03Energija Vetra Wind Energy

Embed Size (px)

Citation preview

  • 7/31/2019 03Energija Vetra Wind Energy

    1/18

  • 7/31/2019 03Energija Vetra Wind Energy

    2/18

    Wind EnergyWind EnergyEnergija vetra

  • 7/31/2019 03Energija Vetra Wind Energy

    3/18

    Prvi vetrogenerator u Srbiji

    Firma Nipon-Komerc iz Beogra-

    da instalirala je i 9. oktobra

    2003. godine povezala na

    elektrinu mreu prvi vetroge-

    nerator u Srbiji. Snaga genera-

    tora je 11 kW, a prenik elise

    je 13 m. Proizvoa vetroge-

    neratora je danska firma Gaia

    Wind.

    First wind turbine in Serbia

    Nippon-komerc from Belgrade

    announced on October 9, 2003

    that it had installed the first

    grid connected wind turbine in

    Serbia. The power of the gener-

    ator is 11 kW, the diameter of

    the rotor blade is 13 m, and the

    manufacturer of the wind turbine

    is Danish company Gaia wind.

  • 7/31/2019 03Energija Vetra Wind Energy

    4/18

    Energija vetra

    Energija sadrana u kretanju vazdunih masa - vetru -oduvek je pobuivala panju istraivaa koji su elelida je korisno upotrebe.

    Jedra, a kasnije i vet renjae bili su jedini n ain za pret-varanje energije vetra u mehaniki rad. Od svih izazovakoji stoje danas na raspolaganju savremenom ovekupostoji jedan koji pleni svojom uzvienou i snagom. Toje tr ka oko sveta. Pored svih moguih prevoznih sred-stava jedino se u jedrenju odrzavaju trke oko sveta to

    na slikovit nain govori o moi vetra. Sada, a i u budu-nosti energija vetra se pokazala kao najozbiljnijiobnovljiv izvor energije pri dostignutom razvoju tehno-logije. Osnovni razlozi za to su: neizmerna koliina energije mogunost pretvaranja u elektrinu energiju

    pomou vetrogeneratora pad cena vetrogeneratora i pratee opreme

    srazmerno sve veoj upotrebi energije vetra ekoloki potpuno ist nain pretvaranja energije mala zauzetost zemljita

    Energetske krize, smanjenje zaliha fosilnih goriva ienormno zagaivanje planete uticali su da se industrijaza proizvodnju vetrogeneratora (VTG) poslednjih 30godina razvijala u svetu skoro istom dinamikom kao iindustrija raunarske opreme, a danas se smatra vrlostabilnom i perspektivnom.

    The Energy of the Wind

    Wind energy has recently become an economically feasible(although site specific) alternative to conventional sources ofenergy. The energy contained in the motion of air has alwaysattracted attention of researchers. Therefore the control of windpotential to meet human energy needs is a concept severalthousand years old. Sails and later wind mills were the onlymeans of conversion of wind energy into mechanical work.Among the many challenges that confront modern society, onestands for its grandeur and power the race around the world.An event of this kind involves sailing boats only, illustrating in a

    suggestive way the power of the wind. Now as well as in thefuture, the energy of the wind has proven to be one of the mostimportant renewable energy sources. The main reasons are:

    Unlimited energy supply Possibility of conversion into electrical energy by

    means of wind turbines The cost of electricity generated by wind power

    reduces in proportion to increasing wind energy use Environmentally-friendly method of energy generation Small requisite land

    Energy crises, significant reduction of fossil fuel resources andenormous increase in pollution across the planet have stimu-lated growth of wind turbines production in the last 30 years atan almost equal pace as the computer industry. Increasedwind turbine reliability and the in-roads into world marketswould mean that the future for the technology is bright.

    43

  • 7/31/2019 03Energija Vetra Wind Energy

    5/18

    Po predvianjima mnogobrojnih eksperata, oekuje se dalji intenzivan rast instalisanihkapaciteta, a trendovi daljeg poveanja ekonominosti, kao i sve ozbiljnije pogoranjestanja ivotne sredine, potvruju takve pretpostavke. Do kraja 2001. godine u svetu jeinstalisano 56.000 vetrogeneratora sa kapacitetom od 25 GW. Prole godine jepoveanje kapaciteta iznosilo 52%. Nemako trite ima i dalje najvei udeo, trite SADdri drugo, a panija je dola na tree mesto.

    Pregled zemalja sa najvie instalisanih kapaciteta u svetu [MW]Zemlja Poetak 2001. Poetak 2002.

    Nemaka 6.113 8.753

    SAD 2.555 4.245

    panija 2.402 3.335

    Danska 2.297 2.417

    Indija 1.220 1.507

    Holandija 448 483

    Velika Britanija 409 485

    Kina 340 399

    Energetski deficit i neminovnost upotrebe ekoloki istih

    izvora energije primorae i Srbiju i Crnu Goru da pone dainvestira u razvoj i eksploataciju energije vetra.

    Tehnologija korienja energije vetra

    Pretvaranje energije vetra u elektinu energiju vri sepomou vetrogeneratora.

    Vetrogenerator pretvara kinetiku energiju vazduha koji sekree (vetra) pomou lopatica rotora (elise), prenosnogmehanizma i elektrogeneratora u elektrinu energiju.

    Energija dobijena iz vetra zavisi od srednje brzine vetra i totako to je proporcionalna treem stepenu brzine vetra.

    Vetrogenerator ne moe da transformie celokupnukinetiku energiju vetra koji struji kroz povrinu koju obuh-vataju kraci rotora. Albert Dec je 1919. godne dokazao da se

    After 2001 the growth rate has increased significantly, and continuing trend of consider-able growth is predicted for the whole world market. By the end of 2001 there were 56000 wind turbine installations around the world, with total capacity of 25 GW. Just lastyear capacities increased by 52%.

    The highest number of wind projects Ger many has, followed by the U.S.A and Spain.

    Overview of installed wind energy capacities in the world (MW)Country Beginning of 2001. Beginning of 2002.

    Germany 6 113 8 753

    U.S.A 2 555 4 245

    Spain 2 402 3 335

    Denmark 2 297 2 417

    India 1220 1 507

    The Netherlands 448 483

    Great Britain 409 485

    China 340 399

    Energy deficit and the inevitable exploitation of renewable,

    environment protecting energy sources will force Serbia andMontenegro to start investing in wind energy research anddevelopment for electricity generation purposes.

    Technology of the wind turbine power production

    The basic wind energy conversion dev ice is the wind turbine.The wind turbin e transforms kine tic energy of the moving airby means of rotating blades, gear mechanism and electrici-ty generator.

