140
ASSET INTEGRITY THEME LANDSCAPING STUDY FINAL REPORT OIL & GAS UK TECHNOLOGY LEADERSHIP BOARD May 2016

0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ASSET INTEGRITY THEME LANDSCAPING STUDYFINAL REPORT

OIL & GAS UK

TECHNOLOGY LEADERSHIP BOARD

May 2016

Page 2: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

2

FOREWORD Welcome to the Asset Integrity Theme Landscaping Study, which Oil & Gas UK has commissioned from Lockheed Martin on behalf of the Maximising Economic Recovery from the UK Continental Shelf (MER UK) Technology Leadership Board. The study’s aim is to provide the most current and comprehensive update both on technologies with the potential to deliver efficiency improvements for inspecting pressurised systems including process vessels, and those effective in managing corrosion under insulation (CUI) of structures used in onshore and offshore environments.

The development of technology and its implementation play a key role in efforts to maximise economic recovery from the UK Continental Shelf where billions of barrels of oil and gas remain to be recovered. Techniques that help the industry to improve asset integrity and safely extend the operating lives of oil and gas fields can significantly contribute to the sector’s drive to increase the production efficiency of existing fields.

In a technology landscape that could be perceived as complex and multi-faceted, it makes sense from a cost and efficiency point of view for Oil & Gas UK, on behalf of the industry, to co-ordinate the wealth of research and development the sector has undertaken to address the key priority of asset integrity, one of four key areas identified by the Technology Leadership Board (TLB). Included in the study are advanced technologies which have helped drive efficiency in other high performing sectors including the medical, space exploration and nuclear industries.

This study looks at technological advances for carrying out internal process vessel inspections which could significantly reduce production downtime during a shutdown and minimise the time required for personnel to enter the inspection area. Alternative methods for improving the detection and management of corrosion under insulation in order to reduce costs are also explored.

The TLB is focused on ensuring that technology development is collaborative, focused on priority areas and suitable for multi-field application. This study is a clear demonstration of collaborative working in action; operators, prime contractors, government and research councils, innovation centres, joint industry bodies and academia have all provided input.

I would like to thank everyone for their much valued contribution to this study, which I believe will play an important role in helping to secure a safe and enduring future for the UK Continental Shelf.

Paul White, industry co-chair of the MER UK Technology Leadership Board

Page 3: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

2

CONTENTS

SECTION 1 5Acknowledgements

SECTION 2 6Executive Summary2.1 INTRODUCTION 72.2 BACKGROUND 72.3 BUSINESS DRIVERS AND CONSTRAINTS 72.4 STAKEHOLDERS 72.5 CURRENT SITUATION 92.6 SCOPE AND OBJECTIVES 102.7 METHODOLOGY 112.8 SUMMARY OF RESULTS 122.9 MANAGEMENT AND CULTURAL IMPEDIMENTS 172.10 TECHNOLOGY GAPS 172.11 CONCLUSIONS AND RECOMMENDATIONS 172.12 NEXT STEPS 20

SECTION 3 21Data Collection and Analysis3.1 APPROACH 223.2 LIMITATION 223.3 ANALYSIS METHODOLOGY 223.4 RESULTS 26

SECTION 4 30Vessel Inspection4.1 LOW FREQUENCY ELECTROMAGNETIC TECHNIQUE 314.2 PHASED ARRAY ULTRASONIC 334.3 DIGITAL IMAGE CORRELATION 364.4 GUIDED WAVE ULTRASONIC 404.5 ACOUSTIC RESONANCE 434.6 AUTONOMOUS INSPECTION 454.7 FULL MATRIX CAPTURE 484.8 REMOTE MOBILE INSPECTION 514.9 3D LASER SCANNING 544.10 UNMANNED AERIAL VEHICLE 574.11 ENVIRONMENT AND HEALTH MONITORING SYSTEM 604.12 WIDEBANDSONARBEAM-STEERING 634.13 ELECTROMAGNETIC INDUCTANCE DEGRADATION 654.14 TERAHERTZ SPECTRAL IMAGING 67

SECTION 5 69CUI Detection5.1 GUIDED WAVE ULTRASONIC TESTING 705.2 RADIOGRAPHIC-DIGITALDETECTORARRAY 735.3 RADIOGRAPHIC–OPENVISION 765.4 SNIFFER DOGS 78

Page 4: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

3

CONTENTS CONTINUED5.5 PULSED EDDY CURRENT 825.6 MICROWAVE SENSING 855.7 MICROWAVE DETECTION OF WATER WITHIN INSULATION 895.8 VAPOUR PHASE CORROSION INHIBITOR 925.9 LATERAL WAVE LFET 955.10 CORROSION RADAR 975.11 ACOUSTIC RESONANCE 1005.12 SACRIFICIAL WIRE 1025.13 ELECTROMAGNETIC INDUCTANCE 1055.14 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 1075.15 ULTRASONIC SURVEYS 1095.16 TERAHERTZ SPECTRAL IMAGING 1115.17 ACOUSTIC EMISSION 1135.18 ULTRASOUND TOMOGRAPHY 116

SECTION 6 120Management and Cultural Impediments

SECTION 7 122Technology Gaps7.1 TECHNOLOGY GAPS 123

SECTION 8 124Conclusions and Recommendations8.1 GENERAL CONCLUSIONS AND RECOMMENDATIONS 1258.2 TLB ASSET INTEGRITY THEME WORKSHOPS 1258.3 VESSEL INSPECTION 1258.4 CUI DETECTION 1258.5 FURTHER RESEARCH 1258.6 INDUSTRY COLLABORATION 127

APPENDIX A 128Organisations Contacted

APPENDIX B 132Survey QuestionnaireB.1 INITIALQUESTIONS(ALLRESPONDENTS) 133B.2 OIL & GAS OPERATOR QUESTIONS 133B.3 SOLUTION PROVIDER QUESTIONS 133B.4 CONTRACTOR QUESTIONS 133B.5 RESEARCHER/ACADEMIC QUESTIONS 134B.6 CUI AND VESSEL INSPECTION QUESTIONS (ALLRESPONDENTS) 134

APPENDIX C 135Glossary

APPENDIX D 139References

Page 5: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

SECTION 1

ACKNOWLEDGEMENTSThis work has come about through the efforts and contribution of many to whom Lockheed Martin is most grateful.

Thanks, in no particular order, are extended to the following for their:

Financial contribution for sponsoring the study

Oil & Gas UK

Input to the theme in its entirety

Jeremy Cutler, Total

Andy Ewens, AMEC Foster Wheeler

Taiwo Olaoya, Oil & Gas UK

Ernie Lamza, OGIC

Ian McCabe, ITF

5

Page 6: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

6

SECTION 2

EXECUTIVE SUMMARY

Page 7: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

7

2.1 IntroductionThisreporthasbeenproducedattherequestoftheOilandGasTechnologyLeadershipBoard(TLB)which isworking in partnershipwithOil&GasUK (OGUK),Oil&Gas Authority (OGA),Oil&GasInnovationCentre(OGIC)andIndustryTechnologyFacilitator(ITF).

In response to Sir Ian Wood’s final report on Maximising Economic Recovery (MER) for the UKContinentalShelf(UKCS)–the“WoodReport”hereafter–theTLBidentifiedthreemainthemesforfurtherinvestigation,namelySmallPoolDevelopment,AssetIntegrityandWellConstruction.

In November 2015 LockheedMartinwas contracted by OGUK on behalf of the TLB to conduct atechnologylandscapingstudyaddressingthefirstelementoftheAssetIntegrityThemewhichisledbyTotalE&PUKandAmecFosterWheelerwithsupportfromOGICandITF.

The study targets advances in process vessel inspection andmanaging corrosion under insulation(CUI)fortheonshore,offshoreandsubseaareas.IfsuccessfultheTLBbelievethiscouldcontributetounlocking£1billionofrevenuethroughimprovedproductionefficiencyandcostreductionfortheoilandgasindustryintheUKCS.

2.2 BackgroundOverthelast10yearstheaverageUKCSproductionefficiencyhasfallenfrom80%to60%.Processvessel inspection isasignificantcontributor toproductiondowntimeduringashutdownandofteninvolvespersonnelentryintoconfinedspaces,thusposingamajorsafetyrisk.Thisstudyexploresnewandexistingtechniquesandtechnologieswiththepotentialforsignificantlyreducingprocessvesselinspectiontimesandeliminating(oratleastminimising)theneedforpersonnelentryintovessels.

CUIisdifficulttodetectbecauseoftheinsulationcoverthatmasksthecorrosionproblem,sometimesuntilitistoolate.Itisexpensivetoremovetheinsulation,particularlyifasbestosisinvolved.Historically,industrydatasuggeststhat60%ofpipeleaksarecausedbyCUIandaddasignificantsafetyissueinhydrocarbonservice.FurthermoreitisestimatedthatCUIincurs40–60%ofpipemaintenancecosts.ThisstudythereforealsoexploresmethodsforimprovingdetectionandmanagementofCUIwithoutfirsthavingtoremovetheinsulation,andconsidersportable/mobileorpermanentlyinstalleddevicestoallowinspectionofprocesspipeworkwithminimalrequirementforscaffolding.

2.3 Business Drivers and ConstraintsTheprimarybusinessdriversinupstreamoilandgasproductionaremaximisingproductionefficiency(definedasactualannualproductionasapercentageofmaximumpotentialyieldorotherpotential),andminimising cost (CAPEX andOPEX). Avoiding harm to people and the environment (includingreputational damage e.g., resulting from a serious safety or environmental incident) is also animportantconsideration.

Some of the constraints are: safety, the environment, availability of skilled personnel, regulations,offshorelogistics(e.g.,helicopterandbedplaces)and,inaneraoflowoilprices,availabilityofandwillingnesstocommitcapital.

2.4 StakeholdersThe major stakeholders on the technology user side are the oil and gas producer companies,their operational andmaintenance contractors and, through taxation, theUKgovernment.On thetechnologysuppliersidearespecialistcontractorsandvendors,technologyandproductdevelopersandresearchbodieswithinuniversitiesandelsewhere.

Basedonourresearchtherelationshipbetweenorganisationsinthelandscapeiscomplexandmulti-facetedasshowninthediagrambelow.Withnosingleleadingorganisationactivelycoordinatingtheoil andgas industry’s researchanddevelopment for vessel inspectionsorCUIdetection there is adangerthatorganisationsduplicateresearch,oralternativelyfailtotargetresearchnotspecificallyintheirareaofexpertise.

Page 8: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

8

There are several different funding routes for research and development, ultimately however thefundingcomesfromthreelocations:theoperatorsandprincipalcontractors,government(UK,Scottish,EuropeanUnion)andfromtechnologyvendors.

Muchoftheresearchthatdevelopsintoproductsiscarriedoutdirectlybythetechnologyvendors,withvaryingdegreesofexposuretothewiderindustry.

The research does not indicate that there are any preferences given tomeeting set standards forqualityorinter-operabilityofdevelopedsolutions,thusadvancesinultrasonicdetectionmaynotbeeasilyadaptedtoworkwithnewsolutionsinremotemobileinspectionforexample,ortomakebestuseofexistingdatahistoriantechnologyandothercommonlyusedITinfrastructure.

Government Statutory Authorities, Initiatives, Research Councils Joint Industry Bodies

Facilitation &Innovation Centres Academia,

R&D bodies

Technology Vendors /Developers

Operators & PrimeContractors

NEW TECH, DEVELOPMENT& DEPLOYMENT

STEER,FUNDING

STEER, FUNDING& RESULTS

STEER,FUNDING

FUNDING

STEER, FUNDING & RESULTS STEER, FUNDING& RESULTS

STEER, FUNDING& RESULTS

STEER, FUNDING& RESULTS

RESEARCH &

COLLABORATION

Page 9: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

9

Operators & Prime ContractorsThisincludesthemainoperatorsintheoilandgasindustryandtheprimeengineeringcontractors.Theorganisationsthathavecontributedtothisstudyinclude:

Operators• BP; • NexenPetroleumUKLtd;• Shell;• StatoilTechnologyInvest(STI);• Total.

Prime Contractors• AmecFosterWheeler;• BilfingerSalamis;• DetNorskeVeritas;• DoosanBabcock;• ForsysSubseaLtd;• Sonomatic;• Stork;• Technip.

Government Statutory Authorities, Initiatives and Research Councils• UKGovernment;• ScottishGovernment;• EuropeanUnion;• OilandGasAuthority;• HSE;• NERC.

Facilitation and Innovation Centres• ITF;• OGIC;• HighValueManufacturingCatapult.

Joint Industry Bodies• Oil&GasUK,andtheTLB;• TWI;• HOIS;• InstituteofCorrosion;• NationalBoardofBoiler&PressureVessel Inspectors.

Academia, Research & Development Bodies• Heriot-WattUniversity;• ImperialCollegeLondon;• RobertGordonUniversity;• UniversityofAberdeen;• UniversityofCambridge;• UniversityofManchester;• UniversityofStrathclyde;• HighValueManufacturingCatapult;• NationalPhysicalLaboratory(NPL);• SINTEF(Norway);• TNO, Science and Industry, Business Unit:

OilandGas(Netherlands).

2.5 Current SituationGeneralNon-destructive testing (NDT) techniques widely used in the inspection of oil and gas plant andequipmentinclude:• ultrasonictesting;• magneticparticleinspection;• dyepenetrantinspection;• visualinspection;• radiography.

Eachcanbehighlyeffectivebuttherateofcoverageisoftenslow.Inspectionmayalsorequireextensivepreparation, including the removal of insulation to allow external inspection.Deployment is oftencomplicatedbythenatureofthephysicalenvironment.

Alternative, lesssensitiveNDTtechniquescanbeusedina large-scalescreeningprocess,providingameansof inspectingareas thatwouldotherwisebe impossible toaccess.The idea is topinpointproblemareas, and then follow thisupwithdetailed inspectionsat targeted locationsusingmoresensitivetechniques.

Adetailedevaluationof20screeningmethods isprovided intheHealth&SafetyExecutive’s (HSE)

Page 10: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

10

researchreportRR659,“Evaluationoftheeffectivenessofnon-destructivetestingscreeningmethodsforin-serviceinspection,2009”.Theseinclude:

• profileradiography;• smallcontrolledarearadiography;• thermographicimaging;• X-raydigitalfluoroscopy;• neutronbackscatter;• electromagneticinductance.

Vessel inspectionTheusualtechniqueforinspectingtheinternalsofprocessvesselsinvolvesfullandsecureisolation,gas-freeingandothersafetyprecautionsbeforeatechniciancanentertocarryoutavisualinspection,takephotographsandpossiblyuseinstrumentstomakeothermeasurements.

Althoughitispossibletoobtainathoroughanddetailedassessmentofthevessel’sinternalconditioninthisway, thenecessaryprecautionsaretime-consumingandevenwiththemostrigoroussafetymeasures,entrytoconfinedspacesisinherentlyhazardous.

Consequently,oil andgasoperators tend tominimise the frequencyof internal inspections,whichobviously increases the risk of corrosion or internal mechanical damage going undetected. Anytechniquethatallowsvesselinternalconditiontobeinspectedorotherwiseassessedwithoutrequiringanyonetoenterhasclearadvantageswithrespecttoreduceddowntime,morefrequentassessmentandimprovedsafety.

CUI DetectionThemost common and straightforwardway to inspect for CUI is to cut and remove plugs in theinsulation,visually inspectthesurfacefor immediatesignsofcorrosion,thenultrasonicallytesttherestofthevesselorpipe.

ThemainproblemwiththistechniqueisthatCUItendstobelocalised,andunlesstheinspectionplugisaccuratelypositioned,sitesofcorrosioncanbemissed. If there is sufficientdoubt regarding theconditionofthemetalawayfromtheplugs,largeareasofinsulationmayneedtoberemoved.

Furthermore, cuttingplugs introducesa fresh sourceofpotentialmoisturepenetrationandhencefurther corrosion. Removing plugs is not particularly hazardous (unless the insulation containsasbestos)butitmaybetimeconsumingandcostly,particularlyifscaffoldingisrequired.

Removal(andreinstatement)oflargeareasofinsulationismessyandmaydisruptnormaloperationsas well as being expensive and time-consuming. Inspection techniques that preserve the laggingthereforehavesignificantadvantages.

2.6 Scope and ObjectivesThe objective of the TLB Asset Integrity Theme is to facilitate the introduction of products and services, potentially from outside the oil and gas industry, that allow vessel inspection and CUI detection to be carried out at lower cost, with reduced impact on production efficiency, without introducing additional safety risks and potentially providing risk mitigations.

The objective of the Lockheed Martin study is to:

• identify existing and emerging technologies for vessel inspection and CUI detection, both within and outside the oil and gas industry;

• assess these with respect to maturity, applicability, cost, risk and benefit;• highlight the main bodies involved in providing relevant technologies, products and services.

Page 11: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

11

2.7 MethodologyData collectionRelevantinformationwascollectedusingacombinationofthefollowing:

• face-to-faceandtelephonediscussionwithstakeholders;• surveyquestionnaire(emailedtostakeholders);• onlineresearch(vendorpublicationsandotherpublicdomainsources).

Inpractice,thesurveyquestionnairesprovedoflimitedvalueandmostinformationwasderivedfromdiscussionandonlineresearch.

AnalysisAsmuch of the information is subjective and even anecdotal in places, the key question becamehowtodeviseamethodforanalysisandcomparisonthatprovidessufficientrigourwhileretainingtransparencywithrespecttotheunderlyingjudgements.

Themethodadoptedwastoidentifycriteriaforassessingtherelevanttechnologiesandtechniquesandthen,whereappropriate,tosub-dividetheseintocomponentswhichcouldberatednumericallyaccordingtosimpleguidelines.

Thecriteriaselectedwere:

Criteria DescriptionAnexistingmethod‘TechnologyReadinessLevel’(TRL),devisedbyNASA,wasadopted

Sub-divided into six components:plant running; retrofit;offshore;dependencyonspecialistskills;typesofplantitem;sampleorfullarea

Sub-divided into four components: precautions required to maintain safety;requirementforculturalchange;complexity;industrybacking

Sub-dividedintothreecomponents:initialinstallation,initialstafftrainingandotherpreparation;annualoperationandmaintenance

Sub-divided into two components: maintenance cost reduction; plant safetyimprovement

Maturity

Applicability

Risk

Cost

Benefit

Apart fromtheNASATRLscore,whichdirectlyproducesanumeric result,eachcomponentof theabovecriteriawasassignedascorerangeandassociatedguidelines.AllofthecriteriaaresetoutindetailinSection3.Thenetresultwastoderiveforeachtechnology,asetoffivescoresintherange0–10,oneforeachassessmentcriterion.

Page 12: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

12

2.8 Summary of resultsBased upon the analysis approach described above there are a number of techniques that offerencouragingpotential.Allofthetechniquesevaluatedaredisplayedintabularandgraphicalformatbelow.

Vessel inspectionTheanalysisresultsarepresentednumericallyinthefollowingtable.The“Strength”hasbeencalculatedbycombiningapplicabilityandbenefits,withthe“Weakness”beingcalculatedbycombiningcostandrisk.The“OtherMaturity (TRL)” isLockheedMartin’sassessmentof thematurityof thetechniquewithinotherindustries.Ahigherfigureindicatesabetterresult.

Technology/Technique

O&GMaturity (TRL)

ApplicabilityLimitations

9

9

9

9

7

6

6

6

6

4

3

3

2

2

Lowfrequencyelectromagnetictechnique

Phasedarrayultrasonic

Digitalimagecorrelation

Guidedwaveultrasonic

Acousticresonance

Autonomousinspection

Fullmatrixcapture

Remotemobileinspection

3Dlaserscanning

Unmannedaerialvehicles

Environmentandhealthmonitoringsystem

Widebandsonarbeamsteering

Electromagneticinductance

Terahertzspectralimaging

Risk Cost Benefit Strength Weakness

7

7

7

6

8

8

8

6

6

6

7

6

7

8

8

6

7

7

7

6

6

7

6

5

4

7

6

6

7

5

6

6

7

6

7

5

4

8

3

6

7

5

7

6

5

4

4

8

7

7

4

5

6

3

4

7

14

13

12

10

12

16

15

13

10

11

13

9

11

15

15

11

13

13

14

12

13

12

10

13

7

13

13

11

OtherMaturity (TRL)

9

9

9

9

7

6

6

6

6

4

3

3

2

2

Thevessel inspectionoptionsarecomparedinthediagrambelowbycombiningthetwo‘Strength’attributes(applicability/limitations,benefits)ontheY-axiswiththetechnicalmaturitylevelshownontheX-axis.Thetwo‘Weakness’attributes(cost,risk)arecombinedandformthesizeofthebubbles.Thediameterofthebubblesreflectstheperceivedweakness/challengeofthetechnology.Alargebubblehasfeweridentifiedweaknessesandislikelytobemoreeasilyadoptedgiventheappropriate

Page 13: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

13

R&Dspend.Theyellowcolouredbubblesaresensortechnologiesandthegreenrepresentenablingplatforms.

A simpler comparison,usingonly the ‘maturity’ indication (NASATRL) ispresented in thediagrambelow.Theyellowcolouredbarsarethe‘maturity’indicationwhenthetechnologyisassessedforuseintheindustryitwasprimarilydevelopedforandthebluecolouredbarsarethe‘maturity’indicationwhenthetechnologyisassessedforuseinoilandgas.

0 1 2 3 4 5 6 7 8 9

Terahertz spectral imagingFull matrix capture

Acoustic resonance

Digital image correlationWideband sonar beam steering

Environment and health monitoring systemElectromagnetic inductance

3D laser scanning

Autonomous inspectionGuided wave ultrasonic

Unmanned aerial vehicles

Remote mobile inspection

Low frequency electromagnetic techniquePhased array ultrasonic

Vessels -TRL Score

Page 14: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

14

CUI DetectionTheanalysisresultsarepresentednumericallyinthefollowingtable.The“Strength”hasbeencalculatedbycombiningapplicabilityandbenefits,withthe“Weakness”beingcalculatedbycombiningcostandrisk.The“OtherMaturity (TRL)” isLockheedMartin’sassessmentof thematurityof thetechniquewithinotherindustries.Ahigherfigureindicatesabetterresult.

The CUI detection options are compared in the diagram below by combining the two ‘Strength’attributes(applicability,benefits)ontheY-axiswiththetechnicalmaturitylevelshownontheX-axis.Thetwo‘Weakness’attributes(cost,risk)arecombinedandformthesizeofthebubbles,thelargerthebubblethelowertheweakness.AlargebubblehasfeweridentifiedweaknessesandislikelytobemoreeasilyadoptedgiventheappropriateR&Dspend.

Therearenoenablingplatformsshowninthediagrambelow.HowevertheplatformslistedforvesselinspectioncouldpotentiallybedevelopedforusewithCUIdetection.

Technology/Technique

O&GMaturity (TRL)

ApplicabilityLimitations

9

8

8

9

8

8

8

0

7

0

3

3

3

3

0

3

2

0

Guidedwaveultrasonic

Radiographic-digitaldetectorarray

Radiographic-openvision

Snifferdogs

Pulsededdycurrent

Microwavesensing

Microwavedetectionofwaterwithininsulation

Vapourphasecorrosioninhibitor

LateralwaveLFET

Corrosionradar

Acousticresonance

Sacrificialwire

Electromagneticinductance

Electrochemicalimpedancespectroscopy

Ultrasonicsurvey

Terahertzspectralimaging

Acousticemission

Ultrasoundtomography

Risk Cost Benefit Strength Weakness

6

8

7

7

8

7

7

8

7

7

8

7

7

2

7

8

5

7

6

6

6

7

8

6

6

6

8

8

7

8

6

7

6

6

5

6

5

7

7

7

7

6

6

7

7

7

7

7

7

7

7

5

6

7

5

5

5

6

7

7

7

6

7

5

4

5

4

2

3

7

4

4

11

13

12

13

15

14

14

14

14

12

12

12

11

4

10

15

9

11

11

13

13

14

15

12

12

13

15

15

14

15

13

14

13

11

11

13

OtherMaturity (TRL)

9

9

9

8

8

8

8

8

7

4

3

3

3

3

3

2

2

2

Page 15: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

15

Asimpler comparison,usingonly the ‘maturity’ indication (NASATRL) ispresented in thediagrambelow.Asbeforetheyellowcolouredbarsarethe‘maturity’indicationwhenthetechnologyisassessedforuseintheindustryitwasprimarilydevelopedforandthebluecolouredbarsarethe‘maturity’indicationwhenthetechnologyisassessedforuseinoilandgas.

