume weight is constant 

 – Computer programs take into account fuel burn

a = [ T - µ W - ( CD - µ CL ) q S - W φ ]g

W

Page 8: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 8/41TP, Page 8

Workbook Problem

Do problem 9 in the performance workbook

• Determine the airplane’s all engine groundacceleration capability at 0 ktas and 150 ktas for thefollowing conditions.

Page 9: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 9/41TP, Page 9

Sample Acceleration Calculation

 Acceleration - ft/s2

Speed - kts

0.01.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 20 40 60 80 100 120 140 160

Weight = 240000 lb SLOPE= 0Sea level, Std. day WIND= 0 µ 0.0165

NO ENG = 2 (CD-µ CL)= 0.08ALL ENGINE

V - GS V - TAS DYNAMIC - q F - THRUST F - SLOPE µW (CD- µCL)qS ACCEL - ft/s/s ACCEL - kt/s

0 0 0.00 35532 0 3960 0 9.0 5.3

20 20 1.35 34653 0 3960 211 8.7 5.240 40 5.42 33775 0 3960 845 8.4 5.0

60 60 12.19 32896 0 3960 1902 8.0 4.8

80 80 21.67 32017 0 3960 3382 7.6 4.5

100 100 33.86 31139 0 3960 5284 7.1 4.2

120 120 48.75 30260 0 3960 7609 6.6 3.9

140 140 66.36 29381 0 3960 10357 6.0 3.5

150 150 76.18 28942 0 3960 11889 5.6 3.3

Page 10: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 10/41TP, Page 10

Ground Distance Calculation

Page 11: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 11/41TP, Page 11

Ground Distance Calculation

• To determine the field length required we need to

determine how much runway it took to accelerate frombrake release, ground speed = 0, to some other speed

 – Rotation speed 

 – Engine failure speed 

Page 12: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 12/41TP, Page 12

Fundamental Time, Distance Relationship

∆ s

∆ t

∆ V

∆ t

∆ V

a

Velocity, V = or  ∆ s = V ∆ t

 Acceleration, a = or  ∆ t =

Substitute and solve for distance:

V ∆ V

as =

Page 13: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 13/41TP, Page 13

Fundamental Time, Distance Relationship

Integrating you obtain:

Where the beginning velocity is brake release, zero groundspeed and the end velocity is the final ground speed

aVdV 

S

g Final V 

0∫=   

Page 14: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 14/41TP, Page 14

Fundamental Time, Distance Relationship

If acceleration, a, were a constant with velocity, thenthe integral would be easy.

Is acceleration constant with velocity during theground run?

a

VdV Sg Final 

0

∫=   

Page 15: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 15/41TP, Page 15

Fundamental Time, Distance Relationship

• No, acceleration, a, varies as a function of theairplanes airspeed.

• As the airplane’s speed increases the acceleration, a,reduces because of the thrust decay and the increasein q, dynamic pressure.

• Both these are functions of true airspeed, therefore wewill change the integral to terms of true airspeed.

( )a

dV V V S W 

T Final V 

W V 

−  

∫=   

Page 16: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 16/41TP, Page 16

Evaluating the Integral

Methods to evaluate integral:

• “Step integration” method – Break up the integral into many small steps and assume

the acceleration is constant over the step

• “Average” acceleration – Calculate an average acceleration and assume theacceleration is constant over velocity range

 – Note: Same equations as the step integration only you are

using one large step

( )

a

dV V V S W 

T Final V 

W V 

-∫=

Page 17: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 17/41TP, Page 17

Step Integration Method

 An integral can be broken up into many small integrals

the sum of which is equal to the original integral

( ) ( )

( ) ( )a

dV V V 

a

dV V V 

adV V V 

adV V V S

T Final V 

1T Final V 

1T Final V 

2T Final V 

W 2V 

1V 

W 1V 

W V 

−  

∫+−

+−  

∫+−∫=

−K

K

Page 18: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 18/41TP, Page 18

Step Integration Method

• Assume acceleration is constant and equal to the

average of the acceleration at the initial stepvelocity and the final step velocity

• Evaluate the integral for one small step as an

example, step 1 - 2

( ) 2V 

1V 2ave1

2ave1

2

2ave1

2V 

1V21 a

VV 

a2 V a

dV V V S

−−−

− −=−

∫=   

Page 19: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 19/41TP, Page 19

Step Integration Method

Rearranging

 

  

 −−

 

  

 −=

−−−−

2ave1

W 1

2ave1

2

1

2ave1

W 2

2ave1

2

221 a

V V 

a2

a

V V 

a2

V S

 

  

 −−

 

  

 −=

−−−−

2ave1

W 1

2ave1

W 2

2ave1

2

1

2ave1

2

221 a

V V 

a

V V 

a2

a2

V S

 

  

  −−

 

  