    Energy generated by the wind is proportional to the third

    power of the average velocity. However, the wind turbinecannot transform the whole transmitted energy obtainedthrough the interaction of the wind with the blades. AlbertBetz has shown in 1919 that the maximum kinetic energythat may be transformed into mechanical energy of the windturbine is 59%, while the maximum efficiency of the wind

    44

    700

    600

    500

    400

    300

    200

    100

    00 5 10 15 20 25

    Gustina vazduha 1.225 kg/m3

    V47-660/200kW V47-660kW

    Brzina vetra (m/s)

    Kriva snage (p-v)VTG Vestas V47-660kW

    Snaga(kW)

    Figure 9. Entrance-exit characteristic of 660 kW wind turbine

    Slika 9: Ulazno-izlazna karakteristika vetrogeneratora nominalne snage 660 kW

  • 7/31/2019 03Energija Vetra Wind Energy

    6/18

    maksimalno 59% ukupne kinetike energije vetra moe pretvoriti u mehaniku energijurotora vetrogeneratora. Proizvoai vetrogeneratora uglavnom daju krivu izlazne snage uzavisnosti od brzine vetra kao to se vidi na slici 7.

    Moderni vetrogeneratori poinju da proizvode elektrinu energiju ve pri brzini vetra od2,5 m/s, a zaustavljaju se iz bezbednosnih razloga pri brzini od 25 m/s. Vetrogeneratormoe da obezbedi ekonominu proizvodnju struje ukoliko je srednja godinja brzina vetra

    vea od 6 m/s.Usled trenja izmeu struje vazduha i tla, kao i unutranjeg viskoznog trenja brzina vetraraste sa poveanjem visine iznad tla. Jasno je da na profil brzine vetra utie hrapavostterena, prisustvo prirodnih i vetakih prepreka kao i drugi topografski elementi. Poto seovi parametri razlikuju od lokacije do lokacije potrebno je prilikom izbora lokacije voditi

    turbine is approximately 40%. The main practical characteristic of the wind turbine is thechange in power production with wind speed. Figure 7 is an example of power vs. windspeed characteristic for a single speed machine in increasing wind.

    Modern wind turbines generate electricity at wind speed as low as 2.5 m/s, and for safe-ty reasons the operation of the wind turbine is halted when the wind velocity reaches 25m/s. In order to have an economical power generation of electricity, an annual average

    velocity of the wind of 6 m/s is required.Due to the friction between wind motion and the ground and the internal viscous forcesin the air mass, the wind speed increases with increasing altitude. The wind speed is fur-ther influenced by the topography of the land such as roughness of the terrain, presenceof natural and artificial impediments etc. In order to view the wind energy in its proper

    45

  • 7/31/2019 03Energija Vetra Wind Energy

    7/18

    rauna da se dosegne to povoljnija srednja godinjabrzina vetra. Od toga direktno zavisi koliina proizvedeneelektrine energije. ak i male greke u odabiru najpo-voljnije lokacije u dugogodinjem bilansu proizvodnjedaju znaajna umanjenja isplativosti investicije.

    Mali i vrlo mali vetrogeneratori snage do 3 kW prave se

    direktnim povezivanjem elise i elektrogeneratora bezprenosnog mehanizma (reduktora) ime im se smanjujecena. Mali vetrogeneratori namenjeni su individualnojupotrebi i najee slue za punjenje akumulatora tamogde ne postoji elektrina mrea, a energija se obinokoristi za osvetljenje i TV prijemnik.

    Vetrogeneratori srednjih snaga do nekoliko desetinakilovata daju trofaznu struju i obino se prikljuuju naniskonaponsku distributivnu mreu.

    Na izlazu vetrogeneratora dobija se naizmenina trofaz-

    na struja napona 690 V i frekvencije 50/60 Hz. Pomoutransformatora se napon podie na 10 - 30 kV to odgo-vara naponu srednjenaponskih mrea.

    Svi vetrogeneratori veeg kapaciteta (od 10 kW do 3 MW) koriste se kao elektrane, toznai da proizvedenu energiju predaju elektroenergetskom sistemu. Najee primenji-vani moderni vetrogeneratori su kapaciteta od 500 kW do 3 MW mada se grade i vei.Najekonominija primena vetrogeneratora je njihovo udruivanje na pogodnim lokacija-ma u takozvanu farmu vetrenjaa. Takva elektrana moe da ima kapacitet od nekolikoMW do nekoliko stotina MW koji obezbeuje vie desetina vetrogeneratora.

    Ekonominost korienja energije vetra

    Na osnovu dosadanjih iskustava u gradnji vetrogeneratora dolo se do orijentacionevrednosti investicija od oko 700 do 1000 E po instal-isanom kW. Vetrogenaratori, a samim tim i farmevetrenjaa su znatno pojeftinili u poslednjih desetakgodina i ta tendencija e se i dalje nastaviti. Na tajnain je i cena elektrine energije dobijene iz vetro-

    context, it is important to have at least an approximate estimate ofwind energys strategic potential. Most estimates use the samebasic steps: define the climatic and physical characteristics aver-age wind speed and areas where turbines can be placed; estimatethe space available for development from the results of the previ-ous step and finally using current technology estimate the energyyield which can be derived. The second step has major influence on

    the final outcome and is most difficult to perform accurately. Onthe other hand, even minor errors in location choice may have neg-ative effects on the overall cost effectiveness.

    Small and very small turbines ( up to 3 kW approximately) usuallyuse a direct-drive system, which offers the advantage of omittingthe gearbox, and utilizing a generator that can operate at the rota-tional speed of the rotor. Such products can be utilised for remotecommunications, electric fences, domestic systems, leisure craftetc. Wind turbines rated at several dozens of kW generate three-phase electrical current, and are usually connected to utility grids.

    Medium size turbines produce electricity of several hundred volts atthe frequency of 50/60Hz. By means of transformers the voltage israised to 10 - 30 kV so that electrical grids may transmit it.

    Although the wind industry has demonstrated technical and commercial feasibility ofunits of about 1.5 MW, larger wind turbines have been built but the present generation ofmegawatt machines may well be close to the economic limit of up-scaling. All of theseunits are connected to the utility grids. In some land based and offshore applicationslarger generating units are desirable. The most cost effective use of wind turbines is theso-called wind farm, which comprises a large number of individual units. The largest off-shore wind farm is the 17 MW Dronten wind farm in Denmark, although there are main-land farms of several hundred MWs.