Heat MapThematrixbelowprovidesavisualisationofhowtheindividualtechnologiesdetailed inthisreportperformagainsteachofthechallengestypicallyencounteredbyCUIandvesselinspectiontechnologies,givingaquickandeasymeanstoidentifywhichinnovationsbestapplytospecificchallenges.

Thetechnologiesarelistedalongthetopofthematrixandthechallengesarelisteddowntheleft,withtrafficlightsymbolsusedattheintersectionstodenoteeachtechnology’sabilitytomeeteachchallengeforCUI,vesselinspection(VI),orboth.

Page 16: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

16

Page 17: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

17

2.9 Management and Cultural ImpedimentsUnderstandably,upstreamoilandgashasaconservativecultureandsomeresistance tochange isinevitable.Itisthereforeessentialthatmanagementandculturalfactorsaretakenintoconsiderationwhen selecting among technical options that have potential to hold promise for reducing costs,increasing production efficiency and/or improving safety. Broadly speaking, techniques that are insomewayfamiliar,orappeartoberelatedtoacceptedpracticeinsomeway,standabetterchanceofacceptancethanthosethatappearalienoroutlandish.

2.10 Technology GapsThecurrenttechniquesusedintheoilandgasindustryforvesselinspectiondonotcurrentlypermitinternalinspectionwithoutmanualentry,andforCUImanagementanddetectionthecurrentlyusedtechniqueseitherhavelimitedcoverageorresolution,and/orrequiretheremovalofinsulation.

There are some promising techniques described in the study which can potentially close thesetechnology gaps and Lockheed Martin recommends that a shortlist is drawn by the relevantstakeholdersforfurtherpursuit.Werecommendthatstakeholders:

• review the scoring guidelines and Lockheed Martin suggested scores contained within thisdocument;

• forshort-termpossibilities(i.e.,thosemore-or-lessreadytogo),identifyopportunityforrealisticplant trial andprovide thenecessary funding, technical supportand logistics toallow this toprogress;

• forlongertermprospects,providetechnicalandfundingsupportsothatthesecanbemovedtowardsthe‘trial-ready’state.

Adefinite‘gap’thatcanbeclosedquitequicklyisthatofcombiningsomeofthesensingtechnologiesreviewedwithremotemobileandautonomousinspectionplatforms.Itislikelythatthiswillrequiresomeencouragementandsupporttogetthedifferentvendorsanddeveloperstoworktogether.

2.11 Conclusions and RecommendationsVessel inspectionGeneralThestudyteambelievesthattheassessmentmethodologyadoptedissound,althoughthematurity,applicability,cost,riskandbenefitscoresandassociatedguidelineswouldbenefitfromwiderreviewandvalidationbytherelevantstakeholders.

The studywas undertakenwithin an agreedtimeperiodwhich allowed sufficient interactionwithrelevantstakeholders,butdidnotallowforexhaustiveidentificationandinteractionwithalltechniquesandtheirproviders.

TLB Asset Integrity Theme WorkshopsTheTLBorganisedthemeworkshopsonvesselinspectionanddetectionofcorrosionunderinsulationatMaryculterHouseHotelAberdeenon24thand25thFebruary2016.

The Lockheed Martin Asset Integrity Landscape Draft Report was used as a pre-read for the workshops.Theaimoftheworkshopswastoinformfurtherworktodevelopproductsandserviceswhich can reduce costs, increase production efficiency and/or improve safety when carrying outprocess vessel inspections and detection of corrosion under insulation. This further work will becoordinatedbytherecentlyannouncedOil&GasTechnologyCentre.

For furtherdetailsplease refer to theTLB IntegrityTheme–WorkshopOutputReport,whichwasissuedbyOGICtoallworkshopattendeeson17thMarch2016.

Vessel inspectionThelowfrequencyelectromagnetictechniqueappearstooffergoodprospectsatmoderatecostandriskandhasahighmaturityscore.

Page 18: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

18

Fullmatrixcapture(FMC)hasasimilarprofile,butislessmaturesocouldbeseenasagoodlonger-termprospect.

Althoughrobotsandremotelyoperatedvehiclesontheirownhavearelativelylowbenefitscore,suchdevices are becoming increasingly common (e.g., in the nuclear industry) andmight be profitablycombinedwithothersensortechnologiestoallowasignificantreductionintheneedformanualentryintoprocessvesselsandotherconfinedspaces.

CUI DetectionThepulsededdycurrenttechniqueappearstooffergoodprospectsatmoderatecostandrisk.Ithasahighmaturityscoreandthereisasenseofsignificantindustrycommitmenttoproductdevelopment,marketinganddeployment.

Vapourphasecorrosioninhibitorstandsoutasbeingaprevention(asopposedtodetection)technique.Themainconcernhereisthenatureofthechemicalsrequiredfortheprocess,especiallyoffshore.Nevertheless,thistechniqueseemsworthyoffurtherinvestigationasitofferstheprospectofreducingtheextentandnatureoftheunderlyingproblemofCUI.

Aswith vessel inspection, someof the sensing techniques identified in this studymightprofitablybecombinedwithremotelyoperatedvehiclessuchaspipeandvesselcrawlers.Ofparticularbenefitwouldbeanycombinedtechniquethatreducedtherequirementforscaffolding.

Further ResearchLockheedMartinrecommendsthatfurtherresearchisundertakenintoclosingperceivedtechnologygapsthatcouldpreventtheuptakeofsomeofthemethodsandtechnologiesdescribedinthestudy.WerecommenddevelopinganITarchitecturethatfacilitatesthedevelopmentanduseofnewvesselinspectionandCUIdetectionandmonitoringtechniquesastheybecomeavailable.Inparticularthearchitectureshouldincludethefollowing.

Open StandardsDeveloping open standards is key tomaximising the rapid take up of any new techniques, it alsofacilitatesthedevelopmentofopenmarketsandminimisesvendorlock-in.

Werecommendthattomaximisetheimpact,newstandardsshouldbedevelopedinconjunctionwiththeappropriatenationalandinternationalstandardsbodies.

Secure Sharing of DataWerecommendthattechniquesaredevelopedacrosstheoilandgasindustrytosharetherawdatafrommultiple installations in a securemanner. This data can be provided to all stakeholders andprovideaplatformforfutureinnovation.

Automate data collection, transformation and storageMake use of existing technologies such as COTS data historians, IP protocols, and transmissiontechnologiessuchasWiFiandLowPowerBluetooth,coupledwithnewdevelopmentsinlowcost/lowpowersensorsbeingdevelopedfortheInternetOfThings.

Develop standard analysis techniquesTomaximisere-useandportability,standardanalysistechniquesshouldideallycomeintheformofopen-sourcelibrary/softwaredevelopmentkitsofstandardtechniquesoptimisedforusewithvesselinspectionandCUIdetectionandmonitoring.

Develop standard visualisation techniques

Page 19: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

19

Standardvisualisationtechniquesshouldbedevelopedwithtwomainaudiences inmind–controlroomstaffandmaintenance/supportengineers.

Controlroomstaffwanttoknowaboutsuddenchangesinplantconditions,typicallythroughscreensandalarmsondistributedcontrolsystems(DCS)andsupervisorycontrolanddataacquisition(SCADA)systems.Thereforeappropriatestandardsshouldbedevelopedforvisualisationincollaborationwiththeleadingcontrolsystemsproviders.

Maintenance /Support engineers want to know in more depth about gradual changes in plantconditions,eithercontinuouslymonitoredorthroughanalysisresultingfromspotchecks.Thereforeappropriate standards for visualisation should be developed in collaborationwith leading desktopvisualisationandanalysisproviders.

AggregationAsouranalysisindicatesthatnoonemethodisprevalentforeithervesselinspectionorCUIdetectionandmanagement,itislikelythatoperatorswillemployseveraldifferent,possiblyoverlappingmethods.Thereforeanalysistechniquesshouldbedevelopedinsuchawayastopermitaggregationofresults,andvisualisationtechniquesshouldincludetheabilitytooverlayresultsfromseveraldifferentsources.

ThediagrambelowshowstheproposedstandardsbasedITarchitecture.

Proposed Standards Based IT Architecture

Industry collaborationThestudyfoundthattherelationshipsbetweenthevariousstakeholdersarecomplex,andthatthereisalackoffocusonvesselinspectionandCUIdetectiontechnologieswithintheoilandgasindustry.Wealsonotethatsomeofthetechnologybeingdevelopedinitiallyoriginatedinotherindustrysectors.

LockheedMartin recommends that a single leading organisation is given overall responsibility forfocussingvesselinspectionandCUIresearchanddevelopmenteffortswithintheoilandgasindustry.Thisorganisationshouldfocusonseveralstrands:•Developmentofthestandards-basedITarchitectureasdescribedabove;•DevelopmentofpromisingvesselinspectionandCUIresearch;•Cross-sectorinitiativeswithrelationtovesselinspectionandCUIresearch.

Page 20: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

20

2.12 Next StepsReview and Validate ScoringAsdiscussedin2.7above,thenumericalscoresassignedbythestudyteam,andpossiblytheassociatedguidelines,shouldbereviewedandvalidatedbyawiderrangeofstakeholders.

Achieve ConsensusAbroad consensus is required among stakeholders regardingwhich technology options should beactivelypursuedinthenearterm,whichmeritactivelonger-termsupport,andwhicharebestsubjecttoawatchingbriefonly.

Industry PartnershipsOtherwisepromisingtechnologiesrequireactivesupporttoattainthenecessarymaturitytopermitrealisticsiteoroffshoretrials,andthisshouldbeachievedbycreatingindustrypartnershipstotakeforwardcollaborativeR&Dprogrammes.

Page 21: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

21

SECTION 3

DATA COLLECTION AND ANALYSIS

Page 22: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

22

3.1 ApproachThe intention of the study was to include representatives of all the key groups involved in bothprocessvesselinspectionandmanagingCUI.Thisincluded:oilandgasoperators,Tier1contractors(includingdutyholders),specialistconsultantsandserviceproviders,equipmentsuppliers,technologydevelopers,researchorganisationsandacademia.

ThestudywascommissionedbytheAssetIntegritysubgroupoftheTLBandpaidforbyOGUK.Thesubgroupmembers provided a list of potential stakeholderswho could be approached to providerelevant and contemporary information on current techniques, and Lockheed Martin includedadditional stakeholders from their own contacts and experience. A table of organisations thatcontributedtothestudyispresentedinAppendixA.OrganisationsidentifiedasonthelandscapebutwhodidnothavesignificantcontributiontothisstudyarealsopresentedinAppendixA.Allthosewhoagreedwerecontactedandinterviewedface-to-faceorbytelephone.

Toobtainthemaximumbenefitandensureconsistency,asurveyquestionnairewasdevelopedandrefined, and thiswasusedduring structured interviewsof those stakeholderswhowereprovidinginformation.ThequestionnaireispresentedinAppendixB.

Theinterviewswerevaluableinprovidingpragmaticandinsightfulevidenceofthemethodologiesandtechniquesaswellastheassociatedchallengesfacedwhenaddressingtheissueofvesselinspectionand managing CUI. The information gathered identified further research into the inspection anddetectiontechniqueswhich,inturn,helpedclarifythefinaltechnicalsummarieswhicharecontainedinsubsequentsectionsofthisreport.

Theinformationobtainedfromthesurveywassupplementedbyliteratureandonlinesearchesintoexistingandnewtechnologiessothatthereviewcouldfocusonthemostrelevantsystems.

3.2 LimitationThe studywas undertakenwithin an agreedtimeperiodwhich allowed sufficient interactionwithrelevantstakeholders,butdidnotallowforexhaustiveidentificationandinteractionwithalltechniquesandtheirproviders.

3.3 Analysis MethodologyAssessment criteriaThecentralproblemfacedbythestudyteamwashowtoderivemetricsthatwouldallow:

• thevarious technologiesand techniques reviewed tobeassessed individually ina consistentmanner;

• meaningfulcomparisonstobeobtainedacrossvesselinspectionandCUIcategories.

Asmuchoftheinformationobtainedissubjectiveandevenanecdotalinnature,thequestionresolvestooneofconvertingsubjectiveassessments intonumericalscores inawaythatprovidessufficientrigourwhileretainingtransparencywithrespecttotheunderlyingjudgements.

Themethod adoptedwas to identify a set of criteria for assessing the relevant technologies andtechniques and, where appropriate, to sub-divide these into components which could be ratednumericallyaccordingtosimpleguidelines.

Page 23: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

23

Criteria Description

Anexistingmethod‘TechnologyReadinessLevel’(TRL),devisedbyNASA,wasadopted

Sub-divided into six components:plant running; retrofit;offshore;dependencyonspecialistskills;typesofplantitem;sampleorfullarea

Sub-divided into four components: precautions required to maintain safety;requirementforculturalchange;complexity;industrybacking

Sub-dividedintothreecomponents:initialinstallation,initialstafftrainingandotherpreparation;annualoperationandmaintenance

Sub-divided into two components: maintenance cost reduction; plant safetyimprovement

Maturity

Applicability

Risk

Costs

Benefits

Thecriteriaselectedwere:

Apart fromtheNASATRLscore,whichdirectlyproducesanumeric result,eachcomponentof theabovecriteriawasassignedascorerangeandassociatedguidelines.Thesearedescribedbelow.

Scoring GuidelinesMaturity (NASA Technology Readiness Level)

Stage Level

Basicprinciplesobservedandreported

Technologyconceptand/orapplicationformulated

Proofofconcept

Experimentalpilotinlaboratoryconditions

Demonstrationpilotinsimulatedenvironment

Industrialpilotinidealisedconditions

Initialproductionuse(lessthan3years)

Productionuse>3yearsormultipledeployments<3yearswithlimitedtrackrecord

Widespreadusewithextensivetrackrecord

1

2

3

4

5

6

7

8

9

Page 24: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

24

Applicability / Limitations

Risk

Costs

Factor Range Explanation0=no1 = yes

0=no1 = yes

0=no1 = yes

1=highlydependentonlimitedskills2=somenewskills/resourcesrequired3=largelyachievablewithexistingcapability

1=restricted(<50%ofitems)2=significant(50–75%ofitems)3=majority(>75%ofitems)

0=extrapolationfromlimitedsamples1=fullareacovered

0–1

0–1

0–1

1–3

1–3

0–1

Practicablewithplantrunning

Retrofitpracticable

Offshorepracticable

Dependentonspecialistskills/resources

Rangeofplant

Fullareacoverage

Factor Range Explanation1=high(~£10m)2=medium(~£1m)3=low(~£100K)

1=high(~£1M)2=medium(~£100K)3=low(~£10K)

1=high(~£10M)2=medium(~£1M)3=low(~£100K)

0=significant1=negligible

1–3

1–3

1–3

0–1

Installandcommission (one-off)

Stafftraining(one-off)

Routineoperationandmaintenance(annual)

Productionimpactofuse

Factor Range Explanation1=largelynewandunfamiliar2=broadlyfamiliar;somenewaspects3=minorextensiontocurrentpractices

1=additionalprecautionsrequired2=broadlysimilar3=clearreductiontorisk/exposure

1 = high2=medium3=low

0=no1 = yes

1–3

1–3

1–3

0–1

Cultural/resistancetochange

Safety(personnel/environment)

Complexity(technical/procedural)

Significantindustrybacking(e.g.,majorvendor)

Page 25: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

25

Benefit

Thenetresultwastoderiveforeachtechnology,asetoffivescoresintherange0–10,oneforeachassessmentcriterion.Asitisdifficulttocompareacrossoptionsusingfivecriteria,thetwo‘Strength’attributes(applicability,benefit)andthetwo‘Weakness’attributes(cost,risk)weresummedforeachoptiontofurtherdepictthedata.

PresentationItwas felt important topresent the results inways thatwouldalloweasier visualassessmentandcomparisonratherthanatableofrawnumbers.For individualassessment,the‘spider’ (or ‘radar’)plotwithfiveaxeswas selected. Thisprovidesaquick visual indicationof the scoresonfiveaxes.Furthermore,criteriawhosescoresaresignificantlyoutofbalancewiththeothersarereadilyseen.Goodprospectsarelikelytobemoreevenlybalanced,withnodistinctweaknesses.

In the examples shown below the first graph indicates a ‘good’ prospect with evenly balancedattributes,thesecondgraphindicatesaprospectwhereoneoftheattributesislesswellrepresented(inthiscasetheTRL).

Evenly Balance Unevenly Balance

Factor Range Explanation1=insignificant(~£100K)2=minorbutworthwhile(~£500K)3=moderate(~£2.5M)4=significant(~£10M)5=radical(~£25M)

1=insignificant2=minor3=moderate4=significant5=radical

1–5

1–5

Annualcostsaving(plantoperationandmaintenance)

Safetyimprovement (plantintegrity)

Page 26: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

26

3.4 ResultsIndividual assessmentsDetailed assessment scores for each technology or technique reviewed are presented for vesselinspectioninSection4,andforCUIdetectioninSection5.Atabularsummaryoftheresultsispresentedbelow. Here the “Strength” has been calculated by combining applicability and benefits, with the“Weakness” being calculated by combining cost and risk. The “OtherMaturity (TRL)” is LockheedMartin’sassessmentofthematurityofthetechniquewithinotherindustries.Ahigherfigureindicatesabetterresult.

Vessel inspectionTheanalysisresultsforvesselinspectionare:

Technology/Technique

O&GMaturity (TRL)

ApplicabilityLimitations

9

9

9

9

7

6

6

6

6

4

3

3

2

2

Lowfrequencyelectromagnetictechnique

Phasedarrayultrasonic

Digitalimagecorrelation

Guidedwaveultrasonic

Acousticresonance

Autonomousinspection

Fullmatrixcapture

Remotemobileinspection

3Dlaserscanning

Unmannedaerialvehicles

Environmentandhealthmonitoringsystem

Widebandsonarbeamsteering

Electromagneticinductance

Terahertzspectralimaging

Risk Cost Benefit Strength Weakness

7

7

7

6

8

8

8

6

6

6

7

6

7

8

8

6

7

7

7

6

6

7

6

5

4

7

6

6

7

5

6

6

7

6

7

5

4

8

3

6

7

5

7

6

5

4

4

8

7

7

4

5

6

3

4

7

14

13

12

10

12

16

15

13

10

11

13

9

11

15

15

11

13

13

14

12

13

12

10

13

7

13

13

11

OtherMaturity (TRL)

9

9

9

9

7

6

6

6

6

4

3

3

2

2

Page 27: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

27

CUI DetectionTheanalysisresultsarepresentednumericallyinthefollowingtable:

Comparison of options

Vessel inspectionThevessel inspectionoptionsarecomparedinthediagrambelowbycombiningthetwo‘Strength’attributes(applicability/limitations,benefits)ontheY-axiswiththetechnicalmaturitylevelshownontheX-axis.Thetwo‘Weakness’attributes(cost,risk)arecombinedandformthesizeofthebubbles.Thediameterofthebubblesreflectstheperceivedweakness/challengeofthetechnology.AlargebubblehasfeweridentifiedweaknessesandislikelytobemoreeasilyadoptedgiventheappropriateR&Dspend.Theyellowcolouredbubblesaresensortechnologiesandthegreenrepresentenablingplatforms.

Technology/Technique

O&GMaturity (TRL)

ApplicabilityLimitations

9

8

8

9

8

8

8

0

7

0

3

3

3

3

0

3

2

0

Guidedwaveultrasonic

Radiographic-digitaldetectorarray

Radiographic-openvision

Snifferdogs

Pulsededdycurrent

Microwavesensing

Microwavedetectionofwaterwithininsulation

Vapourphasecorrosioninhibitor

LateralwaveLFET

Corrosionradar

Acousticresonance

Sacrificialwire

Electromagneticinductance

Electrochemicalimpedancespectroscopy

Ultrasonicsurvey

Terahertzspectralimaging

Acousticemission

Ultrasoundtomography

Risk Cost Benefit Strength Weakness

6

8

7

7

8

7

7

8

7

7

8

7

7

2

7

8

5

7

6

6

6

7

8

6

6

6

8

8

7

8

6

7

6

6

5

6

5

7

7

7

7

6

6

7

7

7

7

7

7

7

7

5

6

7

5

5

5

6

7

7

7

6

7

5

4

5

4

2

3

7

4

4

11

13

12

13

15

14

14

14

14

12

12

12

11

4

10

15

9

11

11

13

13

14

15

12

12

13

15

15

14

15

13

14

13

11

11

13

OtherMaturity (TRL)

9

9

9

8

8

8

8

8

7

4

3

3

3

3

3

2

2

2

Page 28: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

28

CUI DetectionThe CUI detection options are compared in the diagram below by combining the two ‘Strength’attributes(applicability,benefits)ontheY-axiswiththetechnicalmaturitylevelshownontheX-axis.Thetwo‘Weakness’attributes(cost,risk)arecombinedandformthesizeofthebubbles,thelargerthebubblethelowertheweakness.AlargebubblehasfeweridentifiedweaknessesandislikelytobemoreeasilyadoptedgiventheappropriateR&Dspend. Therearenoenablingplatformsshowninthediagrambelow.HowevertheplatformslistedforvesselinspectioncouldpotentiallybedevelopedforusewithCUIdetection.

Page 29: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

29

Heat MapThematrixbelowprovidesavisualisationofhowtheindividualtechnologiesdetailed inthisreportperformagainsteachofthechallengestypicallyencounteredbyCUIandvesselinspectiontechnologies,givingaquickandeasymeanstoidentifywhichinnovationsbestapplytospecificchallenges.

Thetechnologiesarelistedalongthetopofthematrixandthechallengesarelisteddowntheleft,withtrafficlightsymbolsusedattheintersectionstodenoteeachtechnology’sabilitytomeeteachchallengeforCUI,vesselinspection(VI),orboth.

Page 30: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

30

SECTION 4

VESSEL INSPECTION

Page 31: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

31

4.1 Low Frequency Electromagnetic Technique

Page 32: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

32

SummaryLowFrequencyElectromagneticTechnique(LFET)worksbyinjectingalowfrequencymagneticfieldintoametalplateortubeandusingscanner-mountedpickupcoilstodetecttheinducedACmagneticfieldinthematerialmeasuringthedistortionsintheresultingmagneticfieldthatoccuroveraflaw.Thispickupcoil isplacedsuchthatthereturnpathforthemagneticfieldisthroughtheareatobetested.Flawsaredetectedbymeasuringthemagneticfielddirectlyovertheflawareawithsensorcoils.

A flaw or defect causes the magnetic flux linesin that area to be distorted or different thanexpected. This distortion can bemeasured as achangeinphaseand/oramplitude.Withsuitablecalibration tables the flaw can be analysed andadeterminationofflawdepthandshapecanbemade. By using several sensors in the scannerarray it is possible to display a 3D image of thecollecteddatasothattheshapeanddepthoftheflawcanbedetermined.

LFETproductsareusedto inspectstoragetanks,otherconvexorconcaveferroussurfaces,aswellasnonferrousmetaltubing/pipingsurfaces.

LFETscannerscanbeusedinsettingswherecompetingtechnologiesfailorareinconvenient

LFETscannersdetectsflaws,includingcorrosioncellsandhydrogendamage,causticandphosphategouging,oxygenpitting,departurefromnucleateboiler,IDpitting,corrosion,anderosion.

Crackingisalsodetectableanditsdetectioncanbeoptimisedbymodifyingthepick-upcoilconfiguration.

TherearevariousscannersystemsthatemployLFETtechnologymanufacturedwithspecificapplicationorsituationsinmind.Flatbedscannersforabovegroundtankscanninghavealargescanningarea,pipecrawlerswhichrunabovepipesofvaryingdiameter,360pipecrawlerscannerswhichautomaticallyadjusttopipediameterandmodularcrawlerscannersthatcanbeusedtoscaneitherhorizontalorverticalmagneticsurfaces.

Key Attributes• Technologyisinuseandreadilyaccessiblefromvendors;• Inspectionofpipeorflatsurfaces;• Bothmagneticandnon-magneticmetalscanbescanned(ascaneconomizertubing);• MinimalPipePreparationandinsomecasesnopreparationrequired;• Real-TimedisplaywithsomeLFETscanners;• InspectsthroughI.D.orO.D.scale.

Limitations• Ifpipeorsurfacepreparationisrequiredtimescaleisimpactedasarecosts.