  −=

−−

2ave1

W 1W 2

2ave1

2

1

2

221 a

W V V V 

a2

V V S

Page 20: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 20/41

TP, Page 20

Step Integration Method

Rearranging

 As the old college professor said - “recognizing”

( )( ) ( ) 

  

  −−

 

  

  −+=

−−

21ave

W 12

21ave

121221 a

V V V 

a2

V V V V S

( ) ( ) ( ) 

  

  −−

 

  

  −+=

−−

21ave

W 12

21ave

121221 a

V V V 

a

V V 

2

V V S

Page 21: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 21/41

TP, Page 21

Step Integration Method

( ) ( ) 

  

  −−

 

  

  −=

−−

−−

21ave

W 12

21ave

1221ave21 a

V V V 

a

V V V S

( )( )21ave

12W 21ave21 a

V V V V S−

−−−=

( )

21ave

21W 21ave

21 a

V V V S

−−

∆−=

Page 22: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 22/41

TP, Page 22

Step Integration Method

• General expression for calculating distance of an

individual step

• Total distance is the sum of the steps

( )

aveStep

StepW aveStep

Step a

V V V S

∆−=

( ) ( )1Final Final Step2Final 1Final Step

21Step1W StepStepTotal 

SS

SSSS

−−−−−

−−

++

+=   Σ=

LL

L

Page 23: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 23/41

TP, Page 23

Weight = 240000 lb SLOPE= 0

Sea level, Std. day WIND= 0

NO ENG = 2ALL ENGINE

V - GS V - TAS ACCEL- ft/s/s ACCEL - kt/s S – Step - ft Sum S

0 0 9.0 5.3 0

20 20 8.7 5.2 64 64

40 40 8.4 5.0 199 264

60 60 8.0 4.8 346 610

80 80 7.6 4.5 510 1120

100 100 7.1 4.2 697 1817

120 120 6.6 3.9 917 2734

140 140 6.0 3.5 1183 3917

150 150 5.6 3.3 713 4630

Example of Distance Calculation

Total distance from brake release to 150knots based on 20 knot steps = 4630 feet

Note: 1 knot step = 4635 feet

Page 24: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 24/41

TP, Page 24

 Average Acceleration Method

• Average acceleration is just using the step

integration method with a single step

• The trick is in determining the appropriate averageacceleration to give an adequate approximation of 

the distance

Page 25: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 25/41

TP, Page 25

 Average Acceleration Method

• Example: Compute the average acceleration byusing the acceleration at 0 and 150 kts

 – From earlier calculations

 – a0 = 9.0 ft/s2

 – a150 = 5.6 ft/ s2

• Notice the distance does not match the stepintegration answer 

( )ft 43906878.1

2

6.50.9

150075S

2

1500=∗

+

−=

Page 26: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 26/41

TP, Page 26

 Average Acceleration Method

• Looking at the acceleration chart, the accelerationfall off is more proportional to V2

• Why?

 Acceleration - ft/s2

Speed - kts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 20 40 60 80 100 120 140 160

Page 27: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 27/41

TP, Page 27

 Average Acceleration Calculation

• Try calculating average acceleration at average of V2.

• From earlier chart a106.1

= 6.9 ft/s2

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

0 5000 10000 15000 20000 25000 30000

 Acceleration - ft/s2

V2 - kts2

( ) 1.1062

0150V 22

accel avefor  =+=

Page 28: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 28/41

TP, Page 28

 Average Acceleration Method

• Example: Compute the average acceleration by

using the acceleration at 106.1 kts. – a106.1 = 6.9 ft/s2 

• Notice the distance does match the step integrationanswer of 4630 ft. quite well

( ) ft 46446878.19.6

150075S2

1500=∗−=

Summary of Ground Acceleration

Page 29: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 29/41

TP, Page 29

Summary of Ground AccelerationCalculation Methods

• Step integration on velocity is used in the computer 

programs to calculate the ground run with allengines operating

• Forces are a function of speed

• Current computer programs take credit for fuel burnoff during ground run

• Average acceleration method is quick easy way to

determine the effect of various parameters on thetakeoff ground run

Page 30: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 30/41

TP, Page 30

Items that Affect Ground Run

• Slope, how does slope effect ground run

 – Uphill slope, worse acceleration, longer distance – Downhill slope better acceleration, shorter distance

• Wind, how does wind effect ground run

 – At a given true airspeed the acceleration is the same

 – Effect of wind is to change the ∆V the airplaneaccelerates through

( )

aveStep

StepW veStepa

Step

a

V V V S

∆−  

=   

Page 31: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 31/41

TP, Page 31

Effect of Wind

Effect of head windis to reduce ∆VEffect of tail wind isto increase ∆V

Weight = 240000 lb SLOPE = 0Sea level, Std. day WIND = 20 µ 0.0165

NO ENG = 2 (CD-µCL)= 0.08ALL ENGINE

V - GS V - TAS DYNAMIC - q F - THRUST F - SLOPE µW (CD-µCL)qS ACCEL - ft/s/s ACCEL - kt/s