    Cost effectiveness of wind energy use

    The price of modern turbines is in the range between 700 and 1000 euros per installedkW. The cost of wind turbines and wind plants has fallen substantially during the last fif-teen years, and this trend is continuing. Energy prices have fallen even faster, due to lower

    46

    U SAD u dravi Ajova poeo je sa

    realizacijom projekat izgradnje

    farme vetrenjaa snage od 310

    MW koja e se sastojati od 180

    do 200 vetrogeneratora snage

    od 1,5 do 1,65 MW.

  • 7/31/2019 03Energija Vetra Wind Energy

    8/18

    generatora drastino smanjena. Na to je dodatno uticalo i smanjenje operativnihtrokova i rast efikasnosti i pouzdanosti. Obzirom da kod korienja energije vetra, kao ikod mnogih drugih obnovljivih izvora energije, nema trokova goriva, posle investicioneizgradnje jedini trokovi su operativni i trokovi odravanja. Investicioni trokovi se kreuod 75% do 90% ukupnih trokova. Investicioni trokovi su trokovi izgradnje vetrogene-ratora ili farme vetrenjaa, ukljuujui trokove izgradnje pristupnih puteva ukoliko je po-trebno i trokove prikljuivanja na elektroenergetski sistem. Obino su lokacije sa

    povoljnim uslovima za gradnju farme vetrenjaa udaljene od drumskih i energetskihmagistrala i to povezivanje utie na poveanje investicionih trokova. Cena vetrogenera-tora se kree od 600 do 900 E po instalisanom kW. Sa poveanjem brzine vetra rastekoeficijent korisnog dejstva to postavlja zahtev za podizanjem visokih stubova.

    Finansijski efekti u znaajnoj meri utiu na odluku o investiranju u proizvodnju elektrineenergije pomou vetrogeneratora. Iako cena elektrine energije iz vetra zavisi od raznihinstitucionalnih faktora, referentne vrednosti se mogu izraunati primenom preporueneprakse za proraun cena elektrine energije, od strane Meunarodne agencije za energi-ju. Zbog irokog opsega kamatnih stopa mora se i zraunati visoka, srednja i nisk a cenaelektrine energije. Osnovne pretpostavke su date u tabeli a podaci se odnose na klasuvetrogeneratora kapaciteta 600 - 750 kW. U kalkulaciju se ulo sa pretpostavljenim ras-

    tom investicionih trokova od 8% po prirataju brzine vetra za svaki m/s, iznad 7 m/s.Koliina godinje proizvod-nje elektrine energije re-dukovana je za gubitak od10%, iako, zbog visokog ste-pena pouzdanosti od 98%,stvarni gubici mogu biti imanji.

    wind turbine costs, higher efficiency and availability,and lower operation and maintenance costs. Wind tur-bine prices fell by a factor of at least three from 1981to 1991, and energy prices have halved in the last 9-10 years. Initial investment accounts to about 75% to90% of the total expenses and comprises the cost of

    the wind turbine or wind farm, including the price of connecting roads if necessary, and

    the price of commercial utility grid connection. The windiest locations - on hilltops, oftenremote from a grid connection, or costal locations where deep piling into silt is needed,tend to incur above average costs. Operational costs var y between countries and betweenwind farm sites. The price of wind tur bines is in the range of 600 - 900 euros per installedkW. The efficiency of wind turbines increases with wind speed so that high tower installa-tions are required.

    The calculation of wind-ge nerated electricity costs follows procedure s which are reason-ably standardized across the power industry. The International Energy Agency (IEA) haspublished guidelines in the form of a Recommended practice for wind energy, andthese are similar to those used for other renewables as well as for thermal plants. The IEAdocument advocates the use of net or real costs, i.e. net of inflation, interest rates and

    test discount rates. This has become a common practice by now. The wide range of inter-est rates and other factors must be acknowledged and so indicative low, average andhigh prices are used. The assumptions are set out in Table , and the data applies tomachines in the size range of 600-750kW. It is assumed that installation costs increasewith wind speed above 7m/s by 8% per m/s. Energy production has been derivedassuming that availability and other losses account for 10% of the gross energy, althoughactual losses may be less, as availability levels of 98% and above are achieved for manyturbines, but the guaranteed level is usually 95%.

    Table 3: Summary of assumed wind-generated electricity prices (in Eur)

    Price parameter Low Average High

    Installed cost, ECU/kW at 7m/s (hub height) 700 850 1000Real interest rate, % 5 7.5 10

    Construction period, years 0.5 0.50 0.5

    Amortization, years 20 20 20

    Running costs, fixed, euros/kW/yr 12 18 24

    Running costs, available, cents/kWh 0.2 0.3 0.4

    47

    A realization of the project is

    underway in the state of Iowa,

    U.S.A., to build a $323 million,

    310-megawatt wind farm in north-

    west or north-central Iowa that

    would have 180 to 200 1.5 to

    1.65 MW turbines.

    14

    12

    10

    8

    6

    4

    2

    05 6 7 8 9 10

    Figure 10. Electricity price, cE/kWh

    Slika 10: Cena elektrine energije, cE/kWh

    Mean wind speed at hub height, m/s

    Srednja brzina vetra na vrhu stuba, m/s

    Price:

    High

    Average

    Low

    Cena:

    Visoka

    Srednja

    Niska

  • 7/31/2019 03Energija Vetra Wind Energy

    9/18

    Tabela 3: Pretpostavke pri proraunu cene elektrine energije proizvedene vetrom (Euri)Parametar cena niska prosena visoka

    Investicioni trokovi [E/kW] pri vetru od 7 m/s u visini rotora 700 850 1000

    Realna kamatna stopa [%] 5 7,5 10

    Period investicione izgradnje [god.] 0,5 0,5 0,5

    Period amortizacije [god.] 20 20 20

    Fiksni operativni trokovi [E/kW/god.] 12 18 24

    Varijabilni operativni trokovi [ct/kW/god.] 0,2 0,3 0,4

    Dobijene cene su date u dijagramu gde se moe videti da pri brzini od 6 m/s, cena vari-ra u opsegu od 0,045 do 0,09 E/kWh.

    Dravna podrka proizvodnji nuklearne energije i proizvodnji uglja irom Evrope i Amerikeine da se trokovi elektrine energije dobijene iz ovih izvora prikazju manjim od realnih.Takoe, energija iz vetrogeneratora se obino proizvodi blie potroaima ime se smanjujugubici u prenosu elektrine energije i ovako dobijena energija ima poveanu konkurentnost.