Sources• testex-ndt.com/products/lfet-products

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 33: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

33

4.2 Phased Array Ultrasonic

Phased Array Ultrasonic TechniqueSource:

O&G TRL: 9

DescriptionUses multi-element ultrasonic probes, pulsed individually in a programmed pattern under computer control allowing a large area to be swept from a fixed probe point. PA systems can greatly simplify the inspection of components with complex geometries. The small footprint of the transducer and the ability to sweep the beam without moving the probe also aids inspection of such components in situations where there is limited access for mechanical scanning. Systems are available in a variety of models with increasing complexity and capability. Instruments range from basic models that perform simple sector and linear scans with 16-element probes to advanced systems that offer multi-channel capability and advanced interpretive software with probes of up to 256 elements.

Can be applied to Vessels externally or internally and used to determine vessel wall thickness.

Key AttributesLinear or sector scans

Display enables flaw visualisation

Higher cost than traditional ultrasonic techniques

High degree of operator expertise required

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 1

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 2

Safety Benefits 4

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 34: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

34

SummaryIn conventional (non-PhasedArray) single-element ultrasonic probes, a beam is emitted in a fixeddirection.Totestalargevolumeofmaterial,aconventionalprobemustbephysicallyscanned(movedorturned)tosweepthebeamthroughtheareaofinterest.Incontrast,thebeamfromaPhasedArray(PA)probecanbefocusedandsweptelectronicallywithoutmovingtheprobe.

ThebeamiscontrollablebecausePAultrasonicsystemsutilisemulti-elementultrasonicprobes,whichareindividuallypulsedinaprogrammedpatternundercomputercontrol.Byexcitingeachelementinacontrolledmanner,beamscanbesteeredandfocussedwithasingletransducerassembly.Thebeamissweptlikeasearch-lightthroughtheobjectbeingtestedandthedatafrommultiplebeamsareconsolidatedtoproduceanimageshowingaslicethroughtheobject.Twoandthreedimensionalviewscanbegeneratedshowingthesizesandlocationsofanyflawsdetected.

PAsystemscangreatlysimplifytheinspectionofcomponentswithcomplexgeometries.Thesmallfootprintofthetransducerandtheabilitytosweepthebeamwithoutmovingtheprobealso aids inspection of such components insituations where there is limited access formechanicalscanning.

PA systems are commonly used for weldinspection. The ability to test welds withmultiple angles from a single probe greatlyincreases the probability of detection ofanomalies. Electronic focusing permits

optimisingthebeamshapeandsizeattheexpecteddefectlocation,thusfurtheroptimisingprobabilityofdetection.Theabilitytofocusatmultipledepthsalsoimprovestheabilityforsizingcriticaldefectsforvolumetricinspections.

PAsystemsareavailableinavarietyofmodelswithincreasingcomplexityandcapability.Instrumentsrange from basicmodels that perform simple sector and linear scanswith 16-element probes toadvancedsystemsthatoffermulti-channelcapabilityandadvancedinterpretivesoftwarewithprobesofupto256elements.PAtransducersmaybeusedwithvarioustypesofwedges,inacontactmode,orinimmersiontesting.Theirshapemaybesquare,rectangular,orround,andtestfrequenciesaremostcommonlyintherangefrom1to10MHz.

PAsystemscanpotentiallybeemployedinalmostanytestwhereconventionalultrasonicflawdetectorshavetraditionallybeenused.Weldinspectionandcrackdetectionarethemostimportantapplications,andPAscanalsobeusedtoprofileremainingwallthicknessincorrosionsurveyapplications.

Page 35: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

35

Key Attributes• Beamfocusingandsteering;

• Linearorsectorscans;

• Displayenablesflawvisualisation.

Limitations• Highercostthantraditionalultrasonictechniques;

• Highdegreeofoperatorexpertiserequired.

Sources• OlympusIMSNDTTutorials;

• TheWeldingInstitute(TWI);

• “NDTDatabase&JournalofNon-DestructiveTesting”

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record

Page 36: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

36

4.3 Digital Image Correlation

Page 37: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

37

SummaryDigital image correlation (DIC) is amethodology for obtaining and comparing images to highlightchangesanddefects,accuratelyandtohighprecision.DICcancomparenotonlyopticalimages,butimagesfromthermographiccamerasandlaserscanners,tohighlightneworchanginghotspots,orchangingdimensionsofvessels.

DIC involves digitally comparing images to highlight any areas that are different to images takenpreviously.Itdoesthisveryaccuratelyandtoalevelthatcouldnotbedonevisuallyfromthesamedistanceorwithoutbeingveryclosetoobjects.Forthisreason,itisextremelyversatile.

DIFCAM StudyTheNationalPhysicalLaboratory (NPL)andpartnersdevelopedabespokesystemforNetworkRailusingDICthatcouldbeusedtoenhancevisualinspectionsofrailtunnels.

TheaimofthisDigitalImagingForConditionAssetManagement(DIFCAM)projectwastodevelopaworld-classcapabilityintheuseofopticaltechniquestorapidlymonitor&assessassetcondition.Thisinvolvedthedevelopmentofademonstratorformonitoringtheinteriorofrailtunnels,reducingoreliminatingtheneedfortrackaccess&subjectivehumanvisualinspectionsasanexampleofagenerictechnologyplatform,thatcouldbedeployedinothersectors.Railtunnelexaminationwasidentifiedasagooddemonstratorforthistypeoftechnologyasitisacurrent,high-costproblem,withaclear,identifiedmarketneedandanaccessiblepartner/customerbase.

The main feature of the DIFCAM system is that it relies on application of DIC techniques in thecomparisonofonemeasurementrunwithanother,potentiallytakenmonthsoryearsapart.WorkatNPLestablishedthatthismeasurementtechniquecouldbeappliedtolargecivilengineeringstructuresand used for in-situ measurements, and therefore it was applied to tunnel imagery to comparesuccessivetunnelimagestakenovertime.

Correlatingtheimagestakenusingahighresolutioncameraarrayfromdifferentrunsidentifiesanychanges ormovement in the tunnelwall appearance. A similar processwas usedwith the shapemeasurementdatacapturedfromalaserscannertoidentifychangesinshapefromruntorun.Thiswasenabledbyaccuratelymeasuringthepositionandorientationofthevehicleonwhichthecameras/sensorsweremountedduringeachrun.

Themainbenefitsofusingthismeasurementapproachwere:• Speedofmeasurementimprovedovermanualinspection;• Highresolutionimagery;• Combinedshapeandappearancemeasurements;• Archivalstorageofhighqualitydata;• Automateddatageneration;• Automatedscreeningcapability;• Automateddefectreportgeneration.

ForlaboratoryDICmeasurements,particularlymaterialtesting,agreyspecklecoatingisoftenappliedtoensurelocalcontrast.Howeverwithlargeengineeringstructuresitwasfoundthat,withsuitablelighting,therewassufficientlocalcontrasttoallowreliablemeasurementstobemadewithoutanysurfacepreparation.

Thesystemperformanceforthedemonstrationsystem,whichrunsprimarilyondesktopcomputers,meant thatapairof24megapixel imagescouldbeprocessed in30 secondsusinga12processorcore.Forthedemonstratortherewere11picturespermetre,thereforeatwindesktopsystemcouldprocessabout1metreoftunnelperhour.Theimagestoragerequirementswereapproximately10GBytespermetreperrun.Shapemeasurementdatacouldbeprocessedmorequicklyandhadalaser

Page 38: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

38

scannerstoragerequirementofabout10Mbytespermetre.Notethattheanalysisofbothformsofdataiswellsuitedtoparallelprocessingandcaneasilybescaledtoasystemwithmanyprocessors,resultinginaperformancethatscalesalmostlinearlywiththenumberofprocessors.

During trials and in-between two successive inspection runs, inspectionengineerswalked throughthetunnelstocreateman-madedefectstodeterminetheeffectiveness inthesystem.Theseman-madedefectsincludedanareawheresootwasscrapedoffthewall,ascrewhadbeenleftonsomeabandonedandnot-in-servicerail,andabucketofwaterwasthrownonthewall.Uponthesecondpass,theDIFCAMsystemidentifiedallofthesedefects(withinan800mtunnel).Inadditiontothis,theDIFCAMsystemhighlightedthechangesintherandompatternofgravelcausedbytheinspectionengineers’footprints.

Theimagesbelowshowthetunnelwallbeforeandaftertheman-madedefectsareintroducedandthecorrespondingDIFCAMprocessedimages.

AnareaofthetunnelwallatWansfordpriortoanintroduceddefect.

Thesameareacapturedinasubsequentmeasurementrun,thereisasmallchangeinthecoverageofapatchofsootnearthemiddleofthe

fieldofview

Amapofverticaldisplacementforthetunnelwallshownabove.Thescaleisinmmofmovement.

Theareanearthemiddleisprimarilycomposedofdisplacementsthatareoutofrange

Amapofcorrelationcoefficientforthetunnelwallshownabove.Areasthataredarkerhavepoorer

correlation.

Similarsystemshavebeendeveloped,orareunderdevelopment,fordifferentapplications,highlightedbelow:• Monitoringcrackgrowthofcementsurroundingnuclearreactors;

Page 39: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

39

• UtilisingDICforconditionmonitoringorvisualinspectionofcablesubwaysforelectricalnetworksowners/operators;

• Determinewhethermedicationhasbeentamperedwith;• UsingCCTVtodetectblockagesoflargedrainagefacilitiesfortheenvironmentalagency.

Key Attributes• Rapiddatacapturecomparedtoconventionalinspectionmethods;• Directrun-to-runinspectioncomparisonhighlightingdifferencesto1mm;• Fullrecordofthestructureviaarchivedtimehistoryofappearanceandshape;• Moreefficientuseofexperiencedinspectors;• Reductionincostandimprovementinworkforcesafety,particularlyforhazardousordifficult-to-

accessenvironments;• Richer,moredetailed3Dspatialdata;• Modulararchitecturetoallowelementreuseandadaptationformultipleapplicationsindifferent

sectors.

LimitationsAdditionalDICsoftwarewouldhavetobedevelopedforVessel Inspectionpurposes,andbasedontheirrespectivemeasurementspecifications.ThemeasurementspecificationidentifiesthetypesofdefectstoidentifyandthereforeprovideinformationastotheaccuraciesininstrumentationandtherequiredDICsystem.

Sources• “AlternativeMethods forRailwayTunnelExamination–AReviewandRecommendations”;NPL

ReportMAT42;• “Digitalimagingforconditionassetmanagement(DIFCAM)(November2013)”;NationalPhysical

Laboratory.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 40: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

40

4.4 Guided Wave Ultrasonic

Guided Wave UltrasonicSource: O&G TRL: 9

DescriptionGuided Wave Ultrasonic Testing (GWUT) utilises stress waves that propagate along an elongated structure while guided by its boundaries. This allows the waves to travel a long distance with little loss in energy. GWUT uses very low ultrasonic frequencies, between 10~100kHz, compared to those used in conventional ultrasonic testing. At higher frequencies the range is significantly reduced. Also, the underlying physics of guided waves is more complex than bulk waves. The physical reflection of guided waves enables the detection of defects with a depth much smaller than a wavelength. Commonly used for routine pipeline inspection, the same principles can be used for defect detection in vessels. Industrial pilots are taking place focussed on monitoring vessel floors using permanently attached sensors.

Key AttributesPotential for continuous monitoring

Non-invasive once fitted

Potentially high cost to retrofit

Applies to vessel floor only

Not yet proven effective

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 1

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

Marine transport

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 41: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

41

SummaryGuidedWaveUltrasonicTesting(GWUT)fortankmonitoringhasbeenunderdevelopmentatTWIforanumberofyearsandiscurrentlydeployedinoilandgasstoragefacilitiesaspartofanongoingpilottoprovethetechnology.GWUTfortankmonitoringinvolvestheuseoflowfrequencyultrasoundtoexamineabovegroundstoragetanksinternalfloorplatesforcorrosion.Thetechniqueusesanumberofpermanentlyattachedsensorswhicharebondedtothelipoftheannularplateextendingbeyondthetankwall.Thelongdistancepropagationcharacteristicsoftheultrasonicwavesusedallowsignalsfromonesideofthetanktobepickedupbyasensorontheotherside(upto30mdiameter).

Byusingcombinationsoftransmitandreceiveamongstthesetofsensors,itispossibletocoverthewholefloorarea.Bytakingreadingsfromthesensorsregularlyandwiththecirculargeometryofthetanksstructureitallowsatomographicmethodtobeusedtoreconstructanimageofthetankfloorfromthetransmittedultrasonicsignals.

Theimageisformedbycollectinginformationatmanyangularpositionsaroundthecircumferenceofthetankso long term trends in the conditionof thefloor canbedetermined.The techniquealsoallows short termvariations, forexample fromtemperaturefluctuationsorchangesinthefilllevelsinthetank,tobeseparatedfrom changes in the physical condition of the floor.In this way, tanks needing priority attention may beidentifiedandthemorerigorousinternalexaminationsmaybeconcentratedonthese.

Theweldinginstitute(TWI)hasproventhatthetechnologyiscapableofdetectingcorrosionandthattheprincipleofthedetectionofdegradationoftheconditionoftankfloorshasbeendemonstrated.Thecurrentpilotcontinuesasitisvitalthattheabilityofthisnon-invasivetechniquetodetectandtoidentifyadequatelyrealservice-inducedcorrosionorcrackingisdetermined,ifitisevergoingtobeusedasaprimaryonlinemonitoringmethodinliveplants.

ImperialCollegeLondonisalsoconductingstudiesusingGWUTforvesselinspectioninconjunctionwithworktheyaredoingusingthistechnologyforCUI inpipeline inspection.AlthoughatanearlystageImperialCollegeLondoniscontinuingtobuildonvesselinspectionusingGWUTbyusingsensorsthatsweepthesectionundertest(almostlikealighthousebeacon)andisalsolookingataroboticmethodofdeployingGWUTtechnology

Key Attributes• Allowscontinuousmonitoring;• Non-invasiveoncefitted.

Limitations• Requiresretro-fittingtovessels;• Potentiallyhighcost;• Researchhasmainlybeenforvesselfloormonitoringonly;• Requireshighlevelsofexpertisetoapplyandinterpretresults;• Stilltobeprovenasaneffectivetechnique.

Sources• www3.imperial.ac.uk/nde/researchthemes/inspection/guidedultrasonicwaves;• TWI research paper• Long RangeGuidedWave InspectionUsage – Current Commercial Capabilities and Research

Directions,2006,M.J.S. LoweandP.Cawley.DepartmentofMechanicalEngineering ImperialCollegeLondon;

Page 42: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

42

• BS9690-2:2011 ’Non-destructivetesting.Guidedwavetesting.Basicrequirements forguidedwavetestingofpipes,pipelinesandstructuraltubulars’.BritishStandardsInstitute.ISBN9780580 73794 7.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 43: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

43

4.5 Acoustic Resonance

Acoustic ResonanceSource: O&G TRL: 7

DescriptionA sending transducer transmits a broad-band acoustic signal towards the pipeline. The signal then spreads in the structure, exciting half-wave resonances, and the structure's response signal is then detected by the receiving transducer.Analysis of the frequency content of the response signal gives the resonance peak frequencies, from which the base resonance frequency - and ultimately the structure's thickness - can be estimated. During post-processing, multiple measurements can be combined to estimate the size and depth of flaws, such as wall loss, in the metal structure.

Key AttributesPotentially very accurate

Does not directly detect corrosion, detects wall loss and may not be able to distinguish between external and internal wall loss;

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 44: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

44

SummaryAcoustic resonance technology (ART)usesa sending transducer to transmitabroad-bandacousticsignal towards the metal structure. The signal then spreads in the structure, exciting half-waveresonances,andthestructure’sresponsesignalisthendetectedbythereceivingtransducer.

Analysis of the frequency content of theresponse signal gives the resonance peakfrequencies,fromwhichthebaseresonancefrequency–andultimatelythestructure’sthickness–canbeestimated.Duringpost-processing,multiplemeasurementscanbecombined to estimate the size and depthof flaws, such as wall loss, in the metalstructure.

Thistechniquecanpotentiallybeusedfordetectingcorrosionandwalllossinvesselswithoutenteringthevessels,howeverwearenotawareofanyproductsortrialslookingatthisarea.

Key Attributes• Measuresinternalandexternalwallthickness;• Potentiallyveryaccuratescans;• Scansthroughfirecoatings.

Limitations• Accuracyislimitedwithirregulargeometry;• Needs360degreeaccesstopipeline;• The deployment of the technique is slow with the receiving sensor needing to be in close

proximitytotransmitter;• Can’tyetscanthroughmetalcladding.

SourcesHalfwavewebsite:http://www.halfwave.com/acoustic-resonance-technology-art/

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 7 – Initial production use (less than 3 years)

Page 45: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

45

4.6 Autonomous Inspection

Autonomous InspectionSource: O&G TRL: 6

DescriptionAutonomous inspection technologies build on the capability of remote mobile inspection techniques by completely removing operator dependence. Developments in processing, battery, sensor and decision-making technologies allows for devices with the potential to autonomously navigate objects and perform inspections without human involvement, taking advantage of the ongoing improvements in the portability, automation and consistency of the scanners available for a range of NDT techniques.Underwater Autonomous Vehicles (UAVs) and autonomous crawlers for topside use offer a potentially transformational platform for future inspection operations.

Key AttributesAble to operate without human involvement.

Reduces likelihood of operator error during often lengthy, tedious human-controlled inspection.

Not subject to the same inspection range limitations of remotely operated devices.

Can carry out work where humans are unable or unwilling.

Can allow work to be carried out remotely onshore, offshore, topside and subsea.

Multiple application within the oil and gas domain.

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 1

Safety 3

Complexity 1

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 4

Safety Benefits 4

Other Industries

Medical Industry Agriculture Space exploration AerospaceManufacturing MilitaryNuclear

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 46: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

46

SummaryAutonomousinspectiontechnologiesbuildonthecapabilityofremotemobileinspectiontechniques(andalloftheirassociatedsafetyandeconomicadvantages)byremovingoperatordependencefrominspection devices. Developments in processing, battery, sensor and decision-making technologieshasnowallowedfordeviceswiththepotentialtoautonomouslynavigateatargetenvironmentandperforminspectionswithouthumaninvolvement.

ThetwoprimaryareaswhereremotemobileinspectiontechniquesprimarilyapplyissubseaviaROVsand plant inspection via remotely operated robotic devices such as crawlers. Both of these areashaveseensignificantresearch,developmentand,insomecases,productdevelopmentfocussedonautonomousvariants,whetherthatbeautonomousvehicles(AV)orautonomouscrawlers.

AV currently under development are capable ofautonomously homing and docking, providingthe ability to deploy and recover a vehicle atdepth. Once deployed, AV can carry out facilityinspections, including “as built” surveys, baselinesurveys of existing structures, decommissioningsurveys, and the use of high res sonar forstructural integrity assessment and generationof3Dstructuralmodels.Theyarealsocapableofautonomously locating, tracking and surveyingpipelines/flowlines, operating at depths of up to4,000metres.

Autonomouscrawlershavebeenusedforsometimeinelectricitynetworks,aerospaceandshippingfortheautomatedinspectionofhighvoltagepowerlines,military/commercialaircraftandhullinspection.They take advantage of the ongoing improvements in portability, automation and consistency ofthe scanners available for a range ofNDT techniques. Crawlers can either be pre-programmed toperform(andrepeat)inspectionsatpre-definedlocations,orhavetheon-boardcapabilitytosenseandmanoeuvrearound/overobstaclesencountered,typicallyusingrollers,magnetism,suction,oracombinationofthese,totraverseanobject.

Unlike remotely operated inspection, autonomous vehiclesalsorequireautonomyofpowerandsotheiroperationtimecanbelimitedbythelifespanoftheiron-boardpowersupply.Inresponsetothis,devicescanbeprogrammedtoreturntoabasestationforchargingwhenthepowersupplyissufficientlydiminished.

Autonomousoperation typically requires alternatemethodsofdatacaptureandrecordingtobeusedthanthoseonremotemobilesolutions.Commonalternativesincludewirelessdatatransferand/oron-boardrecordingofdataduringoperationforsubsequenttransferuponreturntoabasestation.

Key Attributes• Abletooperatewithouthumaninvolvement;• Reduceslikelihoodofoperatorerrorduringoftenlengthy,tedioushuman-controlledinspection;• Notsubjecttothesameinspectionrangelimitationsofremotelyoperateddevices;• Cancarryoutworkwherehumansareunableorunwilling;• Canallowworktobecarriedoutremotelyonshore,offshore,topsideandsubsea;• Multipleapplicationwithintheoilandgasdomain.

Page 47: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

47

Limitations• Autonomyofpowersupplycanlimitoperationaltimebetweenpowersupplyreplenishment;• Mayrequireadditionalinfrastructuretosupportpoweranddatatransferrequirements;• Eachdifferent inspectionrequirementtypicallyrequiresadifferentrobotspecificallydesigned

forthatrequirement.

Sources• LockheedMartinMSTUnderseaSystems

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 6 – Industrial pilot in idealised conditions.

Page 48: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

48

4.7 Full Matrix Capture

SummaryFullmatrixcapture(FMC)isadataacquisitiontechniquethatallowsforthecaptureofeverypossibletransmit-receivecombinationforagivenultrasonicphasedarray(PA)transducer.

InspectionusingPAultrasonictechniquesisnowrelativelywellestablished,withseveraladvantagesoverconventionalultrasonictechniquesresultingfromtheabilitytosteerandfocusultrasonicwaves

Full Matrix CaptureSource: O&G TRL: 6

DescriptionFull matrix capture (FMC) is a data acquisition technique that allows for the capture of every possible transmit-receive combination for a given ultrasonic phased array (PA) transducer.Inspection using PA ultrasonic techniques is now relatively well established, with several advantages over conventional ultrasonic techniques resulting from the ability to steer and focus ultrasonic waves using a single transducer containing multiple probes. By utilising beam steering and focussing, a single transducer can perform a task which usually requires multiple conventional ultrasonic transducers.

Post-processing of FMC data can provide much more information than standard PA processing; focusing depths and beam angles can be optimised after the inspection

Key AttributesFully focused images

High sensitivity to small flaws

High resolution

Ease of inspection setup as no need to apply complex focal laws

Ease of interpretation

In comparison to Phased Array, FMC offers:

Better perspective

Improved vertical resolution

Improved flaw definition, allowing for better sizing

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 3

Sample/Full Area 0

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 3

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 3

Safety Benefits 4

Other Industries

Nuclear

0123456789

10TRL

App/Lim

RisksCosts

Benefits

Page 49: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

49

usingasingletransducercontainingmultipleprobes.Byutilisingbeamsteeringandfocussing,asingletransducercanperforma taskwhichusually requiresmultipleconventionalultrasonic transducers.Electronicbeamsteeringalsominimisestherequirementformechanicalmovementofthetransducer,whichcansavetime,improvesflawsizingaccuracy,andisadvantageouswhenaccesstoacomponentislimited.

FMCisadataacquisitionprocesswhichcapturesandstoresA-scan(time-amplitude)dataforeverytransmitter-receivercombinationofelementsinaPhasedArray.Thetechniqueusesa“transmitononeand receiveonall” data capture approach. Initially, a singleelement in thearray is usedas atransmitter,whileallelementsthenreceive.Thisprocessrepeatsuntilallelementsinthearrayhavebeenfired.

TheimagebelowillustratestheFMCprinciples.

During the standard PA acquisition process, the raw signals are processed at the hardware levelandarenotavailable for subsequentoff-lineprocessing.However,withFMCall raw information isavailableaftercapturetosyntheticallygeneratethedataresultingfromanygivenbeamthroughoff-lineprocessingusinganalgorithmsuchastheTotalFocussingMethod(TFM).

Post-processing of FMC data can provide much more information than standard PA processing;focusingdepthsandbeamanglescanbeoptimisedaftertheinspectiontobettercharacterisedetectedindications. This is a significant benefit over the standard PAprocess and itmight, in some cases,preventcostlyre-scans.

AcomparisonofimagesobtainedusingstandardPAandFMCisshownbelow.HeretheimageontheleftwastakenusingstandardPIandthehigherresolutionimageontherightwithFMC.

Page 50: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

50

Key Attributes• Fullyfocusedimages;• Highsensitivitytosmallflaws;• Highresolution;• Easeofinspectionsetupasnoneedtoapplycomplexfocallaws;• Easeofinterpretation;• IncomparisontoPhasedArray,FMCoffers:oBetterperspective;o Improvedverticalresolution;o Improvedflawdefinition,allowingforbettersizing;oReducedmisinterpretationofgeometryechoesvs.defects.

Limitations• Equipmentusedmustsupportveryhighdatatransferratesandtheabilitytohandlelargedata

files;• Equipmentusedmustprovideaveryhighsignalqualitywithlowlevelsofelectronicnoise.