0 20 1.35 34653 0 3960 211 8.7 5.2

20 40 5.42 33775 0 3960 845 8.4 5.0

40 60 12.19 32896 0 3960 1902 8.0 4.8

60 80 21.67 32017 0 3960 3382 7.6 4.5

80 100 33.86 31139 0 3960 5284 7.1 4.2

100 120 48.75 30260 0 3960 7609 6.6 3.9

120 140 66.36 29381 0 3960 10357 6.0 3.5

130 150 76.18 28942 0 3960 11889 5.6 3.3

V - GS V - TAS ACCEL - ft/s/s ACCEL - kt/s S-Step-ft

0 20 8.7 5.2

20 40 8.4 5.0 66

40 60 8.0 4.8 208

60 80 7.6 4.5 364

80 100 7.1 4.2 542

100 120 6.6 3.9 750

120 140 6.0 3.5 1001

130 150 5.6 3.3 614

Sum S

0

66

274

639

1181

1931

2932

3546

Page 32: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 32/41

TP, Page 32

Effect of Flap

• Increased takeoff flap will typically reduce theground acceleration capability due to increased drag

But 

• Acceleration will be to a lower speed (VR,V2)

• Overall effect will be shorter distance

( )

aveStep

StepW aveStep

Step a

V V 

S

∆−  

=   

Page 33: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 33/41

TP, Page 33

Effect of Thrust

• Direct relationship – More thrust - shorter distance

 – Less thrust - more distance

For example,

Same conditions as earlier only thrust has been

reduced by 10%.

Result 14% increase indistance required to

accelerate from 0 –150 for this example.

( )

aveStep

StepW aveStep

Step a

V V S

∆−  

=   

V - GS V - TAS ACCEL - ft/s/s ACCEL - kt/s S-Step-ft

0 8.0 4.8

20 7.8 4.6 72

40 7.5 4.4 223

60 7.2 4.2 389

80 6.7 4.0 574100 6.3 3.7 788

120 5.8 3.4 1042

140 5.2 3.1 1356

Sum S

0

72

295

684

12582046

3088

4444

150 4.9 2.9 824 5268

0

20

40

60

80100

120

140

150

Page 34: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 34/41

TP, Page 34

Engine Out Ground Acceleration

• What is different in the calculation of the distance

required to accelerate following an engine failure – Failed engine’s thrust spins down as a function

of time, not airspeed

 – Pilot inputs rudder to steer the airplane – Additional drag 

Page 35: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 35/41

TP, Page 35

Spindown Characteristics

Thrust

TO Thrust

Time From the Event, Sec

Fuel Cut

Throttle ChopSpindown

Factor 

0

0.1

0.2

0.3

0.40.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Page 36: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 36/41

TP, Page 36

Spindown Characteristics

• Fuel cut used for the continued takeoff following an

engine failure – Lowest thrust

• Throttle chop is used for the AFM emergency stop

calculation from an event just prior to V1

 – Higher thrust conservative for stop calculation

 – Note: older airplanes used fuel cut following

engine failure just prior to V1

Page 37: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 37/41

TP, Page 37

Calculation of Engine Out Accel/Distance

• Same equation used to calculate engine out acceleration

• Engine thrust now changing rapidly with time. Typically astep integration based on time is required. This becomesan iterative process.

a = [ T - µ W - ( CD - µ CL ) q S - W φ ]g

W

Page 38: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 38/41

TP, Page 38

Workbook Problem

• Do problem 10 in the performance workbook

• Determine the airplane’s engine inoperativeground acceleration capability at 150 ktasfor the following conditions.

Page 39: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 39/41

TP, Page 39

Engine Out Acceleration

Event Time V - GS V - TAS E1-FC E2 ACCEL - ft/s/s ACCEL - kt/s S-Step-ft Sum S

Eng Fail 0 150 150.0 1 1 5.4 3.2

1 153.3 153.3 0.22 1 2.3 1.4 256 256

2 155.6 155.6 0.08 1 1.7 1.0 261 517

3 157.3 157.3 0.038 1 1.5 0.9 264 781

4 158.8 158.8 0.018 1 1.4 0.8267 1047

4.9 160.0 160.0 0.01 1 1.3 0.8 242 1290

Speed - kts

 Acceleration - ft/s2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 20 40 60 80 100 120 140 160 180

Page 40: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 40/41

TP, Page 40

Summary

• Looked at ground calculation for both all engine and

engine out acceleration between two speeds – All engine is between brake release and engine

failure or rotation speed 

 – Engine inoperative is between engine failure and rotation speed 

• Primary method of calculation is a step integration

 – All engine is step integration based on speed  – Engine inoperative is based on time

Page 41: 07a Takeoff Performance

7/27/2019 07a Takeoff Performance

http://slidepdf.com/reader/full/07a-takeoff-performance 41/41

Jump to 72_AG_TS.ppt