    Prilikom razmatranja cene elektrine energije iz vetrogeneratora treba razmotriti i uticajeksternih trokova. Eksterne trokove je tee kvantifikovati ali su oni vrlo realni i mogu se

    podeliti u tri kategorije: Skriveni trokovi koje snose vlade, ukljuujui subvencije industriji za proizvodnjuelektrine energije i istraivake i razvojne trokove, porezi, oslobaanja od poreza,

    Trokovi nastali usled emisije tetnih gasova (ne ukljuujui CO 2) koji utiu na zdrav-lje i ivotnu sredinu,

    Trokovi globalnog zagrevanja koji se pripisuju emisiji CO2.Opte prihvaeno miljenje je, da je cena elektrine energije dobijene od vetra padala

    mnogo bre od cena dobijenih iz drugih izvora,kao i da e se taj trend u budunosti i nastaviti.

    Faktori koji izazivaju permanentni pad cena vetro-generatorskih sistema su:

    trend izgradnje veih turbina opadanje infrastrukturnih trokova poveanje efikasnosti vetrogeneratora smanjenje trokova sirovina od kojih se

    izrauju vetrogeneratori.

    The o btained energy prices are p resented in Fig, where it may be noticed that at w indspeeds of 6m/s, the price varies in the range 0.045 - 0.09 euros/kWh.

    Government support for the nuclear and coal industries means that the real generalingcosts are higher than apparent. Direct comparisons between prices of wind energy andelectricity from conventional sources ignore the fact that, in many instances, renewableelectricity-generating technologies deliver energy closer to consumer than centralized

    generation, hence the transmission losses are minimal.

    The electricity price s quoted earlier do not include so- called external cos ts of electrici-ty generation - those associated with damage to health and the environment. These arenot borne by the electricity generator or consumer, and are not included in the price ofelectricity. External costs are for simplification purposes divided into three broad cate-gories: Hidden costs borne by governments, including energy industry subsidies andResearch and Development costs Costs of the damage caused to health and the environment by emission other than CO2 Costs of global warming attributable to CO 2 emissions

    It is generally agreed that the price of wind-generated electricity has decreased muchfaster than the price of energy obtained from other sources, and such trend will continue.

    A number of factors cause a steady fall in the cost of wind energy systems: The trend is towards larger machines as they can produce electricity at a lower price. Lower infrastructure costs Possible reductions in the cost of raw materials Increased efficiency ofwind turbines

    Effects of wind energyon the environment

    Energy industry is one ofthe main sources of glob-al pollution through theemission of global warm-ing agents as well as

    48

  • 7/31/2019 03Energija Vetra Wind Energy

    10/18

    Uticaj vetrogeneratora na ivotnu sredinu

    Energetika je jedan od najveih globalnihzagaivaa, gledano kroz emisiju zagaujuihmaterija i otpad koji se stvara kao posledicaproizvodnje. tetni uticaji na ivotnu sredinu odproizvodnje elektrine energije, mogu se podeli-

    ti na tri grupe:

    emisija tetnih gasova (bez emisije CO2) emisija CO2 otpad koji nastaje u procesu proizvodnje (ra-dioaktivni, pepeo, gips, ulja)

    Narastanje brige o zatiti ivotne sredine, posta-je svetski pokret. Rezultat delovanja o gleda se ukonkretnim aktivnostima na globalnom nivou:borba protiv zagaenja, borba protiv globalnogzagrevanja i klimatskih promena, borba za

    racionalnije korienje resursa.

    Prilikom planiranja novih kapaciteta, mnogeenergetske kompanije se odluuju za farmevetrenjaa zbog toga to njihova primena imaekonomskog i ekolokog smisla. Evropska Unijaje zbog izgradnje vetrogeneratorskih kapaciteta

    intenzivnije od oekivane uradila reviziju strategije ime je poveala cilj sa 20.000 na40.000 MW instalisane snage vetrogeneratora do 2010. godne.

    Svaki kWh proizveden obnovljivim izvorima energije, zamenjuje isti koji bi s druge stranetrebao da bude proizveden u elektranama na fosilno gorivo, to ima za posledicu reduk-ciju negativnih uticaja na ivotnu sredinu, a naroito emisije CO

    2u atmosferu.

    Meu svim obnovljivim izvorima energije, energija vetra je rangirana kao jedna od najjef-tinijih opcija za smanjenje emisije CO2, ali i emisije drugih zagaujuih materija.

    Moderni vetrogenerator od 600 kW e tokom svog radnog veka na prosenoj lokaciji, u

    through generation of waste. Specific effectsof the electricity industry on the environmentmay be classified into three categories:

    Emission of global warming agents (with-out CO2) Emission of CO2 Waste generated through the process ofelectric energy generation (radioactivewaste, ashes, oils, gypsum etc.)

    The environmental imperative for renewablesand energy conservation is now beyond dis-pute, since protection of the environmenthas become a global movement. A globaltrend is also to build energy systems whichno longer threaten to change the global cli-mate without invoking the long and shortterm hazards of nuclear power, so that such

    systems would rely on far-reaching energyefficiency measures and substantial use ofthe renewable energies. In this scenario,wind energy could contribute substantiallysince wind farms, as many companies haverealized, exhibit economic and ecologicaladvantages.

    The target of the European Union has increased from planned 20 000 MW to 40 000 MWof wind energy capacities by 2010. Each unit (kWh) of electricity produced by wind tur-bines displaces a unit of electricity, which would otherwise have been produced by a fos-sil fuel-burning power station.

    Among all the renewable sources of energy wind energy is ranked as one of the leastexpensive for reducing emissions of CO2 and other air and land polluting agents.

    A modern 600 kW wind turbine in the average will, depending on the site, prevent emissionof some 20 000 - 36 000 tones of CO2 from conventional sources during its design life.

    49

  • 7/31/2019 03Energija Vetra Wind Energy

    11/18

    zavisnosti od vetrovitosti mesta i stepena iskorienja kapaciteta, spreiti emisiju zaotprilike 20.000 do 36.000 tona zagaujuih materija.

    Radi sticanja relativnih odnosa, predstavljen je u tabeli primer procenjenog smanjenjaemisije zagaujuih materija u decembru 1997. godine, na nivou EU.

    Tabela 4: Procenjeno smanjenje emisije zagaujuih materija u EU kao posledica prime-

    ne energije vetra.

    Parametar Koliina

    Instalisani kapaciteti 4425 MW

    Proizvedena energija 8,8 TWh/god.

    Izbegnuta CO2 emisija 7.800.000 tona/god.

    Izbegnuta SO2 emisija 26.000 tona/god.