Sources• TheWeldingInstitute(TWI)• “Real-time fullmatrix capture for ultrasonic non-destructive testingwith acceleration of post-

processingthroughgraphichardware”;NDT&EInternational;October2012;• “DevelopmentandValidationofaFullMatrixCaptureSolution”,PatrickTremblay,DanielRichard;

ZETEC,Canada;• “Full-Matrix Capture with a Customizable Phased Array Instrument”; Gavin Dao, Dominique

BraconnierandMattGruber.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 6 – Industrial pilot in idealised conditions.

Page 51: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

51

4.8 Remote Mobile Inspection

Remote Mobile InspectionSource: O&G TRL: 6

DescriptionRemote mobile inspection can provide significant advantages over current manual methods of inspection; this includes the ability to support human inspectors, and the ability to operate in hazardous, harsh and dirty environments. There are different kinds of remotely operated inspection solutions in the oil, gas and petrochemical industry, ranging from remotely operated subsea vehicles to mobile robotic systems for topside use that can perform inspection and maintenance operations on assets.This has placed remote mobile inspection in an ideal position to be an integral part of the inspection and maintenance strategies.

Key AttributesAssist human inspectors.

Can carry out work where humans are unable or unwilling.

Can allow work to be carried out remotely onshore, offshore, topside and subsea.

Some robotic technology allows maintenance and checks to be carried out without shutdown of assets.

Systems perform multiple tasks or can be fitted with sensor or control arms to suit the situation or requirements of that specific task.

Applicability / LimitationsWith Plant Running 0

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 2

Safety 3

Complexity 1

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 1

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 3

Safety Benefits 4

Other Industries

Medical Industry Agriculture Space exploration AerospaceManufacturing MilitaryNuclear

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 52: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

52

SummaryTherearedifferentkindsofremotelyoperatedinspectionsolutionsintheoil,gasandpetrochemicalindustry, ranging from remotely operated subsea vehicles to mobile robotic systems for topsideusethatcanperforminspectionandmaintenanceoperationsonassets.Systemsrangefromtailor-madesolutionsbyinspectioncompaniestocommerciallyavailableinspectionsystems.Themajorityof these remote systems have implemented a limited number of inspection technologies; theseinclude,amongstothers,visualandcamerasystems(mostoftheremotesystemsarefittedwithvisualinspection technology), ultrasonic sensors for thickness gauging, andmagnetic or electromagneticsystems.

Oneofthemainadvantagesofremotemobile inspectionsolutionsisthattheycanreachlocationsinaccessiblebyhumansbecauseofsizeconstraints,temperature,andimmersioninliquids,hazardousconditions,orheightrestrictionswithsafetyconcern.

Theremotemonitoringofhazardouson-shoreplantsandrefineriesisanemergingfieldforremotelyoperatedmobileroboticsystems. Intelligentandreliableroboticand instrumentationsystemshavebeendevelopedtoenableonshoreoperatorstomonitorandcontrolvariouspartsoftheplantfromasafelocation.Remotelyoperatedroboticsystemsarebeingusedtoallowhumanoperatorstoperformtaskssuchasgaugereadings,valveandleveroperationsandmonitoringofgaslevel,leakage,acousticanomaliesandsurfaceconditionsremotelyandsafely.

Applications in the oil, gas and petrochemical industry forasset inspectionsare limited,but the roboticsolutions thatarebeingusedaretypicallyremote-controlledcrawlersthatusemagneticwheels.Theseareabletoclimbthewallsandeventheroofof(horizontal)assets.Someareabletocoverthewholeinsideareaofanasset(withoutinternals)andevennegotiatesimpleobstaclesthemselves.Sofartheyhavebeenusedforapplicationsliketheinspectionofcleansteamchests,pressurevessels,andAboveGroundStorageTanks(AST)fromthe outside. Although asset inspection typically requiresassetstobetakenoutofoperation,roboticsolutionswiththecapability to inspectanASTfloorwhile the tankremains inserviceareavailable.Examplesofremotely-controlledroboticsystems that can be used for asset inspection include theOTIS,developedbyA.Hak,MagneBikeandFAST,developedbyAlstomInspectionRobotics,andalineofcrawlersystemsdevelopedbyTesTex.

Robotic solutions for the inspection andmaintenance of assets in the oil, gas and petrochemicalindustryhavetheirfoundationsinthesubseadomain.Duetotheinaccessibleenvironment(mainlydeepseaoperations),RemotelyOperatedVehicles,commonlyreferredtoasROVs,havebeenusedtoassistinthedevelopmentofoffshoreoilfields.Theirtasksrangefromsimpleinspectionofsubseastructures,pipelinesandplatforms,toconnectingpipelinesandplacingunderwatermanifolds.Theyareusedextensivelyboth in the initial constructionof a subseadevelopmentand the subsequentrepair andmaintenance of the assets. Most ROVs are equipped with video cameras and lightingsystems,withadditionalequipmentaddedtoexpandthevehicle’scapabilities.Theseoften includestill cameras,manipulators or cutting arms, water samplers, and instruments thatmeasurewaterclarity,lightpenetration,andtemperature.Therearealsoinspectionandmaintenancesystems(suchasunderwaterwelding)andmagneticorelectromagneticsystemsforinternalandexternalinspectionsofpipelinesandthestructuraltestingofoffshoreplatforms.

Page 53: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

53

Key Attributes• Assisthumaninspectors24/7;• Cancarryoutworkwherehumansareunableorunwilling;• Canallowworktobecarriedoutremotelyonshore,offshore,topsideandsubsea;• Somerobotictechnologyallowsmaintenanceandchecktobecarriedoutwithoutshutdownof

assets;• Multipleapplicationwithintheoilandgasdomain;• Manyroboticsystemsperformmultipletasksorcanbefittedwithsensororcontrolarmstosuit

thesituationorrequirementsofthatspecifictask.

LimitationsAlthoughsubseaROVsystemshavebeeninoperationforaconsiderabletimeandhaveabigindustryandtrackrecordbehindthem,theuseofremoteroboticsinoil,gasandpetrochemicalmaintenanceandinspectionislessmature.Howeveritisagrowingindustry,thereisaneedforthistypeoftechnologyanditexpectedtogrowandexpandasthetechnologyandmethodsofdeployingitdevelop.• Remote inspection typically takes longer thanhuman inspection (althoughoverall inspection

operational time may be reduced because fewer and/or less stringent safety measures arerequired);

• Rangeofremoteinspectioncanbelimitedbytheacceptablelengthandflexibilityofpower/datacables;

• Eachdifferent inspectionrequirementtypicallyrequiresadifferentrobotspecificallydesignedforthatrequirement.

Sources• testex-ndt.com/products/lfet-products/viper-crawler• a-hak-is.com/en/home/what_we_do/markets/tank_storage/integrated_tank_services/

inspection/online_robotic_tank_bottom_inspection• petrobotproject.eu• inspection-robotics.com/products

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 6 – Industrial pilot in idealised conditions

Page 54: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

54

4.9 3D Laser Scanning

3D Laser ScanningSource: O&G TRL: 6

Description3D Laser Scanning enables non-invasive surveys and measurements for various industries and is already in widespread use to provide accurate recording of asset infrastructure for onshore and offshore assets within the oil and gas industry. The resultant data point clouds can then be joined to form an accurate 3D digital model of the asset which allows engineers to perform 3D walkthroughs to assist in the planning of changes and because they are sufficiently accurate to take measurements from, can be used to identify placement for new piping and vessels.

Key AttributesExtremely Accurate measurements (millimetres)

Elimination of Rework

Reduced man hours for on-site inspections

Non-invasive survey and inspection

Inspections can take place whilst the plant is still in operation

Reduces the risk of safety to personnel

Open Source Software compatibility

Applicability / LimitationsWith Plant Running 0

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 1

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 55: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

55

Summary3D Laser Scanning enables non-invasive surveys and measurements for various industries andisalready inwidespreaduse toprovideaccurate recordingofasset infrastructure foronshoreandoffshoreassetswithintheoilandgasindustry.Theresultantdatapointcloudscanthenbejoinedtoformanaccurate3Ddigitalmodeloftheassetwhichallowsengineerstoperform3Dwalkthroughstoassistintheplanningofchangesandbecausetheyaresufficientlyaccuratetotakemeasurementsfrom,canbeusedtoidentifyplacementfornewpiping,vesselsandsoon.Thetechnologyeliminatesissueswithmanualmeasurementsandreferencetooriginaldrawings,whichcanbetimeconsumingandpossiblyinaccurate.

Laser Scanning - How it worksAlaserisfiredandforeverypointthatthelaserhits,apointinspaceisrecorded.Ascannerrecordsthereflectivityofthesurface,withcamerasprovidingcolourandRedGreenBlue(RGB)values.Thepointsthatarecapturedcanbeamillionormorepointsofdatapersecondandthiscreateswhatisknownaspointclouddata–a3Dendproductforprocessingthecaptureddata.Pointcloudscanbeuseddirectlyortransferredintootherfilesystemsformanipulation.

This scanned data can then be provided as photo realistic drawings and simulations – which areparticularlyusefulincaseswherenodrawingsexistorwereoriginallyonlyhardcopieswereavailable.Thedatacanalsobeconvertedintomeshedor3Dsurfacedmodels.

Theimagesbelowshowanexampleofascanandtheresultant3Dmodelandprintedmodel.

Scan 3D Model 3D Printed Models

Studieshavebeencarriedandareon-going,inrelationtoutilisingdronestocarrythelaserscanningequipment.

Therearecommerciallyavailablesolutionsforgeneralcorrosiondetection,andthereareproposedusesforexternalinspectionofpressurevessels,howevernonecurrentlyforinternalinspection.Laserscanningcould,ifshowntoworkforvesselinspection,assistengineersinmakingquickdecisionsoncorrectivemaintenanceworktoaidandextendthelifetimeofonshoreandoffshoreassets.Therisktoemployeescanbereducedsignificantlybyallowingscansremotelyandthusminimisingmanualscanningandmeasuring.

Benefits• ExtremelyAccuratemeasurements(millimetres);• EliminationofRework;• Reducedmanhoursforon-siteinspections;• Non-invasivesurveyandinspection;• Inspectionscantakeplacewhilsttheplantisstillinoperation;

Page 56: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

56

Limitations• Thefilesproducedcanbeverylarge;• Usingtheequipmentrequirestrainedandcompetentpersonnel;• Datainterpretationrequiresskilledpersonnel;• Hasnotyetbeenshowntobeofbenefitinvesselinspection.

Sources• InterviewswithTech27andABB;• BS5970:2001“Codeofpracticeforthermalinsulationofpipeworkandequipment”;• HSEDocument-RR659;• HSEDocument-RR509;• API 571; 581.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 6 – Industrial pilot in idealised conditions.

Page 57: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

57

4.10 Unmanned Aerial Vehicle

Unmanned Aerial Vehicle Source: O&G TRL: 4

DescriptionThe use of various types of Unmanned Aerial Vehicles (UAV), popularly known as drones, has increased rapidly in recent years - both for private leisure use, and for commercial aerial work.A UAV can survey areas where there is a high risk of explosions due to the presence of flammable gases and/or vapours. While operating in incendiary environments, a UAV avoids generating any sparks or risks of inciting an explosive reaction.

The UAV can help accurately assess and help plan in advance upgrade work required by providing vital information in real time

Key AttributesCan be used in a variety of situations

Rapid deployment

Real time data, still image and video capabilities

Cheaper and safer than conventional methods of inspection at height

Certified for use in potentially explosive atmospheres

Height limitations

Payload limitations

Flight restrictions may limit deployment

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 1

Sample/Full Area 1

Risks

Cultural Change 2

Safety 1

Complexity 1

Significant Industry Backing 1

Costs

Install/Commission 3

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 2

Other Industries

Nuclear

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 58: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

58

SummaryTheuseofvarioustypesofunmannedaerialvehicles(UAV),popularlyknownasdrones,hasincreasedrapidly inrecentyears-bothforprivate leisureuse,andforcommercialaerialwork.Thissummaryfocusesontheuseofthistechnologyasaninspectionandsurveyingtool.

XamenTechnologiesmanufactureUAVwhichcanbeusedinavarietyofsituationsandoneinparticular,theLE4-8XDualATEX, isofparticular reference for vessel inspectionbecause it is compliantwithEuropeanExplosiveAtmosphereEnvironmentsDirective94/9/ECandthereforesuitableforusewithintheoilandgassectorwherethereisahighriskofexplosionsduetothepresenceofflammablegasesand/orvapours.

Directive 94/9/EC (also known as ‘ATEX 95’ or ‘the ATEX Equipment Directive’) provides guidanceontheapproximationofthelawsofmembersstatesconcerningequipmentandprotectivesystemsintendedforuseinpotentiallyexplosiveatmospheres.AlthoughtheUKfollowsthesamestandardstherearesomedifferencesinheightandpayloadrestrictionswhichthiscertificationallowsintheUKwheretheUKrestrictsUAVstoaheightof393ft.withapayloadof44lb.Thisisadropinheightandpayloadwhencompared to restrictions inFrancewhichhasamaximumheightallowanceof492ftandapayloadallowanceof55lbbutbotharecoveredbyDirective94/9/EC.TheXamenLE4-8XDualATEXiscertifiedforATEXzone2operationgenerallyandcomplieswiththeUKrestrictionsprovideditspayloadisrestrictedto44lb.

TheLE4-8XDualATEXisdedicatedtotheoilandgasandchemicalprocessingsectorsandisdesignedtoreducetheriskandoverheadcostsassociatedwithinfrastructuremaintenanceandsurveillance.

UAVs can help accurately assess and plan in advance upgrade work required by providing vitalinformation inrealtime.Manybodiesofscheduledworkrequirepre-planningtoorderequipmentandparts.Unscheduledmaintenanceorchecksalsorequirespre-planningtosomedegree.Anotherbenefitof this technology is rapiddeploymentwhichallowsa significant reduction in investigativetime,andthisparticularUAVcanbereadytodeployin5minutes.

TotalhastrialledtheLE48XDualATEXandhascertifieditforuseinitsATEXenvironments.

Page 59: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

59

UAVtechnologyissuitableforrapidinspectionexternal(abovesurface)inspectionofoiltankersandLNG carriers, and external inspection of assets such as platforms, floating production storage andoffloading(FPSO)vesselsandonshoreinstallations.Itisalsopotentiallysuitableforinternalinspectionoflargervessels.

For example, Total recentlyusedaUAVdrone to inspect aholding tank todetermine the stateofits structure and contents. Total reported a significant time and cost reduction in comparison toconventionalmethodsofinspection,andtheriskfactorwasalsosignificantlyreduced.

UseofdronetechnologytocompletetheassessmentforTotalcost$11,000,whichincludedonedaypreparation followedby3 x 6minutesflights carriedoutby a teamof 2people. In comparison ifthisworkhadbeencarriedoutwithconventionalmethodsthentheinspectionwouldhavetakenaday’spreparationfollowedby2.5daysofworkbyateamof8peoplecosting$66,000.Conventionalinspectionmethodsalsocarryahigherlevelofriskforthepeopleinvolved.

Onebenefitofthistechnologyisbeingableinspectanasset inrealtime,capturinghighresolutionstills,HDvideoandinfraredimagesgivingadetailedpictureoftherequiredpieceofinfrastructure.Thepayloadcanbechangedtosuitthesituationitistobeusedin.XamenisundertakingResearch&Development(R&D)whichistestingdifferentsensortypesusedintheoilandgasindustryaspayloadsratherthangyroscopicvideocameras,gasdetectorsbeingoneofthese.

Key Attributes• Canbeusedinavarietyofsituations;• Rapiddeployment;• Realtimedata,stillimageandvideocapabilities;• Cheaperandsaferthanconventionalmethodsofinspectionatheight;• Certifiedforuseinpotentiallyexplosiveatmospheres;• Trainingfacilityallowingmaintenancetechnicianstobecertifiedintheuseof(UAV);• IfforanyreasonthereispowerfailureorlossofcontroltheUAVdeploysaparachuteandland

safelyforsubsequentretrieval.

Limitations• Operatingheightrestrictions;• Payloadlimitations–MaxpayloadintheUKis44lbwhichalthoughasignificantweighttocarry

couldreducethetypesofsensorequipmentthatcanbefitted;• Deploymentmayberestrictedduetopoorweatherconditions;• Maynotprovidefullcoveragewheretheequipmentbeingobservedisobscuredfromview,or

airspacesurroundingtheequipmentisobstructed;• Flight restrictionsmay limit deployment – current accepted practice is for drones to remain

withinLineofSight(LOS)oftheoperator.

Sources• hse.gov.uk/fireandexplosion/atex.htm; • ec.europa.eu/growth/sectors/mechanical-engineering/atex;• linkedin.com/pulse/total-has-approved-use-le-4-8x-dual-atex-uav-designed-richard-vinuesa;• atexshop.com/atex-misc-c-170/atex-drone-le-48x-dual-p-904.html;• drone-atex.fr/index.php/fr;• news.directindustry.com/press/xamen-technologies/le-4-8x-dual-atex-innovation-inspection-

hazardous-atmosphere-161858-435313.html

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 4 - Experimental Pilot in laboratory conditions.

Page 60: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

60

4.11 Environment and Health Monitoring System

Environment and Health Monitoring SystemSource: O&G TRL: 3

DescriptionHUMS provide a way to monitor the condition of complex equipment, and derive prognostic analysis such as Remaining Useful Life (RUL). As a multi-sensor system, EHMS collects data on the subsea environment as well as MTS asset measurements. Although operating completely autonomously during deployment, secure wireless functionality has been implemented in order to communicate with the system for maintenance and data reclamation. The EHMS is intended to operate autonomously throughout the deployment of an asset, gathering data on the environment the asset is exposed to, the usage profile and key operating parameters which provide an indication of the health of the asset.

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 3

Sample/Full Area 0

Risks

Cultural Change 1

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 1

Operations/Maintenance 1

Production Impact 0

Benefits

Cost Benefits 4

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Key AttributesCan monitor the condition of complex equipment

Multi-sensor system

Can operate autonomously

Requires no pressure hull penetration

Suitable for installation during both life extension programmes and new builds

Can be integrated into holistic platforms

Secure and encrypted data transmission

System is still undergoing trials and is not ready for market

SummaryConditionmonitoringofassetspresentsmanypotentialbenefits in termsof reducedmaintenancecosts and, critically for submarine assets, higher reliability and availability. Historically, conditionmonitoring has been used primarily in industrial applications where access to equipment to bemonitoredisrelativelystraightforward.Datagatheringhaseitherbeenbyperiodicmanualaccesstoequipment,orthroughsensorsfeedingdatatoacentrallocationaspartofasupervisorycontrolanddataacquisition(SCADA)typesystem.

Page 61: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

61

Conditionmonitoringforoutsidepressurehullsubmarineequipmenthashistoricallybeenunachievableduetotheneedforenvironmentallycapable,powerefficientsensingtechnologywiththecapabilitytooperatewithlittleornointeractionwiththeinternalsubmarineenvironment.DevelopmentoftheHealthandUsageMonitoringSystems(HUMS)enablesmeaningfuldataonsystemperformanceandoperatingenvironmenttobegatheredthroughoutavesseldeployment,inapackagethatrequiresnopressurehullpenetrations.

HUMS provides a way to monitor the condition of complex equipment, and derive prognosticanalysissuchasRemainingUsefulLife(RUL).Thiscanbringmanybenefits,suchasenablingauxiliaryequipmenttotakeoveroperationofkeyfunctionsbeforefailureofprimaryequipment,theincreasedunderstandingandinsightintoequipmentbeingmonitoredhighlightingdevelopmentopportunities,andanticipationofmaintenanceandlogisticalrequirementswhichcanreducemaintenancecosts.

Furthermore,withinthemaritimeindustrytherehashistoricallybeenaviewthatmethodsrelatingtoProductLifecycleManagement(PLM)donotapplytobespokedesignandmanufactureofcomplexone-offassets.However,advancesintechnologyandanalysisstrategiesenableHUMScapabilitiestobeintegratedintoholisticplatformssuchasIntegratedPlatformManagementSystems(IPMS)thereforeprovidinghealthmonitoringandenhancedinsightintotheinterdependencesofcomponentsandsub-systemswithinacomplexasset.

Asamulti-sensorsystem,EHMScollectsdataonthesubseaenvironmentaswellasassetmeasurements,to be stored securely using awell-respected encryptionprotocol for retrieval. Althoughoperatingcompletelyautonomouslyduringdeployment,securewirelessfunctionalityhasbeenimplementedinordertocommunicatewiththesystemformaintenanceanddatareclamation.

TheEHMSisintendedtooperateautonomouslythroughoutthedeploymentofanasset,gatheringdataon theenvironment theasset is exposed to, theusageprofileandkeyoperatingparameterswhichprovideanindicationofthehealthoftheasset.Thisdataisprocessedlocallytotheequipmenttoprovideareadyindicationtoserviceengineersoftheassetconditionandremainingusefullifewhentheyaccesstheequipmentduringmaintenanceperiods.Thisapproachmakestheequipmentsuitablefor installation during both life extension programmes and new build, allowing condition basedmaintenancedecisionstobemade, improvingtheavailabilityoftheassetwhilemaintainingacosteffectiveapproachtomaintenance.Theequipmentalsohasthecapabilitytocapturekeyoperatingevents,highlightedbythemeasures,whichmayassistinrefiningequipmentspecificationsforfuturegenerationsandcharacterisingroutecauseandroguefailures.

ThefirstgenerationEHMSsystemhasrecentlycompletedfunctionalevaluationandisbeingpackagedfordeployment trials. Initially the fullypackagedunit shallbe subject toenvironmental testing forshockandelectromagneticcompatibility(EMC)toproveitworthyofseatrial.

ThefirstgenerationEHMSsystemoffersmonitoringandindicationcapabilitiesofdirectapplicationtoplannedmaintenancestrategiesandoffersinsightintoequipmentusewhichmayinfluencefutureequipment specification. Development of the EHMS system could implement current state of theart prognostic healthmonitoring techniques, allowing equipment health over time and expectedremainingusefullifetobepredicted.

Key Attributes• Canmonitortheconditionofcomplexequipment;• Multi-sensorsystem;• Canoperateautonomously;• Requiresnopressurehullpenetration;• Suitableforinstallationduringbothlifeextensionprogrammesandnewbuilds;• Canbeintegratedintoholisticplatforms;• Secureandencrypteddatatransmission.

Page 62: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

62

Limitations• Systemisstillundergoingtrialsandisnotreadyformarket.

Sources• Dr. David Flynn, “Health and usage monitoring systems: Enabling the future prediction of

remainingusefullifeforsubmarines,”Proceedingsofthe12thInternationalNavalEngineeringConferenceandExhibition(INEC)2014,pp850-860;

• S.Cheng,K.Tom,L.Thomas,andM.Pecht,“Awirelesssensorsystemforprognosticsandhealthmanagement,”SensorsJournal,IEEE,vol.10,pp.856-862,2010.

Readiness AssessmentWeestimatethatontheNASAscalethistechnologyscores:NASA TRL 3 – Proof of concept.

Page 63: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

63

4.12 Wideband Sonar Beam-steering

Wideband Sonar Beam-SteeringSource: O&G TRL: 3

DescriptionMultibeam Wideband Sonar (MBWS) is a technique for detection, classification and true recognition beneath the seafloor. The technique offers enhanced imaging and wideband processing in replay and in real-time

This technique has the potential to allow environmental, seabed and subsea structures to be inspected with greatly increased resolution. The equipment can be deployed on range of nautical vehicles, including autonomous underwater vehicles (AUVs) and ROVs

Key AttributesGreater details over alternative sonar based solutions

Cost efficient

Modular design for easy upgrade path

Complements existing sensor suites

Can be used in multiple situations/applications

Applicability / LimitationsWith Plant Running 0

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 1

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 2

Safety Benefits 1

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryNew signal processing techniques in wideband sonar sensor technology inspired by BottlenoseDolphinscanhelpextendthelifeofoilandgaspipelinesbyusingremotelyoperatedvehicles(ROVs)todetectblockages,asaresultofanewcollaborativeresearchprojectinScotland.

The LFMultibeamWideband Sonar (MBWS) delivers new sub-bottom imaging and capability fordetection, classificationand true recognitionbeneath the seafloor. Fulldata rateoverall channelsgivesSpotlightLFcompletecontroloverimagingandwidebandprocessinginreplayandinreal-time.

Page 64: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

64

The initiative, involving Heriot Watt University’s Ocean Systems Laboratory, high-tech sonar andunderwater systems company,Hydrason Solutions, andCENSIS, the Scottish InnovationCentre forsensorandimagingsystems,istodevelopanenhancedwidebandsonarsystembasedontheprinciplesofthemarinemammals’detectioncapabilities.

Using signalprocessing techniques fromprevious researchconductedonBottlenoseDolphins, theprojectdramaticallyimprovestherangeofdatacollectedbywidebandsonardevices.

The technology is unique in enabling users to accurately locate underwater objects, as well asidentifying their structure and composition, without making any direct contact. Existing sensorproductscannotpenetrateobjects,insteadprovidingonlyanimageoutline.Thesystemcouldhaveavarietyofapplications,helpingsurveyorstofindblockagesinPipelinesanddeterminewhetheranunderwatersupportisstillstructurallysound.

Thistechniquehasthepotentialtoallowenvironmental,seabedandsubseastructurestobeinspectedwithgreatlyincreasedresolution.Itcould,forexample,beusedtodetecthairlinecracksinoilrigs’supportlegsorchangestothesedimentontheseafloor.

The equipment canbedeployedon rangeof nautical vehicles, including autonomousunderwatervehicles(AUVs)andROVs.Multiplesurveyscanbeconductedfromoneship,makingthedeviceaneconomicwayofcollectingdata.

Theoil andgas sectoralreadymakesextensiveuseof acoustic surveysparticularlyas installationsbegintobedecommissioned.Thistechniquehasthepotentialtosetanewstandardinacousticobjectdetectionandidentificationincomplexsubseaenvironments.Itcouldalsoreducethecostsofexpensivesurveys,througharangeofefficienciesandaspartofawidertransitiontowardsautonomousworking.

Withinthespecificremitofthisreview,focussingonpressurevesselandCUIinspection,theadvantagesofthistechnologyarelessobvious.

Key Attributes• Greaterdetailsoveralternativesonarbasedsolutions;• Costefficient;• Modulardesignforeasyupgradepath;• Complementsexistingsensorsuites;• Canbeusedinmultiplesituations/applications.

Limitations• Limitedusefulnessforpressurevesseland/orCUIinspection;• StillunderdevelopmentbutbeingusedintheindustrywhileR&Dcontinues.

SourcesNodirectlinkstodocumentationusedtoproducesummaryreport.

Readiness AssessmentWeestimatethatontheNASAscalethistechnologyscores:NASA TRL 3 – Proof of concept.

Page 65: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

65

4.13 Electromagnetic Inductance Degradation

Electromagnetic Inductance Degradation Source: O&G TRL: 2

DescriptionElectromagnetic inductance degradation technique has the potential to monitor the microstructure of steel during processing or in service. By measuring the magnetic properties using a portable probe it is possible to determine the materials properties to quantify degradation during service, such as creep damage or embrittlement, or to identify the signs of microstructural pre-cursors to fatigue crack development.Although this technology is at an early stage in its development it has the potential to add another NDT technique with a range of applications including those in the oil and gas domain.

Key Attributes

Can scan large areas

Provides accurate material measurements

Can penetrate deep into structures

Provides condition based analysis on a the materials microstructure

Can be used to perform quality test inspection during steel production and fabrication.

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryTheNationalPhysicalLaboratoryhasundertakenresearchinusingelectromagneticinductanceforthedetectionofdegradationinsteelstructureswithinanumberofindustries.

Steelistheengineeringmaterialofchoiceinmanydemandingandsafetycriticalapplications,includingsub-seapipelinesandrisersintheoilindustry,tubeandboilercomponentsinelectricalgeneration,andpressurevesselsinthenuclearindustry.

Intheseapplicationsitisveryimportanttobeabletomonitortheconditionofthemicrostructure,

Page 66: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

66

especially to quantify degradation during service, such as creep damage or embrittlement, or toidentifythesignsofmicrostructuralpre-cursorstofatiguecrackdevelopment.

Themicrostructureofsteelgovernsitselectromagnetic(EM)propertiesand,therefore,EMsensingoffers potential measurement techniques to monitor the microstructure during processing or inservice.Bymeasuringthemagneticpropertiesusingaportableprobeitispossibletodeterminetherequiredmaterialproperties.

An example is the determination of the stress in 316 stainless steel using the relative magneticpermeability.BuildingonNPL’sexperience inmeasuring thepropertiesofmagneticmaterialswithstressapplied,a techniquehasbeenestablished thatusesNPL referencematerialsandcalibrationcurvestoremotelymeasurethestresswithinsafetycriticalassets.

NPLhasarangeofelectricalconductivityreferencematerialsusedbytheautomotiveandaerospacesectorstodeterminethehardnessofaluminiumandaluminiumalloysandcombinedwithanextensiverange ofmagneticmaterialmeasurement facilities andmagnetic field standards are applying thisknowledgetodevelopNonDestructiveTesting(NDT)solutionsforarangeofapplications,includingthoseintheOil&Gasdomain.

Key Attributes• Canscanlargeareas;• Providesaccuratematerialmeasurements;• Canpenetratedeepintostructures;• Providesconditionbasedanalysisonamaterialsmicrostructure

Limitations• Nosolutionshaveyetbeendevelopedforuseinthefield.

Sources• NationalPhysicalLaboratory(NPL).

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 2 – Technology concept and/or application formulated.

Page 67: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

67

4.14 Terahertz Spectral Imaging

Terahertz Spectral ImagingSource: Nuclear TRL: 2

DescriptionTerahertz (THz) waves occupy the wavelength range between microwave and infrared. In THz imaging, the internal structure of an object is determined by analysing changes in a THz signal applied to the object. THz waves can penetrate opaque materials and detect internal defects within non-metallic materials which visible light cannot, such as foam, ceramics, glass, resin, paint, rubber, composites, and concrete.THz imaging has been extensively used in the Space and Aerospace sectors for testing of thermal protection, foam insulation and carbon composites. Experimental results also show that THz imaging may be used for detection of corrosion under paint and detection of corrosion within steel reinforced concrete.

Key AttributesCan detect defects within non-metallic, opaque materials which visible light cannot

No human radiation hazard, unlike microwaves

Relatively new NDT technique, unproven for corrosion detection

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 2

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 4

Safety Benefits 3

Other Industries

Nuclear

Space

Aerospace

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 68: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

68

SummaryLong-termcorrosionofsteelinconcretestructuresisaparticularconcernfornuclearpowerplantsasthereiscompellingpublicinterestinthesafeoperationoftheseplantsforthemanydecadesthattheyareinoperationandtheadditionaldecadesittakesforthemtobedecommissioned.

Inspectiontechniquesthatarebothnon-destructiveandwhichcandetectlong-termcorrosionatitsearlieststagesareneededtoidentifywhenremedialstepsneedtobetakentoinsuretheintegrityofconcretestructuresatnuclearpowerplants.

PhysicsMaterialsandAppliedMathematicsResearchLLCisconductingresearchintohowterahertzimaging can be used to detect corrosion of steel in concrete structures. The overall objective ofthis researchprogram is toestablish terahertz imagingand spectroscopyas thepre-eminentnon-destructiveexaminationtechniqueforlocatingandidentifyingcorrosioninsteelreinforcedconcretestructures.

Thisisaccomplishedbypushingthelimitsofhigh-powerterahertzsystemstoincreaseimagingdepthand by enhancing the detection sensitivity of terahertz spectroscopic methods to directly detectcorrosionby-productsinconcrete.

InPhase Ieffort isspentto identifywhichcorrosionby-productor promoting agent is most strongly detected with terahertzimagingandspectroscopy.This isestablishedviaacombinationof theoretical and numerical modelling and experimentalbenchmarkingatterahertzfrequencies.

Imagesaretakenofsteelinconcretetoevaluatetheimagingdepthandquality.Theproposedtechniqueenablesrapidinspectionofnuclearplantstructuresanddetectionofcorrosioninconcrete.

Similarcorrosionissuesafflictaginginfrastructureincludinghighways,bridges,tunnels,buildings,anddams.Earlieridentificationofcorrosioninthesestructuressignificantlyenhancespublicsafetyaswellasreducingthecostofcorrosion,estimatedtobeinthehundredsofbillionsofdollarsannually.

Key Attributes• Initialresearchprogramsosometimebeforekeyattributescanbeestablished.

Limitations• Initialresearchprogramsosometimebeforeanylimitationsbecomeapparent.

Sources• Physics,Materials,andAppliedMathematicsResearchL.L.C

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 2 – Technology concept and/or application formulated.

Page 69: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

69

SECTION 5

CUI DETECTION

Page 70: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

70

5.1 Guided Wave Ultrasonic Testing

SummaryInitially designed as a screeningmethod to allowmore focussed non-destructive testing, NDT, ofpipelinesusingGuidedWaveUltrasonicTesting,GWUThasnowdeveloped intoa routinepipelineinspectiontechnique.

Guided Wave Ultrasonic TestingSource: O&G TRL: 9

DescriptionGuided Wave Ultrasonic Testing (GWUT) utilises stress waves that propagate along an elongated structure while guided by its boundaries. This allows the waves to travel a long distance with little loss in energy. GWUT uses very low ultrasonic frequencies, between 10~100kHz, compared to those used in conventional ultrasonic testing. At higher frequencies the range is significantly reduced. Also, the underlying physics of guided waves is more complex than bulk waves. The physical reflection of guided waves enables the detection of defects with a depth much smaller than a wavelength. It allows rapid screening of long lengths of pipework for defects such as corrosion. As it requires only a small section of pipework to be exposed to attach a single transducer array it has significant benefits in relation to the detection of corrosion under insulation in pipework. GWUT is not suitable for complex pipelines with a lot of T-Joints, bends, flanges and valves therefore not particularly useful for offshore use.

Key AttributesAllows rapid screening of long lengths of pipeline up to 200m

Limits the amount of lagging which needs to be removed to permit the testing

Data is automatically logged for subsequent analysis

Only suitable for straight pipe runs

Relatively coarse, suitable for detection of large areas of corrosion or erosion

Highly skilled staff required

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 1

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 1

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 2

Safety Benefits 3

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 71: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

71

Itallowsrapidscreeningoflonglengthsofpipeworkfordefectssuchascorrosion.Asitrequiresonlyasmallsectionofpipeworktobeexposedtoattachasingletransducerarrayithassignificantbenefitsinrelationtothedetectionofcorrosionunderinsulationinpipework.Itispossibletoexamineover50minlength(25mineachdirectionfromthetransducerposition).Thisisaveryeffectivemethodforlonglengthsbutitcan’tbeusedforcomplexpipelineswithalotofT-Joints,bends,flangesandvalves.GWUTcanbeusedonabovegroundpipelinesinsectionsofupto200m,commonly20-30metres.ThistechniqueisreferencedinseveralstandardsincludingBS9690-2:2011’Non-destructivetesting.Guidedwave testing.Basic requirements forguidedwave testingofpipes,pipelinesandstructuraltubulars’.

Themethodutilisedgeneratesstresswavesthatpropagate along an elongated structure whileguidedby itsboundaries.Thisallowsthewavestotravelalongdistancewithlittlelossinenergy.GWUT uses very low ultrasonic frequencies,between 10~100 kHz, compared to those usedin conventional ultrasonic testing. At higherfrequencies the range is significantly reduced.Also, the underlying physics of guided wavesismore complex than bulkwaves. The physicalreflectionofguidedwavesenablesthedetectionof defects with a depth much smaller than awavelength.

Anaxiallysymmetricwaveisgeneratedinthepipelinefromthearrayoflowfrequencytransducersattachedaroundthecircumferenceofthepipetogenerateanaxiallysymmetricwavethatpropagatesalong the pipe in both the forward and backward directions. The Torsional wave mode is mostcommonlyused,althoughthere is limiteduseof the longitudinalmode.Theprocessusesapulse-echoconfigurationwherethearrayoftransducersisusedforboththeexcitationanddetectionofthesignals.

Achangeincrosssectionalareaorstiffnessgeneratesanechoandthetimingofthereceiptoftheechoanditspredictedspeedatadesignatedfrequencyallowsthelocationofthedefecttobedetermined.GWUTusesdistanceamplitudecurves (DAC) tocorrect forattenuationandamplitudedropswhenestimatingthecross-sectionchange(CSC)fromareflectionatacertaindistance.TheDACsareusuallycalibratedagainstaseriesofechoeswithknownsignalamplitudesuchasweldechoes.

OncetheDAClevelsareset,thesignalamplitudecorrelateswelltotheCSCofadefect.GWUTdoesnotmeasuretheremainingwallthicknessdirectly,butitispossibletogroupthedefectseverityinseveralcategories.Onemethodofdoingthisistoexploitthemodeconversionphenomenonoftheexcitationsignalwheresomeenergyoftheaxiallysymmetricwavemodeisconvertedtotheflexuralmodesatapipefeature.Theamountofmodeconversionprovidesanaccurateestimateofthecircumferentialextentofthedefect,andtogetherwiththeCSC,operatorscouldestablishtheseveritycategory.

Fixturesandfeaturessuchasflangescauselargereflectionsandlimitstherangeofthetest.AlsomorethanoneortwobendsinthepipelinecauseslargereflectionsasdoesaTjunctionwhichiseffectivelyformawholeinthepipeformtheendlimitofthetestrange.Multiplefeaturewhichrisetocomplexreflectionslimittheeffectiverange.

Key Attributes• Allowsrapidscreeningoflonglengthsofpipelineupto200m;• Costeffective;• Limitstheamountoflaggingwhichneedstoberemovedtopermitthetesting;

Page 72: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

72

• Dataisautomaticallylogged.

Limitations• Requireshighlevelsofexpertisetoapplyandinterpretresults;• Rangeislimitedbyflanges,bendsandTJunctions;• Difficulttofindareasofsmallpittingcomparedtooveralllossofthickness.

Sources• www3.imperial.ac.uk/nde/researchthemes/inspection/guidedultrasonicwaves;• Long RangeGuidedWave InspectionUsage – Current Commercial Capabilities and Research

Directions,2006,M.J.S. LoweandP.Cawley.DepartmentofMechanicalEngineering ImperialCollegeLondon;

• BS9690-2:2011 ’Non-destructivetesting.Guidedwavetesting.Basicrequirements forguidedwavetestingofpipes,pipelinesandstructuraltubulars’.BritishStandardsInstitute.ISBN9780580 73794 7.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 73: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

73

5.2 Radiographic - Digital Detector Array

Digital Detector ArraySource: Medical TRL: 9

DescriptionA Digital Detector Array (DDA) is a sensor device that converts ionising radiation into digital information for display as a digital image, typically in real-time on a computer display.

An x-ray or gamma ray source is used to emit ionising radiation through an object and those rays then interact with micro-electronic sensors contained within the flat panel DDA, creating a digital image which corresponds to the energy pattern.

Originally developed for medical applications, DDAs are capable of detecting moderate to heavy corrosion under insulation (CUI), moderate to heavy pitting, and pipes distorted from mechanical damage. They can also find features such as welds or transverse joints under insulation.

Key Attributes

No surface preparation required.

Easily interpreted.

Portable (battery operated; wireless)

Can scan through insulation.

Provides a permanent digital record of the scan.

Suitable for use with different radiation sources.

Limited by the penetrating power of the source.

Vessel inspection limitations (requires hardware placement on both sides of the surface to be scanned).

Radiation safety considerations. Potentially subject to more stringent regulation via Ionising Radiations Regulations 1999 (IRR99).

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 3

Sample/Full Area 0

Risks

Cultural Change 2

Safety 1

Complexity 2

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 2

Other Industries

Medical

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 74: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

74

SummaryADigitalDetectorArray(DDA)isasensordevicethatconvertsionisingradiationintodigitalinformationfordisplayasadigitalimage,typicallyinreal-timeonacomputerdisplay.

Anx-rayorgammaraysourceisusedtoemitionising radiation through an object andthoseraystheninteractwithmicro-electronicsensorscontainedwithintheflatpanelDDA,creatingadigitalimagewhichcorrespondstotheenergypattern.

BrighterareasontheimageresultfromhigherlevelsofradiationhittingtheDDA,indicatingthinneror lessdensesectionsoftheobject.Inversely, darker areas on the image resultfromlowerlevelsofradiationhittingtheDDA,indicatingsectionswheretheobjectisthicker.Areasthatarecorrodedorhaveotherdefectscanbeidentifiedbyevaluatingthecolourcontrastoftherepresentation.

Originally developed for medical applications, DDAs are capable of detecting moderate to heavycorrosion under insulation (CUI),moderate to heavy pitting, and pipes distorted frommechanicaldamage.Theycanalsofindfeaturessuchasweldsortransversejointsunderinsulation.

Withthedevelopmentofnewelectronic,batterypoweredportableandevenwirelessdigitaldetectors,DDA radiography has grown in effectiveness over recent years for awide range of plant and fieldinspectionsandprovidesseveraladvantagesovertraditionalfilm-basedandcomputedradiographytechniques.Theseincludeimprovedsafetythroughreducedpersonnelexposuretoradiation(duetothehighsensitivityofdetectorsandtheassociatedreductioninenergyrequiredtocreateanimage),high image quality, high Signal to Noise Ratio (SNR), high dynamic range, instantaneous feedback(eliminatingtheneedforlaterre-imaging),andlowerenvironmentalimpact(duetotheeliminationofchemicalfilmprocessing),allcontributingtoanoverallreductionininspectiontimeandthedeliveryofconsiderablecostsavings.

Additionally, depending on the software used, digital images captured usingDDAs can be digitallyadjusted and enhanced, providing the ability to change properties such as brightness, contrast,sharpness,rotation,colouring,magnificationandtoapplynoisereduction.Inthisway,smallorhiddenfeaturescanbebetteridentifiedandcharacterised.

Key Attributes• Nosurfacepreparationrequired.• Easilyinterpreted.• Portable(batteryoperated;wireless)• Canscanthroughinsulation.• Providesapermanentdigitalrecordofthescan.• Suitableforusewithdifferentradiationsources.

Limitations• Limitedbythepenetratingpowerofthesource.• Potentialimpactonadjacentjobsites.• Vesselinspectionlimitations(requireshardwareplacementonbothsidesofthesurfacetobe

scanned).• Radiation safety considerations. Potentially subject to more stringent regulation via Ionising

RadiationsRegulations1999(IRR99).

Page 75: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

75

Sources“Drivingdigitalconversionforweldandcorrosioninspection”;GEInspectionTechnologies.“FieldRadiographywithAdvancedDigitalDetectorArrays”;GEInspectionTechnologies.“NDTWikiX-ray–theDigitalX-rayEncyclopedia”;VidiscoLtd.“AdvancementsinIndustrialDigitalRadiographyTechnology”;InspectioneeringJournal.“InformationForTheProcurementAndConductofNDT–Part3:RadiographicInspectioninIndustry”;HealthandSafetyExecutive

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 76: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

76

5.3 Radiographic - Digital Detector Array

Open VisionSource: Oil

& Gas TRL: 9

DescriptionOpenVision is a light-weight, self-contained live video x-ray imaging system designed for portable, hand-held radiographic inspection. It includes a battery-operated 70kV x-ray tube designed for portable field operation and a highly sensitive radiographic imaging sensor, both located at either end of an adjustable C-arm.

The system is commonly used for Corrosion Under Insulation (CUI) inspection and operates without the requirement to remove insulation or undertake surface preparation. The real-time nature of its x-ray imaging means that the unit can be continuously moved around and along pipework (including bends and joints), enabling rapid detection of defects or the presence of water

Key Attributes

Can scan through insulation, no surface preparation required

Easily interpreted, portable (battery operated; wireless)

Can detect CUI and water

Provides a permanent digital record of the scan

Suitable for use with different radiation sources

Limited by the penetrating power of the source, pipe diameter, access constraints and has limited field of view

Vessel inspection limitations (requires hardware placement on both sides of the surface to be scanned)

Radiation safety considerations. Potentially subject to more stringent regulation via Ionising Radiations Regulations 1999 (IRR99)

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 0

Risks

Cultural Change 2

Safety 1

Complexity 2

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 77: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

77

SummaryOpenVisionisalight-weight,self-containedlivevideox-rayimagingsystemdesignedforportable,hand-held radiographic inspection. It includes a battery-operated 70kV x-ray tubedesigned for portablefieldoperationandahighlysensitiveradiographic imagingsensor,both locatedateitherendofanadjustableC-arm.

Inordertocarryoutaninspection,theC-armunitisplacedaroundtheobjecttobeimagedandaproprietaryimagingsystemthencapturesanddisplaysavideorepresentationofthex-raysdetectedbythesensor.Thisvideoisdisplayedinreal-time(at30framespersecond)onahand-heldLCDviewer,head-mounteddisplay,orportable recorderwithLCDdisplay.

The system is commonly used for Corrosion UnderInsulation (CUI) inspection and operates without therequirement to remove insulation or undertake surfacepreparation. The real-time nature of its x-ray imagingmeans that theunit canbe continuouslymovedaroundandalongpipework (includingbendsandjoints),enablingrapiddetectionofdefectsorthepresenceofwater.

Pipeworkup to25 inches indiameter canbe inspected,withafieldofviewof4inchesby6inches.Thesystemcanoperate in temperatures ranging from-34C to 49, and asinglebatterychargewillpermit40minutesofcontinuousx-ray emission, which allows approximately 4 hours ofinspectionundertypicalconditions.

Theimagesproducedbythesystemarerelativelyeasytointerpret,meaningthatminimalfieldengineertrainingisrequired.Anengineercantypicallybeexpectedtoinspect300-500feetofpipeperdayusingthissystem.

Key Attributes• Canscanthroughinsulation,withnosurfacepreparationorinsulation/jacketremovalrequired.• Portable(batteryoperated).• Capturedvideoiseasilyinterpreted,minimaltrainingrequired.• Candetectwateraswellasdefects.

Limitations• Potentialimpactonadjacentjobsites.• Limitedpipediameter.• Limitedfieldofview.• Thepresenceofwatercannegativelyimpactimagequality.• Radiation safety considerations. Potentially subject to more stringent regulation via Ionising

RadiationsRegulations1999(IRR99).

SourcesQSAGlobalGlobalX-Ray&TestingCorporation

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 9 – Widespread production use with extensive track record.

Page 78: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

78

5.4 Sniffer Dogs

Sniffer DogsSource: O&G TRL: 6

DescriptionSniffer Dogs are used as detectors in remote scent tracing (RST) technology, usually to detect the presence of explosives or contraband in scent samples collected by sucking air from containers or air freight. Here dogs are trained to detect CUI on pipes in scent samples collected at oil and gas plants. In tests funded by the oil and gas industry, controlled laboratory conditions trained dogs are able to differentiate between insulation samples taken from corroded pipes and samples taken from clean pipes to an accuracy of circa 92%.

Key AttributesRelatively low cost

Relatively quick process

Proven and well understood

Minimally invasive, requires insulation samples to be taken

Analysis conducted offsite

Requires trained handlers

Coverage dictated by sample size

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 3

Sample/Full Area 0

Risks

Cultural Change 1

Safety 2

Complexity 3

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 3

Other Industries

Police

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryInatwoyearproject fundedbyGassco(withan investmentofNOK6.5million)andsupportedbyStatoil, theFjellangerDetectionandTrainingAcademy (FDAT)addressed theproblemofdetectingCorrosion Under Insulation (CUI) using a Remote Scent Tracing (RST) technique: a system wherevolatilesassociatedwithcorrosionare sampledand the sensitivenoseofa traineddog isused todetectthesevolatileswithinthesamples.

Page 79: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

79

Dogs used as detectors in remote scent tracing (RST) technology usually detect the presence ofexplosivesorcontrabandinscentsamplescollectedbysuckingairfromcontainersorairfreight.Inthisstudy,fivedogsweretrainedtodetectCUIonpipesinscentsamplescollectedatagasprocessingplant.

Thetechniqueconsistsoftwomainstages:thesamplingstageattheplantitself(whichcouldbedonebytheplantownerorbyFDTA),andthesubsequentanalysisstageusingthetraineddogsatFDTA.

Scentsamplesweremadeusingspeciallydesignedsamplingequipment,withairsuckedthroughdrainplugsintheinsulationmaterialsurroundingthepipesontofiltercartridges.

Aftertheirtraining(whichwascarriedoutusinginsulationmaterialcollectedearlierfromothercorrodedlocationsattheplant),thedogswerepresentedwiththesamplescollectedinthefield.Notethatthedogswerenotdeployedin the actual plant, and instead sniffed at the samples once brought tothe laboratory. Thedogswere able to discriminatebetweenfield samplescollected near corroded pipes and samples collected from non-corrodedlocationsequallywellastheydiscriminatedbetweentrainingsamples.