    Izbegnuta NOxemisija 22.000 tona/god

    Negativni trendovi u korienju fosilnih goriva nameu znaajna istraivanja u ciljuiznalaenja efikasnih naina korienja obnovljivih izvora energije. Energija vetra, ve prisadanjem stanju tehnologije, zbog neiscrpnosti vetra i iroke rasprostranjenosti na svim

    svetskim meridijanima, moe znaajno doprineti stabilnosti i raznolikosti u energetskomsnabdevanju, uz istovremeno smanjenje tetnih atmosferskih emisija.

    Urbanizacija, otpad, zagaenje tla su faktori koji bitno aktuelizuju problem ouvanjapoljoprivrednog zemljita. Stoga pri valorizaciji neke tehnologije nije nebitan parametarneophodno zaposednuto zemljite. Termoelektrane zaposedaju velike povrine zemljita(za objekte, deponiju pepela). Povrina se znatno uveava kada se ukljue povrinezaposednute povrinskim kopovima uglja, odlagalitima jalovine i transportnim putevima.

    Kod hidroelektrana, velike povrine zemljita, esto najplodnijeg, potapaju se i bivajuizgubljene za poljoprivredu. Farme vetrenjaa su izuzetno ekonomine po pitanju isko-rienja zemljita. Vei deo zaposednutog zemljita na kome je izgraena farma (oko99%) moe se za vreme eksploatacije koristiti za poljoprivredu.

    Negativni uticaji vetrogeneratora na ivotnu sredinu postoje ali su ti uticaji zanemarljivi uporeenju sa pozitivnim elementima. Takoe u toj proceni postoje subjektivni elementi,neinformisanost kao i loa interpretacija.

    Table 4 below summarizes some of the emissions avoided owing to wind energydeployed in the EU as of December 1997:

    Parameter Quantity

    Installed capacity 4 425MW

    Energy produced 8.8 TWh/year

    Avoided CO2 emissions 7 800 000 tons/year

    Avoided SO2 emissions 26 000 tons/yearAvoided NOxemissions 22000 tons/year

    Wind energy has many positive environmental facets and one of the principal marketdrivers for wind energy is that it is clean, renewable and sustainable means of genera-tion.

    Urbanization, waste and land pollution are factors that considerably raise concern ofagricultural land preservation. Almost 99% of the land area on which a typical wind farmis situated is physically available for use as before. There is no evidence that wind farmsinterfere to any greater extent with livestock farming. On the other hand hydroelectricplants require large areas of, in many cases, high quality land areas.

    Negative effects of wind energy installations do exist, although they are negligible com-pared to the positive effects. Moreover, in assessing the negative effects considerableinfluence is exerted by subjective elements, poor interpretation and inadequate infor-mation.

    Visual effects, noise, electromagnetic interference and birds, which often collide withstructures, are relatively insignificant negative side effects of wind turbines and may beeasily reduced and avoided.

    Energy requirements of Serbia and Montenegro

    In order to asses the amount of quality wind for cost effective exploitation and conversionto electrical energy, it is necessary to take care of, besides the wind characteristics, thefollowing: the fossil fuel reserves, price of energy generated by fossil fuel power plants,environmental effects, imported oil and gas assets, energy consumption structure andtrends etc. Total megawatts of power plant applications in Serbia and Montenegroamount to 9 GW, of which 66.7% is generated by thermal power plants. The annual power

    50

  • 7/31/2019 03Energija Vetra Wind Energy

    12/18

    51

    Evropska asocijacija za energiju

    vetra (EWEA - European Wind

    Energy Association) je na junskoj

    konferenciji 2003. godine revidi-

    rala ciljeve u primeni energije ve-

    tra. 1997. EWEA je planirala dado 2010. godine u Evropi bude

    instalirano vetrogeneratora kapa-

    citeta 40.000 MW, a do 2020.

    godine 100.000 MW. Novi plano-

    vi su da se do 2010. godine

    instalira 75.000 MW, a do 2020.

    godine 180.000 MW.

    European Wind Energy Associat-

    ion - EWEA announced at the

    June 2003 conference a revision

    of its wind power targets set in

    1997. EWEA originally planned

    40 000 MW installed by 2010

    and 100 000 MW by 2020. New

    goals are 75 000 MW by 2010and 180 000 MW by 2020.

  • 7/31/2019 03Energija Vetra Wind Energy

    13/18

    Vizuelni efekat, buka, ometanje radio telekomunikacija i uticaj na ptice surelativno beznaajne negativne karakteristike vetrogeneratora i mogu selako izbei ili umanjiti.

    Energetske potrebe Srbije i Crne Gore

    Da bi se dao odgovor na pitanje o koliini kvalitetnog vetra koji bi se

    mogao na ekonomski isplativ nain konvertovati u elektrinu energiju, potrebno je, poredkarakteristika vetra, voditi rauna o: rezervama fosilnih goriva, ceni elektrine energije izfosilnih goriva, ouvanju ivotne sredine, koliinama naftnih derivata i gasa koje uvozinaa zemlja, trendu rasta i strukturi potronje energije i slino.

    Ukupna raspoloiva snaga na pragu elektrana u elektroenergetskim sistemima Srbije i CrneGore iznosi oko 9 GW, pri emu 66,7% ine termoelektrane. Godinja proizvodnja elektrineenergije u SCG je u toku 2002. godine iznosila oko 35 TWh. Na osnovu ovih podataka seizraunava da je srednji faktor iskorienja proizvodnih kapaciteta u SCG 47%.

    Proseni faktor iskorienja kapaciteta vetrogeneratora je u opsegu 20% do 40%, zavis-no od stabilnosti vetra, sposobnosti mree da preuzme elektrinu energiju i od drugih

    meteorolokih i tehnikih parametara. Ovo znai da objektivno 1 MW proizvodnihkapaciteta u prosenom vetrogeneratoru u kvantitativnom energetskom smislu odgovaraoko 0,5 MW instalisanih u prosenoj hidro ili termoelektrani. Meutim, energija kojuproizvodi vetrogenerator je vrnog karaktera, jer vetra proseno najvie ima onda kada jepotronja najvea, to znai da kvalitativno energiju vetra treba valorizovati sa oko 20%u odnosu na energiju koju generiu termoelektrane to svakako treba imati u vidu priformiranju cene elektrine energije proizvedene u vetrogeneratorima.

    I pored preduzetih mera u pogledu poveanja energetske efikasnosti irevitalizacije proizvodnih i prenosnih kapaciteta u EPS-u se od 1997. god.permanentno javlja deficit u elektrinoj energiji. Taj deficit je u 2002.godini iznosio oko 5,5 TWh to ini preko 10% ukupne nacionalnepotronje, koja je u 2002. iznosila skoro 40 TWh. Debalans u proizvodnjii potronji elektrine energije je u proteklom periodu reavan uvozomskupe elektrine energije i restriktivnim merama u isporuci elektrineenergije. Prevazilaenje elektoenergetske krize moglo bi se reiti kupovi-nom i montaom 2000 do 3000 vetrogeneratorskih jedinica prosenesnage 1 MW, uz uslov da je na tehniki iskoristiv vetropotencijal vei od

    production in Serbia and Montenegro was 35 TWh yielding an averageefficiency factor of 475 for all available capacities in the country.