Anumberoflocationsweretesteddouble-blind:asituationwherenooneatthetimeofsamplingoranalysisbythedogsknewifthelocationwascorrodedornot.Locationsthatthedogsrespondedtowereopenedsubsequentlyforavisualinspection,andcorrosionwasfoundundertheinsulation.Nocorrosionwasfoundatlocationswhichthedogshadnotrespondedto.

Arefinedapproachwaschosenwheretheresponseofanumberofdogswascombinedtofurtherimprove reliability. In thismanner, areas thatwereanalysed couldbedivided intohigh, lowornosuspicionofcorrosion,offeringanimportantaidtosettingvisualinspectionpriorities.

Preliminary results showed that thesensitivityof thedetectionoffield sampleswas92%,and theselectivity93%.

Theconclusionofthestudywasthatthetechniqueisnowaproventechnologyandisreadytobeintegratedintoplantmaintenancesystems.

TheapplicationofsuchatechniqueinapreventivemaintenanceprogramatOilandGasfacilitiescouldbeusefultodetermineprioritisationandschedulingofmaintenance,thusallowingamoreefficientallocationofthecostlyresourcesnecessaryformoretraditionalvisualinspection.

Theresearchhasbeenpresentedatinternationalconferences(HOISconference,InternationalWorkingDogBreedingAssociation2013)andhasbeenpublishedintwoscientificjournals(MaterialsEvaluationandAppliedAnimalBehaviourScience).

Alternative Approach – Electronic Nose LockheedMartin,inconjunctionwiththeirstrategicpartnersattheUniversityofPennsylvania,haveusedacombinationofmolecularbiologyandmaterialssciencetodevelopedanano-biotechnologyelectronic nose (“E-Nose”) equivalent, using DNA-wrapped carbon nanotubes (CNTs) to mimicnature’sincrediblesensitivityandselectivity.Workisnowunderwaytotransferthistechnologyfromthelaboratorytothemarketplace,combiningitwithLockheed’scarbonnanotube,fibre-basedCNT

Page 80: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

80

chemicalsensortechnologytocreatehand-heldanddistributedsensorsforawiderangeofenvisionedapplications,including:

• Monitoringtheinternalenvironmentofaspacecapsule;• Detectingchemicalweaponsandexplosives;• Recognitionofindividualsbasedonfingerprint-likebodyodours;• Diagnosingcancerandotherdiseasesfromexhaledbreath.

The E-Nose works by affixing DNA strands to single-wall carbon nanotubes (SWCNTs), which areexcellentelectricalconductorswithsignaltransductionpropertiesthatchangewhentheattachedDNAmolecules interactwithevenminuteamountsofvolatilechemicals.When thechemicalmoleculesbindtotheDNA,theychangeitsstructure.Thosechangeselicitanelectricalsignalthatistransmittedalongthecarbonnanotube.Ineffect,thenanotube“feels”thechangesexperiencedbytheDNAasitinteractswithothermolecules.ThechangesdependontheDNAsequence,eachofwhichwillhaveadifferentresponsetochemicalanalytes,

Whileasingle-wallnanotubeDNAcombinationcannot identifyaparticularchemical, theelectricalsignalproducedbyanarrayofmanydifferent single-wallnanotubeDNAcombinations can indeedidentifyachemical,inthesamewaythatthemyriadreceptorsinthemammaliannoseworkinconcert.Thispatternrecognition isbothspecificandreproducible foragivenchemical,andcandistinguishbetween two chemicals, differing evenby a single atomor isomeric (left-handedor right-handed)configuration.

Themainobstacle todevelopingapractical sensor is thedifficultyofpredicting the responseofagivenDNAsequencetoaparticularchemical,particularlygiventheextraordinarilyfinedistinctionsthe techniquecanmake.Rather thanattempt tobuildpredictionmodelsbasedonempirical, trialanderrorresults,LockheedMartinscientistshaveadoptedamoresystematicapproach,utilisingthecompany’sprograminintegratedcomputationalmaterialsengineering(ICME).

Thehigh-levelobjectiveofICMEistoremoverelianceontrialanderror,andinsteadapplyanarrayofcomputationaltechniquestopredictthepropertiesandbehaviourofnewmaterialsandnewdevicesbeforetheyarebuilt.Inthecaseofthecarbonnanotubesensors,moleculardynamicssimulationsareusedtounderstandhowthebindingofachemicalodorantalterstheconfigurationofaDNAstrandwithaparticularsequence.Thosestructuralresultsarethenfedintoquantummodelsoftheelectronicstructureofthenanotubetopredicthowitsconductivitywillchange.

Theoutputsofthemodelsguideexperimentalinvestigations,theresultsofwhichareusedtofurtherrefine themodelling. At that stage, data analytics and pattern recognition techniques are used to

Page 81: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

81

optimisethesetofDNAsequencesformosteffectivelyprovidingresponsestoawiderangeofchemicalodorants.

Eachodorantwillproduceadifferentpattern,which is thenstoredandassociatedwith the smell.Inthiswaythesensoris“trained”torecognizeodours,muchlikesnifferdogsdo.Assuch,whenthesensorencountersthatodouragain,itcanpinpointitexactlybycomparisontothepreviouslystoredpatterns.

Key Attributes• Accuracyoftheapproachiscirca92%;• Analysisisconductedoff-siteincontrolledconditions.

Electronic Nose:• Usinga techniquecombiningDNAandcarbonnanotubes, this techniquemimics thenoseof

snifferdogs.• Carbonnanotubes “feel” changesexperiencedby surroundingDNAas it interactswithother

molecules.• Patternrecognitiontechniquesareusedtodetectandidentifychemicalswithahighdegreeof

sensitivity,selectivityandrepeatability.

Limitations• Potentiallyperceivedcredibilitygap–mightnotbetakenseriously;• Requiressamplestobetakenfrominsulationandsamplesitestobesealedpotentiallyintroducing

weakspotsintotheremaininginsulation.Electronic Nose:• Experimentalwork,notyettransferredto,orprovenin,acommercialscenario;• AswithSnifferDogs,thisrequiressamplestobetakenfrominsulationandsamplesitestobe

sealed,potentiallyintroducingweakspotsintotheremaininginsulation.

Sources• “Detectioncorrosionunderinsulationusingdogs”;FjellangerDetectionandTrainingAcademy;• Sniffingouttrouble,Gassco;• “Thesciencebehinddetectiondogtraining”;AlfaDogTrainingAcademy,Fano,Italy;• “Using dogs to detect hidden corrosion”; Journal of AppliedAnimal Behaviour Science, April

2014.Electronic Nose:• LockheedMartin;• Physics Today; http://scitation.aip.org/content/aip/magazine/physicstoday/news/10.1063/

PT.5.5003

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 8 – Production use >3 years or multiple deployments <3 years with limited track record.

Readiness Assessment – Electronic NoseWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 4 – Experimental pilot in laboratory conditions.

Page 82: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

82

5.5 Pulsed Eddy Current

Pulsed Eddy CurrentSource: O&G TRL: 8

DescriptionPulsed eddy works by driving an electromagnetic field though the insulation and into the pipe. Pickup sensors detect variations in the field that are caused by changes in the pipe. Proprietary software plots the scans and provides data such as delta phase, delta amplitude, phase angles and voltage spans. Once this data has been gathered and analysed it is used to identify and differentiate between welds, corrosion and wire ties.

The technique is potentially able to detect larger areas of corrosion even through jacketing

Key AttributesNon-invasive, works through 4" stainless steel, 3" aluminium or 1" galvanised cladding

Can detect wall loss, pitting and larger areas of corrosion

Works for most common insulation materials

Hand-held scanner available

Market Ready

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 3

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 4

Safety Benefits 3

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryThepulsededdycurrent(PEC)techniqueprovidestheabilitytomeasuresteelwallthicknesswithoutcontactbetweentheinstrumentandsteel.Theadvantageofthismeansthatcoatedorinsulatedpartscanbeinspectedwithouthavingtode-lagorremovethickpaints,protectivematerials,etc.

PECtechnologyallowsspecialistoperatorstomeasurethewallthicknessofanycarbonsteelproductbymeasuring the depletion of eddy currents within the steel. By takingmultiple readings acrossthesurface,PECcanthenprovideanoverallmapoftheareatoclearly identifyareasofcorrosion.

Page 83: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

83

ThetablebelowshowseachmeasurementpositionfromaPECunit,witheachpointidentifyingthethicknessvaluepresentedinmillimetres.

Typically, PEC is applied where there is no access to a steel surface (due to insulation, coating,fireproofing,marinegrowth,ornarrowaccess),where inspectionsarerequiredunderwateror inasplashzone,orwherethereisaspecificrequirementforwall-thicknessmonitoring.

SignificantindustryinvestmentanddevelopmentiscurrentlybeingappliedtothePECtechnique.Anewerimprovedimplementationwhichsignificantlyimprovestheefficienciesofthetechnique,whilstalsoimprovingmeasurementaccuracy,isscheduledforreleaseduring2016.

Key Attributes• Abilitytomeasurewallthicknesswithoutrequiringdirectcontactonthepart;• Noneedtoremovelagging,coatingsorprotectivematerialssuchasweathersheeting;• Nosurfacepreparationrequired;• Canbedeployedontopside,splashzoneandsubsea(viaROV);• Probeliftoffrangecanbeupto250mmawayfromthesteel;• Steelthicknessmeasurementrangefrom4mmto50mm;• Temperaturerangefrom-100Cto+500C;• Verygoodreproducibilityofrepeatmeasurement+/-0.05mm;• Providesapermanentrecordofthescanningdata,allowingcomparisonovertime;• TypicalApplications:

o Compositewarps;o Vesselskirts;o SphereLegs;o Risers;o Caissons;o CorrosionBlisters.

Limitations• Worksforcarbonsteelandlow-alloysteelonly;• Measurementsareanaverageacrosstheprobefootprint,notanabsolutemeasurementofa

spotcheck;• Cannotdifferentiatebetweeninternalandexternaldefects;• PECreadingsdependontheelectro-magneticpropertiesofthematerial;• Scanareageometryshouldbesimple.Readingscanbeaffectedbynozzles,welds,internaland

supportstructures.

Page 84: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

84

Sources• AdvancedNDTInspectionServices,BilfingerSalamisUKLimited

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 8 – Production use >3 years or multiple deployments <3 years with limited track record.

Page 85: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

85

5.6 Microwave Sensing

SummaryWorkhasbeenundertakenwithintheUKResearchCentreinNDE(partofImperialCollegeLondon)exploringthepossibilityofdetectingthepresenceofwaterwithininsulation,anecessaryprecursortoCUI.

Severalcurrentmethodsofpipelineinspectionaresensitiveonlytoregions inwhichcorrosionhasalreadyinitiatedandcausedareductioninwall-thickness.Instead,thisworkfocussedondetecting

Microwave SensingSource: O&G TRL: 8

DescriptionMicrowaves of varying frequencies are injected into the insulation surrounding a pipe, and propagate down the length of the pipe. Any areas of disruption to the insulation including water ingress cause reflections which are picked up by the receiving device. Calculations then permit determination of reflection locations along the pipe. This technique can also detect defects and corrosion in the underlying pipeline directly as these introduce reflections into the signal. Works well with straight pipes and can propagate well beyond bends of up to 90% in small diameter (8or less) pipes. Bends in larger pipes can cause significant signal degradation. Works well with rockwool and polyurethane foam, but is not suitable for glass foam insulation.

Requires further work to determine effectiveness in real plant conditions

Key AttributesHigh sensitivity to water presence

Works well with smaller pipes and copes with bends and pipe supports

Less effective where insulation is 100% saturated

Effective for common insulation types

Not yet trialled in industry

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 1

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 4

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 86: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

86

thepresenceofwaterwithintheinsulation,asanearlywarningofCUI.Existingmethodsofinspectingpipelinesforthepresenceofwater,suchasthermographyandneutronbackscatter,haveparticularlimitationswhichrenderthemimpracticalfortheinspectionofentirelengthsofpipeline(theformerhas lowsensitivityduetothepresenceof thecladdingandthe latterhasasmall inspectionarea).Theobjectiveofthisworkwastoidentifyanon-destructiveexamination(NDE)techniquetomonitorlengthsofpipelineforthefirstingressofwaterintotheinsulation,providinganearlywarningofthelikelyoccurrenceofCUIandprompting remedial action to reseal the cladding, therebypreventingcorrosionfrominitiating.

The focusof thework inparticularwas thepossibilityof apipe and cladding forming a coaxial waveguide which canbe used to propagate low frequency microwaves withinthe insulationalongthe lengthofapipe.Sincewaterhasarelative permittivity (a measure of a substance’s effect onelectric fields) much higher than that of the surroundinginsulation,anypatchesofwateralongthepipelinegiverisetoastrongreflectionoftheinputmicrowavesignal,providingamethodtodetectandlocatewaterpatches.

The pipe acts as the inner conductor of the coaxialwaveguide,andthecladdingactsastheouterconductor.Themicrowavespropagatedownthelengthofthepipelinewithintheinsulationlayerbetweenthetwoconductors,excitedbyanantennainsertedintotheinsulation.Ifdamagedcladdinghasallowedtheingressofwaterintotheinsulation,thenthewetinsulationactsasanimpedancediscontinuity,causingapartialreflectionofthemicrowavesignal.Thesepulseechoreflectionscanbeusedtodetectandlocatethepresenceofwater patches.

Experimentsundertakeninvolvedacoaxialwaveguidewithdimensionsequivalenttoa6inchpipewith3inchinsulation,totesttheprincipleoffilteringoutinterferencefromhigherorderelectromagneticmodesusinganantennaarrayi.e.multipleantennasinacirculararrayaroundthepipecircumference,specifically8antennaspositionedat45degreeintervals.Aspartofthisdesignwork,anoptimisationroutinewasdevelopedtofindtheoptimumantennadesignforawidevarietyofpipelinespecifications(pipediametersandinsulationthickness).

A vector network analyser (VNA) was used to generate the microwave frequency signal, with afrequencyrangefrom10MHzto67GHz.TheVNAwouldsweepthroughthe inputfrequencyrangeand record the reflection coefficient from thedevice under test. From this information, a processcalledTimeDomainReflectometry(TDR)wasusedtotransformthefrequencydomaindataintothetimedomain,byFourieranalysis.Thevelocityofpropagationisthenusedtocalibratethetimeaxistodistance,inordertodeterminethepositionsofthereflectors.

Sensitivityof this guidedmicrowave techniquewas found tobeexcellent,witha volumeofwaterpresentingonlya5%cross-sectionbeingreadilydetectable.

Aswellasdetectingofwaterwithinlengthsofstraightpiping,thetechniquehasbeenvalidatedwhenappliedtopipeswhichfeaturebends.Forsmallpipediameters(thosethatare8”orless),andfor90degreebends(themostcommonlyencounteredbendangle)thetransmissioncoefficientistypicallybetween99%and90%,indicatingthattheguidedmicrowavetechniqueisalmostunaffectedbythepresenceoftypicalindustrialbendsinpipelinesofthesedimensions.Largerpipelinesizes,intherangeof12” to24”,demonstrate transmissioncoefficients thatarebetween90%and34%, the latterofwhichwouldrenderinspectingbeyondsuchbendsimpractical.

Page 87: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

87

SeparatelyHeriot-WattUniversityhasalsoundertakendesignanddevelopmentofasensorsystemfordetectionofCUIbasedonMicrowaveSensingtheoryandusinganOil&Gaspipelineastheprimaryassetforresearchandtestpurposes.

Thedesignmakesuseofasensor“horn”,constructedfromPolyMethylMethacrylate(PMMA)withaconductivecopperfibrelining.Thehornisdesignedtooperateinthefrequencyrange24-25.5GHzandfunctionsinananalogousmannertoradar.

Anumberofdifferentexperimentalscenarioswereundertakenwiththeaimofreplicatingthevariousconfigurations of a pipe with multi-layer insulation configurations. Defects in the materials weremachinedbyhighprecisionmachinerytoensuretheymetwithspecification.Sensorperformanceineachconfigurationissummarisedbelow:

Copper Defects• ThisexperimentalconfigurationwasdesignedtodemonstratetheprincipaloftheCUIsensor;• Defectsweremachinedat3depths(1.5mm,1.0mm,0.5mm)and5diameters(15mm,10mm,

8mm,5mm,2mm);• Resultsshowedclearphaseshiftsbetweenthedefects,withthesignaturebeingdeterminedby

thepermeabilityoftheareabeingmeasured.

Copper Defects With insulation• Thisconfigurationwasdesignedtoprovethesensorcoulddeterminedefectsthroughinsulation,

andusedthesametestpiecefromabovewiththeadditionofPMMAlayers;• ThePMMAsimulatedtheinsulationlayerofthepipe,withthecoppertestpiecerepresenting

the pipe; • A clearphase shiftbetween thedefects couldbe seen for all thedefects, as in theprevious

experiment;• Astheinsulationdepthincreased,theintensityofthesignaldecreasedduetothepermittivityof

thePMMAreducingthenetelectricfield.

Water Ingress• Wherewaterlevelsincreasewithintheinsulation,thisisdetectedviaaparticularphaseshift(to

theright).Thisphaseshiftindicatestwothings:o Anincreasedpermittivityduetotheincreaseinwater;o Anearlierreflectionoftheinputwaveduetotheincreasedreflectionoftheinsulationnowthatitcontainswater.

• A particular amplitude change was also detected due to the scatter effect and attenuatingpropertiesofwater.

Polymer Ageing• The(PMMA)samplewasagedforvaryingamountsoftime;• Thepermittivityofamaterialwouldbeexpectedtochangeasitages.Aparticularphaseshiftin

theresultswasdetected,consistentwithwhatwouldbeexpectedasaresultofageing.

Accelerated Corrosion• SampleswereexposedtochlorinesolutionswithaDCcurrentof880mAforincreasingperiods

oftimetosimulatebothrustformationandthenmetallossandpitting;• Resultsshowedmagnitudedecreasesincomparisontothehealthysampleduetothechangesin

surfacefinish,reducingreflection;• Aphaseshiftwasdetected,attributabletotheoxidelayer,whichfunctionsasadielectric(itisa

poorconductor).

Page 88: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

88

Painted Coating• Asamplewasprovidedbyacompanywhoproducecommercialcoatingsforpipelinesandother

assets;• Thesamplewaspreparedbyhandsothecoatingwasnotuniformalongthetotallength;• ThecoatingcontainedAluminiumpigmentswhichcouldpotentiallydisruptthesignalandmask

thecorrosionarea(3cmx3cm);• Thecorrosionwasdetectedbyaphaseshiftduetothepermittivityofthecorrosionspot;• Varyingmagnitudeswereobservedinthehealthybasematerial,duetothescattereffectofthe

aluminiumpigmentsaswellasthevarianceinthecoatingapplication.

Future Work / Vision• Designofahand-heldtool;• Designofacollararray;• Designofahornantennalens.

Key Attributes• Highlysensitivetowatervolumes,downtoa5%cross-sectionalarea;• Arobustdetectiontechniqueacrossarangeofpipelineconditions;• Theeffectofmostcommoninsulationtypesisminimal;• Itispossibletoinspectbeyondatypicalindustrialpipebend;• Itispossibletoinspectbeyondtypicalpipesupports.

Limitations• This technique has been successfully tested with both rockwool and polyurethane foam

insulation, but thismethod cannot beused for glass foam insulationdue to its high level ofattenuation;

• In scenarios where the transition from completely dry insulation to insulation that is fullysaturatedwithwater,thereflectioncoefficientdropsbyafactoroftwooveralengthof0.25m.Thismayintroduceproblemsforfieldimplementationiftransitionlengthsbetweenwetanddryaresignificantlylongerthanthis;

• Furtherwork required toobtainevidenceof theeffectivenessof the technique inconditionssubjecttopipelinedeviationssuchasdents,ovalityandnon-concentricity.

Sources• “MicrowaveBasedMonitoringSystemforCorrosionUnderInsulation”;SchoolofEngineering&

PhysicalSciences,Heriot-WattUniversity,Edinburgh;• “Use of Microwaves For The Detection Of Corrosion Under Insulation”; Robin Elllis Jones,

DepartmentofMechanicalEngineering,ImperialCollege,London;• “UseofMicrowavesForTheDetectionOfCorrosionUnderInsulation”;REJones,FSimonetti,M

JSLoweandIPBradley;ImperialCollegeLondon,UniversityofCincinnatiandBPExploration&ProductionCompany.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 8 – Production use >3 years or multiple deployments <3 years with limited track record.

Page 89: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

89

5.7 Microwave Detection of Water within insulation

SummaryWorkhasbeenundertakenwithintheUKResearchCentreinNDE(partofImperialCollegeLondon)exploringthepossibilityofdetectingthepresenceofwaterwithininsulation,anecessaryprecursortoCUI.

Severalcurrentmethodsofpipelineinspectionaresensitiveonlytoregions inwhichcorrosionhasalreadyinitiatedandcausedareductioninwall-thickness.Instead,thisworkfocussedondetecting

Microwave Detection of WaterSource: O&G TRL: 8

DescriptionThis technique utilises a coaxial waveguide formed from the pipe and cladding which can be used to propagate low frequency microwaves within the insulation along the length of a pipe. Since water has a relative permittivity (a measure of a substance’s effect on electric fields) much higher than that of the surrounding insulation, any patches of water along the pipeline give rise to a strong reflection of the input microwave signal, providing a method to detect and locate water patches.

Key AttributesHigh sensitivity to water presence

Works well with smaller pipes and copes with bends and pipe supports

Less effective where insulation is 100% saturated

Effective for common insulation types

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 1

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 4

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 90: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

90

thepresenceofwaterwithintheinsulation,asanearlywarningofCUI.Existingmethodsofinspectingpipelines for thepresenceofwater, suchas thermographyandneutronbackscatter,haveparticularlimitationswhichrenderthemimpracticalfortheinspectionofentirelengthsofpipeline(theformerhas low sensitivitydue to thepresenceof the claddingand the latterhasa small inspectionarea).Theobjectiveofthisworkwastoidentifyanon-destructiveexamination(NDE)techniquetomonitorlengthsofpipelineforthefirstingressofwaterintotheinsulation,providinganearlywarningofthelikely occurrence of CUI and prompting remedial action to reseal the cladding, thereby preventingcorrosionfrominitiating.

Thefocusoftheworkinparticularwasthepossibilityofapipeandcladdingformingacoaxialwaveguidewhichcanbeusedtopropagatelowfrequencymicrowaveswithintheinsulationalongthelengthofapipe.Sincewaterhasarelativepermittivity(ameasureofasubstance’seffectonelectricfields)muchhigherthanthatofthesurroundinginsulation,anypatchesofwateralongthepipelinegiverisetoastrongreflectionoftheinputmicrowavesignal,providingamethodtodetectandlocatewaterpatches.

Thepipe acts as the inner conductor of the coaxialwaveguide, and the cladding acts as theouterconductor. The microwaves propagate down the length of the pipeline within the insulation layerbetweenthetwoconductors,excitedbyanantennainsertedintotheinsulation.Ifdamagedcladdinghasallowed the ingressofwater into the insulation, then thewet insulationacts as an impedancediscontinuity,causingapartialreflectionofthemicrowavesignal.Thesepulseechoreflectionscanbeusedtodetectandlocatethepresenceofwaterpatches.

Experimentsundertakeninvolvedacoaxialwaveguidewithdimensionsequivalenttoa6inchpipewith3inchinsulation,totesttheprincipleoffilteringoutinterferencefromhigherorderelectromagneticmodesusinganantennaarrayi.e.multipleantennasinacirculararrayaroundthepipecircumference,specifically8antennaspositionedat45degreeintervals.Aspartofthisdesignwork,anoptimisationroutinewasdevelopedtofindtheoptimumantennadesignforawidevarietyofpipelinespecifications(pipediametersandinsulationthickness).

A vectornetwork analyser (VNA)wasusedto generate the microwave frequencysignal,withafrequencyrangefrom10MHzto 67GHz. The VNA would sweep throughthe input frequency range and record thereflectioncoefficientfromthedeviceundertest.Fromthisinformation,aprocesscalledTimeDomainReflectometry(TDR)wasusedto transform the frequency domain datainto the time domain, by Fourier analysis.Thevelocityofpropagationisthenusedtocalibratethetimeaxistodistance, inordertodeterminethepositionsofthereflectors.

Sensitivity of this guidedmicrowave techniquewas found to be excellent,with a volume ofwaterpresentingonlya5%cross-sectionbeingreadilydetectable.

Aswellasdetectingofwaterwithinlengthsofstraightpiping,thetechniquehasbeenvalidatedwhenappliedtopipeswhichfeaturebends.Forsmallpipediameters(thosethatare8”orless),andfor90degreebends(themostcommonlyencounteredbendangle)thetransmissioncoefficientistypicallybetween99%and90%,indicatingthattheguidedmicrowavetechniqueisalmostunaffectedbythe

Page 91: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

91

presenceoftypicalindustrialbendsinpipelinesofthesedimensions.Largerpipelinesizes,intherangeof12”to24”,demonstratetransmissioncoefficientsthatarebetween90%and34%,thelatterofwhichwouldrenderinspectingbeyondsuchbendsimpractical.

Key Attributes• Highlysensitivetowatervolumes,downtoa5%cross-sectionalarea;• Arobustdetectiontechniqueacrossarangeofpipelineconditions:o Theeffectofmostcommoninsulationtypesisminimal;o Itispossibletoinspectbeyondatypicalindustrialpipebend;o Itispossibletoinspectbeyondtypicalpipesupports.

Limitations• This technique has been successfully tested with both rockwool and polyurethane foam

insulation,butthismethodcannotbeusedforglassfoaminsulationduetoitshighlevelofattenuation;

• In scenarioswhere the transition from completely dry insulation to insulation that is fullysaturatedwithwater,thereflectioncoefficientdropsbyafactoroftwooveralengthof0.25m.Thismayintroduceproblemsforfieldimplementationiftransitionlengthsbetweenwetanddryaresignificantlylongerthanthis;

• Furtherworkrequiredtoobtainevidenceoftheeffectivenessofthetechniqueinconditionssubjecttopipelinedeviationssuchasdents,ovalityandnon-concentricity.

Sources• “Use ofMicrowaves For The Detection Of Corrosion Under Insulation”; Robin Elllis Jones,

DepartmentofMechanicalEngineering,ImperialCollege,London;• “UseofMicrowavesForTheDetectionOfCorrosionUnderInsulation”;REJones,FSimonetti,

MJSLoweandIPBradley;ImperialCollegeLondon,UniversityofCincinnatiandBPExploration&ProductionCompany.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 8 – Production use >3 years or multiple deployments <3 years with limited track record.

Page 92: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

92

5.8 Vapour Phase Corrosion Inhibitor

Vapour Phase Corrosion Inhibitor Source: O&G TRL: 8

DescriptionA vapour phase corrosion inhibitor is a volatile compound and forms a stable bond at the interface of the metal, preventing penetration of corrosive substance to metal surfaces. VCI offers an alternative way to protect stored equipment, facilities and their contents.Adsorption of the inhibitor on to the metal surface provides a protective hydrophobic inhibitor layer to slow corrosion significantly. Compared to other methods of corrosion prevention such as gas blanketing and dehumidification, vapour phase corrosion inhibitors (VPCI) provide substantially better corrosion control at lower cost and require very low dosage rate.

Key AttributesRequires low dosage rate (12-24 month intervals)

Stable up to 176°C

Rapid penetration through insulation jacket or thermal insulation to reach pipe surface

Can be applied through gravity fed system or portable injection pump

Can prevent further corrosion of surfaces already oxidised

Volatile until bonded with surface and requires materials to have stable passivating properties, strong tendencies towards surface adsorption

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 1

Complexity 2

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 3

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 3

Safety Benefits 3

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryVapourphasecorrosioninhibitors(VPCI)areanalternativeprotectionmethodthatisbotheffectiveatcontrollingcorrosionandinexpensive.AVPCIisavolatilecompoundandformsastablebondattheinterfaceofthemetal,preventingpenetrationofcorrosivesubstancetometalsurfaces.VPCIoffersanalternativewaytoprotectstoredequipment,facilitiesandtheircontents.

Page 93: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

93

Adsorptionoftheinhibitorontothemetalsurfaceprovidesaprotectivehydrophobicinhibitorlayerto slow corrosion significantly. Compared to other methods of corrosion prevention such as gasblanketinganddehumidification,VPCIsprovidesubstantiallybettercorrosioncontrolatlowercostandrequireverylowdosagerate.

Thissummaryfocusesonthe(VPCI)CorroLogicVPCI-658whichismanufacturedbycorrosionprotectionsolutionscompanyCortecCorporation.AstudywasundertakentoascertaintheeffectivenessofVPCI-658againstacontrolgroup.

Four sampleswereassembled, two sampleswereusedas controls (no inhibitorapplied), and twosampleswerewrappedwiththermalinsulationthatwasimpregnatedwithCorroLogicVPCI-658.

Theeffectivenessof this inhibitoratminimisingCUIdamageswasevaluatedbydifferentcorrosiontests.Twosamples(onewithinhibitor,1control)wereplacedininacycliccorrosiontestchamberfor4800hours.A24hourcycleconsistedof8hourssaltspray,8hourshumidityatambienttemperature,and8hoursdrycycleat45°C.

Thesamples(onewithinhibitor,1control)weredisassembledevery720hours(30days)toevaluatetheirsurfaceconditionanddocumenttheextentofcorrosiondamageatpipe/insulationinterfaces.Theremainingtwosamplesweretestedinwetanddrycycles.A200ppmsodiumchloridesolutionwasinjectedbytubeintothepipe/insulationinterfacesevery48hours.Hotdryair(120-140oC)wasblownthroughthepipes(innerdiameter)fortwohoursperdayandtenheldatambienttemperature.Thesesampleswerealsodisassembledevery720hours(30days)forvisualinspectionandevaluation.CorrosionrateswerecontinuouslymonitoredusingMetalSamplesMS3500E(adata-loggerfordatastorage)andelectricalresistanceprobes.

Themostnoticeable changeswere thepositive shift in thebreakdownpotential andexpansionofthepassiverangeforthesealloysinthepresenceofCorroLogicVPCI-658.TheinhibitorchangedthereactivitybyreducingthepHlevel,increasedthepassivationrangesignificantly,andwasbeneficialinreducinglocalisedcorrosiondamage.

EachoneofthetestsshowedsignificantcorrosionattackonthecontrolsamplesbuttherewaseithernocorrosionorindiscerniblerustformationonthesamplestreatedwithVPCI-658.Cortecstatesthatthe results have demonstrated that CorroLogic VPCI-658 can successfully reduce corrosion attackunderinsulationdespitethepipesurfacesbeingmaintainedincontinuouslywet/drycyclicconditions.

Key Attributes• Lowcost;• Requireslowdosagerate(12-24monthintervals);• Easytoapply;• Versatile;• Canandisbeusedtoprotectmultiplemetaltypesinavarietyofindustries;• Hydrophobic(excludewatermolecules)filmofroughly6.35micrononthesurfacethatisstable

Page 94: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

94

upto176°C;• Rapidpenetrationthroughinsulationjacketorthermalinsulationtoreachpipesurface;• Canbeappliedthroughgravityfedsystemorportableinjectionpump;• Canpreventfurthercorrosionofsurfacesalreadyoxidised.

Limitations• Volatileuntilbondedwithsurface;• Requires materials to have stable passivating properties, strong tendencies towards surface

adsorption.

Sources• cortecvci.com/index2.php;• cortecvci.com/Publications/Papers/CorroLogic-VpCI-658-inhibitor-effects-on-CUI-final-report.

pdf;• cortecvci.com/Publications/PDS/VpCI-658.pdf.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 8 – Production use >3 years or multiple deployments <3 years with limited track record.

Page 95: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

95

5.9 Lateral Wave LFET

SummaryLowFrequencyElectromagneticTechnique(LFET)worksbyinjectingalowfrequencymagneticfieldintoametalplateortubeandusingscanner-mountedpickupcoilstodetecttheinducedACmagneticfieldinthematerialmeasuringthedistortionsintheresultingmagneticfieldthatoccuroveraflaw.Thispickupcoil isplacedsuchthatthereturnpathforthemagneticfieldisthroughtheareatobetested.Flawsaredetectedbymeasuringthemagneticfielddirectlyovertheflawareawithsensorcoils.

Low Frequency Electromagnetic TechniqueSource:

O&G TRL: 7

DescriptionThe Low Frequency Electromagnetic Technique (LFET) is used to detect defects by passing a low frequency magnetic field though metal plate or pipe. By using several sensors in a LFET scanner, a 3D image of the collected data is produced so that the shape and depth of the defect can be determined. LFET scanners are used to inspect storage tanks and other convex or concave ferrous surfaces, as well as non-ferrous metal tubing & piping surfaces. Scanners are available in flatbed, pipe crawler and modular crawler variations, allowing scanning of horizontal or vertical magnetic surfaces.In most situations minimal or no surface preparation is required but if surface preparation is required beyond basic preparation, time involved along with cost will both increase

Key AttributesInspection of pipe or flat surfaces

Both magnetic and non-magnetic metals can be scanned

Minimal pipe preparation and in some cases no preparation required

Real-time display with some LFET scanners

Inspects through ID or OD scale

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 1

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 4

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 96: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

96

Aflawordefectcausesthemagneticfluxlinesinthatareatobedistortedordifferentthanexpected.Thisdistortioncanbemeasuredasachangeinphaseand/oramplitude.Withsuitablecalibrationtablestheflawcanbeanalysedandadeterminationofflawdepthandshapecanbemade.Byusingseveralsensorsinthescannerarrayitispossibletodisplaya3Dimageofthecollecteddatasothattheshape

anddepthoftheflawcanbedetermined.

LFET scanners can be used in settings wherecompetingtechnologiesfailorareinconvenient

LFETscannersdetectsflaws, includingcorrosioncells and hydrogen damage, caustic andphosphate gouging, oxygen pitting, departurefrom nucleate boiler, ID pitting, corrosion, anderosion.

Cracking is also detectable and its detectioncan be optimised bymodifying the pick-up coilconfiguration.

TherearevariousscannersystemsthatemployLFETtechnologymanufacturedwithspecificapplicationorsituationsinmind.Flatbedscannersforabovegroundtankscanninghavealargescanningarea,pipecrawlerswhichrunabovepipesofvaryingdiameter,360pipecrawlerscannerswhichautomaticallyadjusttopipediameterandmodularcrawlerscannersthatcanbeusedtoscaneitherhorizontalorverticalmagneticsurfaces.

Key Attributes• Technologyisinuseandreadilyaccessiblefromvendors;• Inspectionofpipeorflatsurfaces;• Bothmagneticandnon-magneticmetalscanbescanned(ascaneconomizertubing);• MinimalPipePreparationandinsomecasesnopreparationrequired;• Real-TimedisplaywithsomeLFETscanners;• InspectsthroughI.D.orO.D.scale.

Limitations• Ifpipeorsurfacepreparationisrequiredtimescaleisnegativelyimpactedasarecosts.• Maynotseethroughmetalcladding/galvanisedsteel/certainothermetals• Doesnotworkwellwithirregulargeometry• Requireshighlyskilledoperatives

Sourceshttp://testex-ndt.com/products/lfet-products/http://www.russelltech.com/http://jenteksensors.com/oilgaspetrol.php

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 7 – Initial production use (less than 3 years)

Page 97: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

97

5.10 Corrosion Radar

SummaryCorrosion Radar is a technology developed and patented by Cranfield University in response tothe industrial need for remote corrosion inspectionandmonitoring. It is a sensing technology formonitoringcorrosioninapplicationssuchascorrosionunderinsulation(CUI),corrosionunderpipesupport(CUPS)andburiedpipecorrosion. Itaimstoassistwithpinpointingthe locationofhiddencorrosion,therebyreducingtheriskofleakagesandthecostofinspection.

Corrosion RadarSource: Oil & Gas TRL: 4

DescriptionCorrosion Radar is a technology developed and patented by Cranfield University in response to the industrial need for remote corrosion inspection and monitoring. It is a sensing technology for monitoring CUI, corrosion under pipe support (CUPS) and buried pipe corrosion.

The Corrosion Radar system operates using permanently installed flexible long-range sensors mounted along the outer surface of pipes (inside any insulation), eliminating the need for inspection scaffolding. The sensors consist of 1mm wide lengths of flexible electromagnetic waveguide (resembling a wire from the exterior, but having geometrical features inside) which support wave propagation, and an innovative metallic sacrificial coating. This coating oxidises along with any external surface pipe corrosion around it.

Key Attributes

Long range remote corrosion monitoring technology with continuous pipe coverage.

Permanently installed sensors.

Locates corrosion under insulation from several hundred metres away.

Works even in a complex network of pipes.

Insulation needs to be removed for sensor installation.

Experimental technique, not yet transferred to, or proven in, a commercial scenario

Applicability / LimitationsWith Plant Running 1

Retrofit 0

Offshore 1

Need for Specialist Skills 3

Coverage 2

Sample/Full Area 0

Risks

Cultural Change 3

Safety 2

Complexity 3

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 3

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 98: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

98

The Corrosion Radar system operates using permanently installed flexible long-range sensorsmountedalongtheoutersurfaceofpipes(insideanyinsulation),eliminatingtheneedforinspectionscaffolding. The sensors consist of 1mm wide lengths of flexible electromagnetic waveguide(resemblingawirefromtheexterior,buthavinggeometricalfeatures inside)whichsupportwavepropagation, and an innovative metallic sacrificial coating. This coating oxidises along with anyexternalsurfacepipecorrosionaroundit.

Wavesaresentinthewaveguideusingahardwaredeviceandproprietaryalgorithmsthendetectthelocation(s)ofdegradedsacrificialcoatingwithanaccuracyof+/-10cmfromupto500maway.Thissignificantlyreducesthecostsassociatedwithblindinspection,bydirectingfurtherinspectionstoonlythecorrosionpronelocationsidentifiedbyCorrosionRadar.

Thewaveguidesensoritselfisinexpensiveanddoesn’trequirespecialistskillstoinstall.ThesensorispassiveundernormalcircumstancesandisactivatedonlywhenafieldengineerconnectsaCorrosionRadar Instrumentononeendduringperiodic data collection.Note that theuseof permanentlyinstalleddatacollectioninstrumentson-siteforonlinemonitoringisalsofeasible,butthishasnotbeendevelopedyet.

CorrosionRadarbuildsupon the strengthsof theSacrificialWire techniqueandeliminates someof that technique’s shortcomings. Firstly, SacrificialWire canonly indicatewhether corrosionhasoccurredatsomepointalongthewire’slengthusingacontinuitytest,butitcannottellthelocation,meaningseveralsmallerwireswithtwoendsneedtobelaidoneaftertheothertomonitorapipe.Also,oncecorroded,awireneedstobereplaced. Incomparison,CorrosionRadar isdesignedtolocatethecorrosion(within+/-10cm)usingasinglesensormonitoredfromoneend.Thesensorcontinuestoworkevenwhenitscoatingiscorrodedatmultiplelocationsbecausethewavecontinuestopropagate.Assuch,multiplecorrodedsectionscanbedetectedandlocatedbyasinglesensor.Sensorsofachosenlength(e.g.100m)eachareconnectedtogetherinapreferredarrangementtoenablereplacementofasectionifrequired.

ThecapabilityofCorrosionRadarhasbeendemonstrated in labconditions,witha labprototypeavailablefordemonstrationpurposes.CranfieldUniversityarenowlookingforindustrialsponsors,partnersandfieldtestsitesinordertofurtherproveanddevelopthetechnology.Beyondperiodicinspectionofpipelines,theCorrosionRadarteamiscontinuingitsresearchintoonlinemonitoringofcorrosionandalgorithmstoquantifytheseverityofcorrosionandmoisture.

Page 99: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

99

Key Attributes• Longrangeremotecorrosionmonitoringtechnologywithcontinuouspipecoverage.• Permanentlyinstalledsensors.• Locatescorrosionunderinsulationfromseveralhundredmetresaway.• Workseveninacomplexnetworkofpipes.

Limitations• Insulationneedstoberemovedforsensorinstallation.• Experimentaltechnique,notyettransferredto,orprovenin,acommercialscenario.

SourcesCranfieldUniversityCorrosionRadar;http://www.corrosionradar.com/

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 4 – Experimental pilot in laboratory conditions.

Page 100: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

100

5.11 Acoustic Resonance

Acoustic ResonanceSource: O&G TRL: 3

DescriptionA sending transducer transmits a broad-band acoustic signal towards the pipeline. The signal then spreads in the structure, exciting half-wave resonances, and the structure's response signal is then detected by the receiving transducer.Analysis of the frequency content of the response signal gives the resonance peak frequencies, from which the base resonance frequency - and ultimately the structure's thickness - can be estimated. During post-processing, multiple measurements can be combined to estimate the size and depth of flaws, such as wall loss, in the metal structure.

Key AttributesPotentially very accurate

Does not directly detect corrosion, detects wall loss and may not be able to distinguish between external and internal wall loss;

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 101: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

101

SummaryAcoustic resonance technology (ART)usesa sending transducer to transmitabroad-bandacousticsignal towards the metal structure. The signal then spreads in the structure, exciting half-waveresonances,andthestructure’sresponsesignalisthendetectedbythereceivingtransducer.

Analysisof the frequencycontentof the response signal gives theresonance peak frequencies,from which the base resonancefrequency – and ultimately thestructure’s thickness – can beestimated.Duringpost-processing,multiple measurements can becombinedtoestimatethesizeanddepthofflaws,suchaswallloss,inthemetalstructure.

This technique can potentially beusedfordetectingcorrosionandwalllossinvesselswithoutenteringthevessels,howeverwearenotawareofanyproductsortrialslookingatthisarea.

Key Attributes• Potentiallyveryaccuratescans;

Limitations• Accuracyislimitedwithirregulargeometry• Needs360degreeaccesstopipeline• The deployment of the technique is slow with the receiving sensor needing to be in close

proximitytotransmitter.

SourcesHalfwavewebsite:http://www.halfwave.com/acoustic-resonance-technology-art/

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 3 – Proof of concept

Page 102: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

102

5.12 Sacrificial Wire

Sacrificial WireSource: O&G TRL: 3

DescriptionCurrently under trial by BP and Shell, this technique is based on the location of thin wire adjacent to the pipe and under the insulation, where the thickness and material of the wire is chosen to corrode at the same rate as the pipe itself. The wire is typically wrapped around the pipe as a continuous spiral forming a complete circuit and can be extended to a suitable monitoring point. Should corrosion occur then the wire loses the ability to conduct electricity. This can be detected by operators using COTS hand-held resistance meters or multi-meters to determine the resistance of the wire. Wires of varying thicknesses can be employed simultaneously to provide an estimate of rate of corrosion.

This technique is relatively low cost both to install and to monitor and can be applied to new pipes and retrofitted to existing pipes following a repair

Key AttributesMinimal equipment to install and use

Minimal training

Potential for automated continuous data collection

Depends on element failure to detect corrosion

Indicates presence/absence of corrosion but not rate of corrosion

Applicability / LimitationsWith Plant Running 1

Retrofit 0

Offshore 1

Need for Specialist Skills 3

Coverage 2

Sample/Full Area 0

Risks

Cultural Change 3

Safety 2

Complexity 3

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 3

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 3

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryThissolutionforCUIdetectionisbasedonthelocationofthinwireadjacenttothepipeandundertheinsulation,wherethethicknessandmaterialofthewireischosentocorrodeatthesamerateasthepipeitself.Thewireistypicallywrappedaroundthepipeasacontinuousspiralformingacompletecircuitandcanbeextendedtoasuitablemonitoringpoint.

Page 103: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

103

Should corrosion occur then the wire losesthe ability to conduct electricity. This can bedetected by operators using COTS hand-heldresistancemetersormulti-meters todeterminethe resistance of the wire. Wires of varyingthicknessescanbeemployedsimultaneously toprovideanestimateofrateofcorrosion.

Thistechniqueisrelativelylowcostbothtoinstallandtomonitorandcanbeappliedtonewpipesandretrofittedtoexistingpipesfollowingarepair.

Inadditiontothecontinuouscorrosion“fuse”techniquedescribedabove,Cosascoofferstwoothervariantsonthistechnology:• Insertedprobearray;• ElectricalResistance(ER)Probe.

The Inserted Probe Array consists of a set of 4probesinsertedthroughtheinsulationatdiscretepointssymmetricallyroundthecircumferenceofthe pipe and is designed to be used followinga repair to the pipe and/or insulation. As theprobes can be insertedwithout removal of theinsulation, this technique is also suitable forretrofittingexistingpipes.

Electrical Resistance Probe provides ameasurementofcorrosionataspecificpointon thepipeline.Thesensorelementcanbe insertedthroughexistinginsulation.

Whilst the costof installation is relatively low, it shouldbenoted that sacrificialdetection sensorsdetectcorrosionbyfailing,andrequirereplacementasandwhenaneventisdetectedandthepipeand/orinsulationisrepaired.

The techniquesdescribedhereandasdescribedbyCosascoare intended tobeused inamanualoperator/engineerbasedscheduledrotaandcanalsobeusedwithinariskassessmentbasedapproach.

LockheedMartin notes that with the advent of low cost/low powerWifi and Bluetooth enabledsensors(InternetofThings)itmayprovefeasibletocombinebasicremotesensorsandthesacrificialwiretechnologytoprovideautomatecontinuousinputtoaplantdatahistorianallowingforearlierandmoreconsistentdetection.

History of UseCosascooriginallydevelopedSacrificialWiredetectionforBPforuseinAlaska.FollowingsuccessfullaboratorytrialsBPinstalled200wiresinAlaskacirca3yearsago.BPhasnotreportedbackontheeffectivenessofthetechniqueyet,possiblybecausethepipelinesinthetrialaremanagedeffectivelyandhavenotsufferedsignificantrecentcorrosion.

Theproductshavealsobeenusedoffshore inThailand,howeveraswithBPtheproductshavenotbeeninplacelongenoughforsignificantcorrosiontooccur.

CosascoisalsocurrentlyconductingseparatetrialswithBPandShell,theresultsofwhicharenotyetavailableatthetimeofwriting.

Page 104: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

104

Key AttributesThekeyattributesofthesemethodsforCUIdetectionare:• RelativelyLowCost;• Can be fitted to new pipes or retrofitted to existing pipes with minimal impact on existing

insulation;• Minimaltrainingrequiredbothforinstallationteamsandforoperators/supporttechnicians;• Minimalequipmentrequiredtoinstallanduse;• Potentialforautomatedcontinuousdatacollection.

Limitations• Relativelynewproductsetcurrentlyundergoingfieldtrialssoeffectivenessisunknown;• As it dependson failureof elements todetect corrosion it is essentiallybinary innature. It is

possibletoinstallmultiplewirestopermitasteppedresponse;• Whilstasinglewiremeshcanbeusedtocoverlargeareas/lengthsofpipe,anyfailureatanypoint

onthewirenecessitatestheremovalof insulationforthewholeofthemeshcoveredareaforvisualinspectionofthepipeandreplacementoftheentiremesh;

• Asthewiresaredesignedtocorrodeatthesamerateasthepipe,butarethinner,theywillrequirereplacementthroughoutthelifetimeofthepipe.LifespanoftheproductisthereforebasedonthequalityofoverallCUIcontrolbytheoperator;

• Wheretheproductsareusedinaperiodicorriskbasedassessmentregime,itispossibleforsometimetoelapsebetweenthesensorwirefailingandthisbeingpickedupbytechnicians,duringwhichtimethepipemaydeterioratefurther.Thusasinglewireinstallationcannotbereliedontoindicatehowmuchcorrosionhashappened,onlythatcorrosionhastakenplacesincethelastinspection.

Sources• “CUISensorsRev5Feb15.pdf”availableonrequestfromCosasco;• “CUIDataSheet2016.pdf”availableonrequestfromCosasco;• InterviewconductedbyLockheedMartinwithDerekMortonofCosascoon20January2016.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 3 – Proof of concept.

Page 105: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

105

5.13 Electromagnetic Inductance

Electromagnetic Inductance Degradation Source: O&G TRL: 3

DescriptionElectromagnetic inductance degradation technique has the potential to monitor the microstructure of steel during processing or in service. By measuring the magnetic properties using a portable probe it is possible to determine the materials properties to quantify degradation during service, such as creep damage or embrittlement, or to identify the signs of microstructural pre-cursors to fatigue crack development.Although this technology is at an early stage in its development it has the potential to add another NDT technique with a range of applications including those in the oil and gas domain.

Key Attributes

Can scan large areas

Provides accurate material measurements

Provides condition based analysis on a the materials microstructure

Can be used to perform quality test inspection during steel production and fabrication.