    The average eff iciency of wind turbine ins tallations is in the ra nge of 20%-40%, depending on the wind stability, the ability of the utility grid to takein wind-generated electricity and other technical and meteorological fac-tors. Objectively, this means that 1 MW capacity of modern wind turbines

    corresponds in energy quantitative sense to about 0.5 MW generated by hydro or ther-mal power plants. However, on average, availability of the wind is at its peak when thewind energy requirements are the highest. So in the qualitative sense, the energy of thewind should be rescaled by about 20% in comparison with the energy generated by ther-mal power plants, an important fact that should be taken into account when assessingthe electrical energy price produced in the wind generators.

    In spite of actions undertaken to increase efficiency and transfer capacities and revital-ize production, Elektroprivreda Srbije (The Serbian Power Company Utility of Serbia)experiences energy shortage since 1997. The shortage in 2002 was around 5.5 TWh,which accounts for over 10% of the gross national production, which in 2002 amountedto almost 40 TWh. The problem of disparity in energy production was resolved by

    importing expensive electrical energy and by applying restrictive distribution measures.Assuming that the domestic wind energy resources exceed 3 GW, putting into use 2000to 3000 1MW scale wind turbines may solve this problem. Further on, it will be shownthat Serbia and Montenegro have wind energy potential in the range of 8 - 15 GW, whichis much higher than the current disparity between the production and consumptionneeds. Considering the increase in energy demand based on the expected industrialgrowth an imperative demand for exploitation of wind resources. There has been a strik-ing development on the northern European markets with installations in Germany ofaround 200 MW per annum in the early 1990s. Almost 50% of theEuropean capacities are in Germany, where 1132 MW were installed byearly 1996, while in June of 2003 around 15000 wind turbine units of 12500 MW total power shared 5% of the complete production market in thiscountry.

    Models for assessing wind energy resources

    No comprehensive evaluation of wind energy resources has been per-formed so far in Serbia and Montenegro. Based on the experience of other

    52

    By the end of 2003 Germany

    plans an offshore wind turbines

    installation of 20 000 MW total

    power in the North and Baltic

    seas.

    Nemaka planira da do 2030.

    godine u Severnom i Baltikom

    moru instalira vetrogeneratoreukupne instalisane snage oko

    20.000 MW Za ostvarivanje

    ovih planova bie potrebno oko

    20 milijardi evra.

  • 7/31/2019 03Energija Vetra Wind Energy

    14/18

    3 GW. U daljem tekstu bie pokazano da Srbija i Crna Gora imaju tehniki isko-ristiv vetropotencijal u rasponu od 8 do 15 GW to je znatno vie od naegtrenutnog deficita u elektrinoj energiji. Ako se uzme u obzir i rast potreba zaelektrinom energijom srazmeran pretpostavljenom privrednom rastu, dolazise do imperativnog zahteva za aktiviranjem vetro potencijala.

    Model za procenu vetroenergetskog resursa

    U Srbiji i Crnoj Gori nisu sprovedena opsenija namenska merenja vetra u ciljuodreivanja globalnog vetropotencijala. Na osnovu modela koji se bazirao naiskustvenim podacima drugih zemalja korisno je analizirati trenutno stanje ins-talisanih kapaciteta i procenjenog vetropotencijala u zemljama Evropske Unije.

    Oko 50% vetroenergetskih kapaciteta je koncentrisano u Nemakoj, koja je po-etkom 1996. godine imala instalisano 1132 MW da bi u junu 2003. godine oko15.000 vetrogeneratorskih jedinica ukupne instalisane snage od 12.500 MWuestvovalo sa oko 5% u ukupnoj proizvodnji elektrine energije u ovoj zemlji.

    Vodeu ulogu u Evropi i svetu u pogledu odnosa izgraenih vetrogeneratorskih

    postrojenja prema povrini ima Danska (koja trenutno ima instalisano oko 3GW u vetrogeneratorima koji uestvuju sa oko 20% u ukupnoj nacionalnojproizvodnji elektrine energije).

    Obzirom da Nemaka i Danska imaju najvee iskustvo u oblasti vetroenerge-tike, kao i verifikovane procene svog globalnog vetroenergetskog potencijalakroz znaajna izgraena vetroenergetska postrojenja, prirodno je pokuatiuspostaviti odreenu slinost i analogiju izmeu njihovih vetroenergetskihpotencijala i potencijala SCG.

    Vetropotencijal Danske je sadran u kopnenim i morskim priobalnim vetrovima.Pored izgraenih 3 GW u vetrogeneratorima, Vlada Danske je odobrila gradnju

    novih 4 GW do 2010. godine a dugoroni planovi (do 2020.) su izgradnja ukupno 10 GWkoji bi proizvodili oko 50% nacionalnih potreba za elektrinom energijom. Na osnovu ovihplanova koji se temelje na realnim vetroenergetskim resursima, moe se zakljuiti da suvetroenergetski resursi Danske oko 20 GW. Ovaj podatak je potvren i na internet sajtuminstarstva za energetiku Danske. Oni eksplicitno tvrde da je njihov tehniki iskoristivvetroenergetski potencijal: P = 20 GW = 20.000 MW, od ega je oko 50% koncentrisano

    European countries it is usefulto analyze currently installedcapacities and wind resourcesin the European Union mem-ber states. Considering theratio of installed capacitiesand the available land,

    Denmark holds the leadingrole in the European market,which currently has 3 GW ofinstalled capacities contribut-ing with 20% share of the totalDanish energy production.Considering the fact thatGermany and Denmark haveample experience in the windenergy field, as well as welldocumented projects forassessment of the wind ener-

    gy potentials, it seems appro-priate to draw conclusionsand establish analogiesbetween the wind resources ofthese two countries on oneside and Serbia andMontenegro on the other.

    The wind potential of Denmarkis based on the main land andoffshore wind resources.Besides the already installedwind energy capacities of 3 GW, the Danish government has approved construction ofadditional 4GW by the end of 2010, and long term plans (by the year 2020) includeinstallation of 10 GW so that the share of the wind energy industry will amount to 50%of the total national energy market. Based on this information, and confirmed on the webpages of the Danish Energy Agency, the wind energy resources of Denmark are around20 GW (= 20 000 MW), which is evenly distributed between the land and offshore

    53

    Figure 11. Regions in Serbia and Montenegro with favorable wind speed conditionsSlika 11: Oblasti u Srbiji i Crnoj Gori pogodne za korienje energije vetra

  • 7/31/2019 03Energija Vetra Wind Energy

    15/18

    u morskim, a 50% u kopnenim vetrovima. Ovaj podatak moe se uzeti kao pouzdan jer jerezultat dugogodinjeg iskustva i opsenih merenja koja su korigovana na osnovu prak-tinih iskustava.

    Analizirajui mapu vetrova SCG koju je formirao hidrometeoroloki zavod bive SFRJ ve-trovi u SCG su slabiji nego u Danskoj tako da iako imamo skoro dvostuko veu povrinumoe se proceniti da je tehniki iskoristiv vetropotencijal na kopnu SCG oko: P = 20 GW

    = 20.000 MW. Ministarstvo za ekonomiju Nemake je u studiji o vetroenergetskom po-tencijalu kopnenih vetrova u Nemakoj iznelo podatak da je ukupni iskoristivi vetropoten-cijal kopnenih vetrova u Nemakoj oko 64.000 MW instalisane snage vetrogeneratora.

    Analizirajui vetrove Nemake i SCG moe se konstatovati da su intenziteti srednjihgodinjih brzina vetrova jako slini. Pod pretpostavkom da su brzine vetrova u SCG 10 do20% manje nego u Nemakoj, moe se usvojiti da je vetroenergetski potencijal manji za40% to uzimanjem u obzir i povrine SCG dovodi do vrednosti od: P = 11 GW = 11.000MW. Dakle, na osnovu uporednih analiza moe se zakljuiti da je globalni tehniki isko-ristiv vetroenergetski potencijal u Srbiji i Crnoj Gori: P = [8 15] GW = [8.000 15.000]MW, odnosno, ako bi vetrogeneratori radili sa faktorom iskorienja od 20% mogli biproizvesti elektrinu energiju od 17.500 GWh/god. ili 17,5 TWh/god.

    resources. This information has been further verified by means of sophisticated and reli-able methods through direct measurements.

    Analyzing the wind atlas of Serbia and Montenegro, a product of the Hydrometeorologicalinstitute of the former Yugoslavia, the wind potential is lower than the one in Denmark.However, considering the fact that the total land area is twice the size of Denmark, it maybe assessed that the total wind energy potential is about the same as in Denmark.

    On the other hand, the wind resources of the mainland Germany are around 64 000 MW,an information provided by the German Ministry of Economics. A parallel analysis of windspeeds in Germany and Serbia and Montenegro indicates that values of the annual aver-age wind speeds for the two countries are almost the same. Assuming that the windspeeds in Serbia and Montenegro are 10% to 20% lower than in Germany, it may beinferred that the corresponding wind energy potential is 40% lower, which taking intoaccount the area of available land, yields a value of 11 GW (= 11 000 MW). Hence, tak-ing into consideration these comparative analyses, a value of 8 GW - 15 GW comes upas the global wind energy potential of Serbia and Montenegro. This means that if the windturbines operate at efficiency level of 20%, the amount of produced electricity may bearound 17 500 GWh/year (= 17.5 TWh/year).

    The main technical difficult y of integrating wind ener gy ins tallations in the main powerutility system is contained in the very nature of the wind. Namely, as the wind is highlyintermittent generation source, and has a low level of compatibility, the problems relat-ed to planning and regulation of the wind energy sector come up. Based on the prelimi-nary studies, the wind energy sector may contribute to the total power industry with 20%,which could be increased by improving connections with the main distribution systemand by installation of appropriate accumulation systems.

    Existing power generating units offer favorable conditions for integration (embedding) ofwind power facilities. Reversible hydro power plant Bajina Bata enables accumulationof the wind-generated electricity. Also, stable operation of hydropower plants, mainlyerdap, may provide an efficient and stable power generation in case of large output fluc-tuations of wind-generated electricity. Hence, existing power generating structure ofSerbia and Montenegro allows relatively easy integration of the wind power industry intothe main energy system.

    Embedding of wind power utilities into the main system would significantly reduce the

    160

    140

    120

    100

    80

    60

    40

    20

    0

    54

    Figure 12.Typical average wind speed variation (in % of average annual wind speed)Slika 12:Tipina mesena varijacija srednje brzine vetra (u procentima srednje godinje brzine vetra)

  • 7/31/2019 03Energija Vetra Wind Energy

    16/18

    Osnovni tehniki problem integracije vetrogeneratora u elektroenergetski sistem je sadranu samoj prirodi vetra. Vetar kao stohastiki izvor ima mali stepen kompatibilnosti pa se jav-ljaju problemi u planiranju i regulaciji elektroenergetskih sistema koji imaju veliko procen-tualno uee vetrogeneratora u ukupnoj proizvodnji elektrine energije. Prema studijamakoje su se bavile analizom maksimalnog uea vetrogeneratora u ukupnoj proizvodnjiprosenog EPS-a , pokazalo se da je tehniki maksimum uea vetrogeneratora u ukup-noj globalnoj proizvodnji elektrine energije oko 20%. Ovaj stepen participacije vetrogene-

    ratora podrazumeva postojee konfiguracije elektrenergetskih sistema. Pojaanjeminterkonekcije i izgradnjom akumulacionih sistema ovaj procenat se moe poveati.

    Elektroenergetski sistemi SCG su strukturno povoljni za integraciju vetrogeneratora.Postojanje reverzibilne hidrolektrane Bajina Bata omoguava preuzimanje vika elek-trine energije u uslovima pojaanog vetra odnosno proizvodnje vetrogeneratora.Takoe, stabilni hidr opotencijali (erdapske hidroelektrane) mogu da obezbede e fikas-nu regulacionu rezervu i time stabilan rad sistema i u uslovima velike varijacije uproizvodnji vetrogeneratora. Dakle, postojea struktura elektrinog proizvodnog sistemau SCG omoguava ukljuenje vetrogeneratora u elektroenergetski sistem.

    to se tie prenosnog sitema, on bi prikljuenjem vetrogeneratora bio u znaajnoj meri

    rastereen jer se vetrogeneratori prikljuuju po pravilu na distributivne sisteme. Osim ras-tereenja bili bi smanjeni i gubici u prenosnoj mrei na raun decentralizacije proizvodnje.Obzirom da je vetar stohastiki izvor, vano je analizirati u kojoj meri se poklapajugodinje fluktuacije vetra i zahtevi potroaa za elektrinom energijom. Na slikama 12 i13 je prikazana tipina sezonska varijacija srednje brzine vetra i tipian dijagram potro-nje elektrine energije na godinjem nivou EPS-a.

    Analiza regiona u SCG pogodnih za izgradnju vetrogeneratora

    U Srbiji i Crnoj Gori postoje potencijalno pogodne lokacije za izgradnju vetrogeneratora:1. Crnogorsko primorje, odnosno pojas morske obale od Ulcinja do Herceg Novog u irini oko20 km, odnosno povrine od oko 1000 km2. U ovoj oblasti vetrovi su srednje brzine vee od7 m/s, snage 400 600 W/m2. Na ovom prostoru je mogue izgraditi vetrogeneratorekapaciteta od 1000 do 1500 MW. U ovom predelu postoji dosta lokacija sa visokim greben-ima i brdima na kojim srednja snaga vetra na visini od 50 m moe biti i preko 1000 W/m 2.

    2. Istoni delovi Srbije - Stara Planina, Vlasina, Ozren, Rtanj, Deli Jovan, Crni Vrh itd. Uovim regionima postoje lokacije ija je srednja brzina vetra preko 6 m/s. Ova oblast pros-

    load on the transmission system, since wind power generation is situated closer to con-sumer loads. Moreover, transmission losses would be reduced. This provides a saving forthe Power Company and consequently for its customers.Since wind is highly intermittent power generation source, it is important to analyze cor-relations of annual wind speed fluctuations with consumer demands. Typical seasonalvariations of the average wind speed and data of Elektroprivereda Srbije (Serbian PowerCompany) on annual power consumption are presented in Figures 12 and 13.

    Areas potentially suitable for wind energy applicationsin Serbia and Montenegro

    There are several locations convenient for wi nd energy applications :1. Offshore locations in Montenegro in the 20 km long coastal region from Ulcinj toHerceg Novi covering an area of around 1000 km2. The mean wind speeds in this areaare above 7 m/s having power in the range 400 - 600 W/m 2. Projected installationcapacities are from 1000 to 1500 MW. There are a number of high ridges and mountain-ous locations in this area where, at altitudes of 50m, the average wind power may exceed1000 W/m2.

    2. The eastern parts of Serbia - Stara Planina, Vlasina, Ozren, Rtanj, Deli Jovan, Crni Vrh

    55

    5 000

    4 000

    3 000

    2 000

    1 000

    0

    GWh

    Meseci

    Figure 13. Monthly power consumption at EPS in 2001Slika 13: Mesena potronja elektrine energije u EPSu 2001. godine

  • 7/31/2019 03Energija Vetra Wind Energy

    17/18

    torno pokriva oko 2000 km2 i u njoj bi se perspektivno moglo izgraditi oko 2000 MWinstalisane snage vetrogeneratora.

    3. Zlatibor, abljak, Bjelasica, Kopaonik, Divibare su planinske oblasti gde bi se me-renjem mogle utvrditi pogodne mikrolokacije za izgradnju vetrogeneratora.

    4. Panonska nizija, severno od Dunava je takoe bogata vetrom. Ova oblast pokriva oko2000 km2 i pogodna je za izgradnju vetrogeneratora jer je izgraena putna infrastruktu-ra, postoji elektrina mrea, blizina velikih centara potronje elektrine energije i slino.U perspektivi bi se u ovoj oblasti moglo instalirati oko 1500 do 2000 MW vetroge-neratorskih proizvodnih kapaciteta.

    etc. The average wind speed at some locations in this region is above 6m/s. This areacovers approximately 2000 km2 allowing 2000 MW of projected installed power.

    3. Zlatibor, abljak, Bjelasica, Kopaonik, Divibare are mountinous regions where furthermeasurements of the wind speed variability are necessary to determine suitable loca-tions for wind power facilities.

    4. The area north of the Danube river, Panonia valley, also offers locations for exploita-tion of wind energy. The region extends on the area of 2000km 2 and offers favorable civilinfrastructure: roads, utility grids, large consumer areas etc. The projected capacity forthis region is around 2000 MW.

    56

    Figure 15. Serbian map with

    the average wind speeds

    of 6 m/s on 50m elevation.Slika 15: Karta lokacija u Srbiji

    sa godinjim srednjim brzinama

    vetra veim od 6 m/s

    na visini od 50 m.

    Figure 14. Serbian map with the

    average wind speeds of 4.5

    to 5 m/s on 50m elevation.Slika 14: Karta lokacija u Srbiji

    sa godinjim srednjim brzinama

    vetra od 4,5 do 5 m/s

    na visini od 50 m.

  • 7/31/2019 03Energija Vetra Wind Energy

    18/18

    Zakljuak

    U proizvodnji elektrine ener-gije nijedan izvor energije nijeimao tako dinaminu ekspan-ziju u poslednjih dvadesetakgodina. Savremeni verogene-

    ratori dostiu snagu od 5 MW ivie, a po ekonominosti suizjednaeni sa klasinim izvo-rima energije. Konkurentnostim se znaajno poveava po-gotovo kada se u poreenjauvrsti uticaj na ivotnu okoli-nu. U narednom periodu moese oekivati da e energijavetra kao najznaajniji obnov-ljiv izvor zauzeti znaajno mes-to u ukupnom svetskom ener-

    getskom bilansu.Za Srbiju je primena obnovlji-vih izova energije primarni ciljoko koga treba da se okupestratezi energetskog razvoja,politiari i strunjaci. Pri sa-danjem konstantnom defici-tu elektrine energije najbriput u praenju potronje ener-gije je tednja i gradnja po-strojenja za eksploataciju ob-novljivih izvora energije.

    Conclusion

    The last twenty years have witnessed adynamic development of wind tech-nology. During this time-span, it hasevolved from an industry that mak-ismaking small, simple and some-

    times unreliable machines into a tech-nology, which can compete with thewell-established conventional forms ofpower generation. It has volume pro-duction of medium sized machines inthe 600 kW range, while there are anumber of designs in the megawattrange with commercial prospects. Theincrease in available rated capacity isstriking and has seen a very rapiddevelopment since 1990. The arrivalof the largest units is timely as the

    industry prepares for major offshoredevelopments. There are no doubtsthat the widespread extent of windpower industry will place it as one ofthe most important renewable energyfields.

    As far as Serbia and Montenegro areconcerned, exploitation of renewableenergy resources is a primary target,which requires cooperative action ofenergy experts, politicians and engi-neers. The fastest way to overcome the

    current shortage in electrical energyproduction is restrained energy con-sumption and construction of newfacilities for exploitation of renewableenergy resources.

    CopyrightBDSP/UniversittStutgart