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 106: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

106

SummaryTheNationalPhysicalLaboratoryhasundertakenresearchinusingelectromagneticinductanceforthedetectionofdegradationinsteelstructureswithinanumberofindustries.

Steel is the engineering material of choice in many demanding and safety critical applications,includingsub-seapipelinesandrisers intheoil industry,tubeandboilercomponents inelectricalgeneration,andpressurevesselsinthenuclearindustry.

Intheseapplicationsitisveryimportanttobeabletomonitortheconditionofthemicrostructure,especially to quantify degradationduring service, such as creepdamageor embrittlement, or toidentifythesignsofmicrostructuralpre-cursorstofatiguecrackdevelopment.

Themicrostructureofsteelgovernsitselectromagnetic(EM)propertiesand,therefore,EMsensingoffers potentialmeasurement techniques tomonitor themicrostructure during processing or inservice.Bymeasuringthemagneticpropertiesusingaportableprobeitispossibletodeterminetherequiredmaterialproperties.

An example is the determination of the stress in 316 stainless steel using the relativemagneticpermeability.BuildingonNPL’sexperienceinmeasuringthepropertiesofmagneticmaterialswithstressapplied,atechniquehasbeenestablishedthatusesNPLreferencematerialsandcalibrationcurvestoremotelymeasurethestresswithinsafetycriticalassets.

NPLhasarangeofelectricalconductivityreferencematerialsusedbytheautomotiveandaerospacesectorstodeterminethehardnessofaluminiumandaluminiumalloysandcombinedwithanextensiverangeofmagneticmaterialmeasurement facilitiesandmagneticfieldstandardsareapplying thisknowledgetodevelopNonDestructiveTesting(NDT)solutionsforarangeofapplications,includingthoseintheOil&Gasdomain.

Key Attributes• Canscanupto250mmawayfromthesurface;• Providesaccuratematerialmeasurements;• Canpenetratedeepintostructures;• Providesconditionbasedanalysisonamaterialsmicrostructure;• Minimaloperatortrainingrequired.

Limitations• Anunproventechniqueforcorrosiondetection;• Scanningarealimitedbyarraysize.

SourcesNationalPhysicalLaboratory(NPL).

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 3 – Proof of concept.

Page 107: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

107

5.14 Electrochemical Impedance Spectroscopy

SummaryElectrochemical Impedance Spectroscopy (EIS) is an inspection method used to characteriseelectrochemicalprocessessuchascorrosion.ThemethodworksbyapplyingasmallamplitudeACcurrent(usuallyintherange5to50mV)ofvaryingfrequencies(0.001Hzto100,000Hz)toamaterialandmeasuring its response. It is a non-destructivemethod for the evaluationof awide range ofmaterials,includingcoatings,anodisedfilmsandcorrosioninhibitors.

Electrochemical Impedance SpectroscopySource: O&G TRL: 3

DescriptionElectrochemical Impedance Spectroscopy (EIS) is an inspection method used to characterise electrochemical processes such as corrosion. The method works by applying a small amplitude AC current (usually in the range 5 to 50 mV) of varying frequencies (0.001 Hz to 100,000 Hz) to a material and measuring its response. It is a non-destructive method for the evaluation of a wide range of materials, including coatings, anodised films and corrosion inhibitors.

Applicability / LimitationsWith Plant Running 0

Retrofit 0

Offshore 0

Need for Specialist Skills 1

Coverage 1

Sample/Full Area 0

Risks

Cultural Change 3

Safety 2

Complexity 2

Significant Industry Backing 0

Costs

Install/Commission 3

Staff Training 1

Operations/Maintenance 3

Production Impact 0

Benefits

Cost Benefits 1

Safety Benefits 1

Other Industries

Key AttributesSuccessfully applied to the study of corrosion systems for 30 years

Very well suited to the study of paints and coatings used to prevent corrosion, to the extent that there are ISO norms developed for such tests

Requires an accurate control of the operating/testing conditions

Results can be challenging to interpret, particularly the assignment of correct circuits/equations to the experimental data

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 108: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

108

Analysisoftheresponseisusedtoextractinformationabouttheinterface,itsstructureandreactionstakingplacethere.Chemical reactions such as corrosion tend to dominate atcertain frequencies. The responses are then modelled ascomplex impedance circuits (where impedance is definedas theopposition to theflowofAC current) and analysedgraphicallyusingNyquistplotsandBodeplots..Forexample,theBodeplottotherightshowstheimpedancevsfrequencypropertiesovertimeofacoatingsubmergedinasolutionofsodiumchloride(NaCl).

EIS canprovidedetailed informationof the systemsunderexamination,includingparameterssuchascorrosionrate,anddirectionoflocalisedcorrosion.Infact,EIS has been successfully applied to the study of corrosion systems formany years and has beenproventobeapowerfulandaccuratemethodformeasuringcorrosionrates.

Inparticular,defects, limitationsandthepresenceofcorrosion incoatingsaredetectablewith theuseofEIS.Themetalcoatedsystemisgenerallyfairlycomplexandconsistsofametalsubstrate,asurfacepre-treatmentandsome layersofpaintwithdifferentchemicalandphysicalproperties.AlltheseparameterscaninfluencetheelectrochemicalbehaviourmeasuredbyEIS,andthereforealsotheelectricalmodelsusedtoexplaintheimpedanceresults.

EISisahighlysensitivetechniquewhichmakesitagoodreferenceforotherNDTmethods.However,this is a laboratory technique typically applied either to simulations of corrosion (often aligned toASTMstandardG189)ortocoatingsamples.Assuch,itisacomplementarytechnique,typicallyusedinconjunctionwithothercorrosiondetectiontechniques.

Key Attributes• Successfullyappliedtothestudyofcorrosionsystemsfor30years;•Verywellsuitedtothestudyofpaintsandcoatingsusedtopreventcorrosion,totheextentthatthereareISOnormsdevelopedforsuchtests.

Limitations• Requiresanaccuratecontroloftheoperating/testingconditions;• Resultscanbechallengingtointerpret,particularlytheassignmentofcorrectcircuits/equations

totheexperimentaldata.

Sources• “Electrochemicalimpedancespectroscopyasatoolforinvestigatingunderpaintcorrosion”;P.L.

Bonora,F.Deflorian,L.Fedrizzi;.• “ElectrochemicalImpedanceSpectroscopyanditsApplications(2014)”;AndrzejLasia;• Electrochemicalimpedancespectroscopy(EIS)• “Use of Electrochemical Impedance Spectroscopy (EIS) for the Evaluation of Electrocoatings

Performances”;Marie-GeorgesOlivierandMireillePoelman;UniversityofMons,Belgium.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 3 – Proof of concept

Page 109: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

109

5.15 Ultrasonic Surveys

Ultrasonic SurveysSource: O&G TRL: 3

DescriptionUses high frequency sound energy to inspect pipes and vessels. Works on steel, castings, welds and composites. Can detect discontinuities, moisture and corrosion. Ultrasonic waves are introduced into a material, where they travel in a straight line and at a constant speed until they encounter a surface. At the surface interface, some of the energy is reflected and some is transmitted. The amount of reflected or transmitted energy can be detected and provides information about the size of the reflector. The travel time of the sound can be measured and this allows the distance the sound has travelled to be calculated.Recent improvements in techniques developed in the health industry and the use of an ultrasonic array roller allow long lengths to be inspected for signs of corrosion under insulation once the array has been attenuated for the insulating medium. Requires access to pipes and vessels but can be restricted by insulating materials and casings such as aluminium.

Key AttributesDetects discontinuities, moisture and corrosion

Non-invasive, can be used whilst plant is running

Works through some types of insulation not through metal cladding

Better suited for straight pipes

Requires skilled staff to interpret results

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 1

Other Industries

Health

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryTheUltrasonicInspectiontechniqueisanon-destructivetesting(NDT)methodinvolvinghighfrequencysoundenergytocarryoutinspectionsandmakemeasurementsonpipesandvessels.Inspectionscanbeconductedonawidevarietyofmaterialsincludingcastings,weldsandcomposites.Theinformationcollected fromanobject includesthepresenceofdiscontinuity,presenceofmoistureandsignsofcorrosion.

Page 110: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

110

Ultrasonicwavesareintroducedintoamaterial,wheretheytravelinastraightlineandataconstantspeeduntiltheyencounterasurface.Atthesurface interface,someoftheenergy isreflectedandsome is transmitted.Theamountof reflectedor transmittedenergycanbedetectedandprovidesinformationaboutthesizeofthereflector.Thetraveltimeofthesoundcanbemeasuredandthisallowsthedistancethesoundhastravelledtobecalculated.

Recent improvements intechniques developed in themedicalindustryandtheuseofanultrasonic array roller allow longlengths to be inspected for signsofcorrosionunderinsulationoncethearrayhasbeenattenuatedfortheinsulatingmedium.

Thetechniqueisveryeffectiveforeasy to access pipes and vesselsbutcanberestrictedbyinsulatingmaterials and casings such asaluminium.

Research intosuitable typesofcladdingand insulationtoaid this typeof inspection is requiredsothatitcanbedesignedintotheplant.Researchintotransducerdesigntoenablescanningthroughmaterialssuchasaluminiumcladdingisalsorequired.

Key Attributes• Canbeusedtomonitordefectsanddetectthepresenceofwater;• Monitoringcantakeplacewhilsttheplantisstillinoperation,thereforethereisminimalimpact

onoperations;• Canbeusedtomonitorcorrosion,weldingandplantintegrity;• Candetectsurfacecorrosionthroughinsulation;• Canbeverycosteffectiveprovidingvesselsandpipesareinaneasyconditiontoscan.i.e.,long

lengthsofpipewith“ultrasonicfriendly”claddingoreasilyaccessiblevessels.

Limitations• Maynotworkonallvessels;• Islimitedtolengthsofpipewithfewjointsorbends;• Limitedbyinsulationcladding.Aluminiumcladdingmakespenetrationdifficult;• Datainterpretationrequiresskilledpersonnel,althoughthereareanumberofhighlydeveloped

proceduresandcodeswhichreducetheneedforexpertinterpretation.

Sources• HSE Technical Document- Corrosion under insulation of plant and pipework v3- SPC/TECH/

GEN/18;• SauravKumarGupta–SeminaronUltrasonicTechniqueforCorrosionDetection; • Svein-EricMasoy–InPhaseSolutions.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 3 – Proof of concept

Page 111: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

111

5.16 Terahertz Spectral Imaging

Terahertz Spectral ImagingSource: Nuclear TRL: 2

DescriptionTerahertz (THz) waves occupy the wavelength range between microwave and infrared. In THz imaging, the internal structure of an object is determined by analysing changes in a THz signal applied to the object. THz waves can penetrate opaque materials and detect internal defects within non-metallic materials which visible light cannot, such as foam, ceramics, glass, resin, paint, rubber, composites, and concrete.THz imaging has been extensively used in the Space and Aerospace sectors for testing of thermal protection, foam insulation and carbon composites. Experimental results also show that THz imaging may be used for detection of corrosion under paint and detection of corrosion within steel reinforced concrete.

Key AttributesCan detect defects within non-metallic, opaque materials which visible light cannot

No human radiation hazard, unlike microwaves

Relatively new NDT technique, unproven for corrosion detection

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 2

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 2

Operations/Maintenance 2

Production Impact 0

Benefits

Cost Benefits 4

Safety Benefits 3

Other Industries

Nuclear

Space

Aerospace

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

Page 112: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

112

SummaryLong-termcorrosionofsteelinconcretestructuresisaparticularconcernfornuclearpowerplantsasthereiscompellingpublicinterestinthesafeoperationoftheseplantsforthemanydecadesthattheyareinoperationandtheadditionaldecadesittakesforthemtobedecommissioned.

Inspectiontechniquesthatarebothnon-destructiveandwhichcandetectlong-termcorrosionatitsearlieststagesareneededtoidentifywhenremedialstepsneedtobetakentoinsuretheintegrityofconcretestructuresatnuclearpowerplants.

PhysicsMaterialsandAppliedMathematicsResearchLLCisconductingresearchintohowterahertzimaging can be used to detect corrosion of steel in concrete structures. The overall objective ofthis researchprogram is to establish terahertz imagingand spectroscopyas thepre-eminentnon-destructiveexaminationtechniqueforlocatingandidentifyingcorrosioninsteelreinforcedconcretestructures.

Thisisaccomplishedbypushingthelimitsofhigh-powerterahertzsystemstoincreaseimagingdepthand by enhancing the detection sensitivity of terahertz spectroscopic methods to directly detectcorrosionby-productsinconcrete.

In Phase I effort is spent to identify whichcorrosion by-product or promoting agent ismoststronglydetectedwithterahertzimagingand spectroscopy. This is established via acombination of theoretical and numericalmodellingandexperimentalbenchmarkingatterahertzfrequencies.

Images are taken of steel in concrete toevaluatetheimagingdepthandquality. Theproposedtechniqueenablesrapidinspectionof nuclear plant structures and detection ofcorrosioninconcrete.

Similarcorrosionissuesafflictaginginfrastructureincludinghighways,bridges,tunnels,buildings,anddams.Earlieridentificationofcorrosioninthesestructuressignificantlyenhancespublicsafetyaswellasreducingthecostofcorrosion,estimatedtobeinthehundredsofbillionsofdollarsannually.

Key Attributes• Initialresearchprogramsosometimebeforekeyattributescanbeestablished;• Stand-offsensor;• Abilitytodetectchemicalsignatures.

Limitations• Initialresearchprogramsosometimebeforeanylimitationsbecomeapparent;• Noneoftheresearchanddevelopmentprogramshaveanyoilandgasfocus.

Sources• Physics,Materials,andAppliedMathematicsResearchL.L.Cwebsite-http://physics-math.com/

pmam/.

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:

NASA TRL 2 – Technology concept and/or application formulated

Page 113: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

113

5.17 Acoustic Emission

Acoustic EmissionSource: O&G TRL: 2

DescriptionUses the detection of high frequency acoustic (elastic) stress waves that occur and radiate within a solid material when it undergoes changes in its internal structure. The waves are generated by the changes themselves and can be the result of localised yielding or cracking of the base material, or of the products resulting from corrosion.The waves are converted to electrical signals by surface mounted piezoelectric sensors, or, in the case of high temperature structures, on the end of metal waveguides which are attached to the structure. Can be used for spot checks or for long term monitoring during production

Extensive used in multiple scenarios, including corrosion detection, pressure vessel inspection, leak detection, crack formation during welding and detecting creep damage in High Energy Piping (HEP) systems

Key AttributesCan monitor active, inner, outer and embedded defects and corrosion during plant operation on temporary or permanent basis

Non-invasive inspection technique

Some disturbance of insulation may be required

Remote monitoring possible

No external energy is applied to the target

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 1

Coverage 0

Sample/Full Area 1

Risks

Cultural Change 2

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 1

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryAcoustic emission (AE) is a non-destructive testing (NDT) method which utilises the detection ofhighfrequencyacoustic(elastic)stresswavesthatoccurandradiatewithinasolidmaterialwhenitundergoeschangesinitsinternalstructure.Thewavesaregeneratedbythechangesthemselvesandcanbetheresultof localisedyieldingorcrackingofthebasematerial,oroftheproductsresultingfromcorrosion.

Thewavesareconvertedtoelectricalsignalsbysurfacemountedpiezoelectricsensors,or,inthecaseofhightemperaturestructures,ontheendofmetalwaveguideswhichareattachedtothestructure.

Page 114: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

114

ThepicturebelowillustratestheAEprocess.

Fordetection thesourcemustbeactiveduring themonitoringperiod,whichmeans thestructureneedstobestressedoroperating.Inthecaseofashort-termtest,additionalstressisusuallyappliedtothestructuretostimulateactivity.Alternatively,thestructurecanbemonitoredforanextendedperiod,orevencontinuously,undernormaloperation.

TheAEtechniqueisdifferentthanotherNon-DestructiveTesting(NDT)techniquesintwokeyregards:

• Insteadofsupplyingenergytotheobjectunderexamination,AElistensforenergyreleasedbytheobjectnaturally;

• AE works with the dynamic processes within the object material i.e. only active/developingfeaturesaredetected.Thus,itispossibletodistinguishbetweendevelopingandstagnantdefects.

TheAEtechniqueiscapableofdetectinginner,outerandembeddeddefects.Thetechniquecanalsoidentifydefect locationbymeasuring the relativetimeofarrivalof signalsatmultiple sensorsandcarryingouttriangulation.

AEsystemsareusuallybasedaroundspecialistperipheralcomponentinterconnect(PCI)boardswithdigitalsignalprocessing(DSP),installedinanindustrialPCorspecialistchassisrunningPCsoftware.Thesignalsfromthesensorsarefirstfilteredandamplifiedusinglow-noisepre-amplifiers,whicharetypicallylocatedwithinthesensorsthemselvesandalsoprovidelinedrivefunctionalityforlongcables.ThePCsoftwareanalysesthecollectedsignals,removingextraneousnoiseandidentifyingtheseverityandlocationofdefects.

Acoustic emissions can be detected in frequency ranges under 1 kHz, and have been reported atfrequenciesup to100MHz,butnon-destructive testingofmaterials typically takesplacebetween30 kHz and1MHz.Unlike othermethodsof ultrasonic testing, theAE techniquedetects acousticemissionsproducedby/withinamaterialduringstress,ratherthanactivelyinputtingacousticwavesandthendetectingthemaftertheyhavetravelledthroughthematerial.

Asaresultoftheversatilityofthetechnique,ithasseenextensiveuseinmultiplescenarios,includingcorrosiondetection,pressurevessel inspection, leakdetection,crackformationduringweldinganddetectingcreepdamageinHighEnergyPiping(HEP)systems.

StandardsfortheuseoftheAEtechniqueforNDThavebeenproducedandpublishedbytheAmericanSocietyofMechanicalEngineers(ASME),byISOandbytheEuropeanCommunity.

Page 115: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

115

Key Attributes• Canbeusedtomonitoractivedefects;• Monitoringcantakeplacefrommultiplelocations,withminimaldisturbancetopipeorvessel

insulation,whilsttheplantisstillinoperation;• Canbeusedtomonitorcorrosion,weldingandplant integrityonanextendedorpermanent

basis; • Candetectinner,outerandembeddeddefectsandisnotaffectedbydefectorientation;• ComparedtootherNDTtechniques,AEdetectsenergygeneratedinsideamaterialitself,rather

thanneedingtoapplyandthendetectsomeformofenergy;• Oncesensorsareinplace,AEmonitoringandanalysiscanbecarriedoutremotely,whichisof

benefitwhenoperatinginharshenvironments;• AEsensorsareavailableforuseuptooperatingtemperaturesof550C.Waveguidescanbeused

atanytemperature.

Limitations• Reliesondefectactivity/growthfordetection;• Onlyprovidesaqualitativeassessmentofdefectactivity.Assuch,follow-upquantitativetesting/

inspection is required tomeasure defect size. However, the use of AE to direct subsequentinspectionimprovesinspectioneffectiveness,allowingknownproblemareastobeprioritised;

• Datainterpretationrequiresskilledpersonnel,althoughthereareanumberofhighlydevelopedproceduresandcodeswhichreducetheneedforexpertinterpretation;

• Susceptibletosignaltonoiseissueswhenutilisedinnoisyenvironments,thusrequiringahighlevelofcorrectivesignalprocessing.Processactivitiesareonesourceofbackgroundnoiseandmightpreventacquisitionofconclusivesensordata.

Sources• “CorrosionMonitoringandTestingFacilities”;SchoolofEngineering,RobertGordonUniversity,

Aberdeen;• “RR659: Evaluation of the effectiveness of non-destructive testing screeningmethods for in-

serviceinspection”;HealthandSafetyExecutive;• “IntroductiontoAcousticEmissionTesting”;NDTResourceCentre;• “UseofAcousticEmissiontoDetectLocalisedCorrosion–PhilosophyofIndustrialUse,Illustrated

WithRealExamples”;• “UsingAcousticEmissioninFatigueandFractureMaterialsResearch”;JournalofTheMinerals,

Metals&MaterialsSociety;• “AcousticEmissionTesting(AET)”;InspectioneeringJournal

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 2 – Technology concept and/or application formulated.

Page 116: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

116

5.18 Ultrasound Tomography

Ultrasonic TomographySource: O&G TRL: 2

DescriptionUltrasound Tomography (UST) is a tomographic technology that enables non-invasive online imaging and measurement of media inside an industrial pipe or tank. The technology is suitable for example for measuring emulsion interfaces. The measurement is based on the speed of sound. Monitoring systems are based in tomographic technologies, which are non-invasive, non-nuclear techniques for cross sectional or 3D imaging of material properties and distributions in various industrial positions such as in pipes and tanks. The target is exposed to acoustic waves and the response measured. Calculations then determine areas of material change. In principal, initial surveys would be undertaken using a portable instrument to determine where issues are most likely to occur and then fixed sensors would be installed to provide live online data feeds.

Key AttributesCan be used to monitor defects and detect the presence of water and surface corrosion, also welding defects

Non-invasive, can be used whilst plant is running

Doesn't work through aluminium cladding

Effective for long lengths of pipe

Applicability / LimitationsWith Plant Running 1

Retrofit 1

Offshore 1

Need for Specialist Skills 2

Coverage 1

Sample/Full Area 1

Risks

Cultural Change 3

Safety 2

Complexity 1

Significant Industry Backing 0

Costs

Install/Commission 2

Staff Training 2

Operations/Maintenance 2

Production Impact 1

Benefits

Cost Benefits 2

Safety Benefits 2

Other Industries

0

1

2

3

4

5

6

7

8

9

10TRL

App/Lim

RisksCosts

Benefits

SummaryUltrasoundTomography(UST)isatomographictechnologythatenablesnon-invasiveonlineimagingandmeasurementofmediainsideanindustrialpipeortank.Thetechnologyissuitableforexampleformeasuringemulsioninterfaces.Themeasurementisbasedonthespeedofsound.

Page 117: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

117

Monitoring systems are based in tomographic technologies, which are non-invasive, non-nucleartechniques for cross sectional or 3D imaging of material properties and distributions in variousindustrialpositionssuchasinpipesandtanks.

ThefigurebelowillustratestheUSTprocess.

Ultrasoundtransducersareplacedaroundthemeasuredobject.Themeasurementisperformedbysendingasoundpulsewithonetransducer,andthematerialbetweenalltransducersmodulatestheshapeofthepulse.Thesemeasurementsareutilisedforreconstructingthespeedofsounddistributioninsidetheobject,fromwhichtheimageandtrendsarecalculated.

MonitoringsystemsarebeingdevelopedfortheOilandGasProcessIndustriesandaredesignedtoensurethebestpossiblelevelofflowassurance.Byseeinginsidepipesandtanksinreal-time,systemsallowoperatorstoovercometoughandcostlyflowassurancechallenges,forexamplepreventionofdepositionandcorrosioninpipesoroptimizationoflayersinseparatortanks.

ThenextfigureillustratesapotentialuseofUSTtomonitorpipesandtanks.

Page 118: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

118

Inordertomakesystemssaferforpeopleandtheenvironment,tomographictechnologiesareutilisedtoperformtheprocessimagingandmeasurementwithoutusingaradioactivesource.

Solutionsarebasedontomographictechnologies,whichenablewholevolumeimagingofaprocesspipeortankwithoutusingaradioactivesource.Tomographictechnologiesareespeciallysuitableformeasuringandcontrollingmultiphaseflows.Resultsinprocesstomographicimagingaredisplayedasanimageandindices.

Thegeneralideaintomographicmeasurementsistoexposethetargetofinteresttoacousticwavesandmeasuretheresponsecausedbythetarget.Fromtheresponsesignalsitispossible,withtheaidofmathematicalmodels,toinferthedistributionofdifferentmaterialwithinthetarget.

Inprincipal,initialsurveyswouldbeundertakenusingaportableinstrumenttodeterminewhereissuesaremostlikelytooccurandthenfixedsensorswouldbeinstalledtoprovideliveonlinedatafeeds.

This technology is currentlyunderdevelopmentandas such there is limited information from thedeveloper. Theyhave indicated that the technology is likely to be available in themarket place in2017/2018.Duetothedevelopment,itisalsodifficulttodiscussthekeyattributesandlimitationsofthetechnology.

Key Attributes• Canbeusedtomonitordefectsanddetectthepresenceofwater;• Monitoringcantakeplacewhilsttheplantisstillinoperation,thereforethereisminimalimpact

onoperations;• Canbeusedtomonitorcorrosion,weldingandplantintegrity;• Candetectsurfacecorrosionthroughinsulation;• Canbeverycosteffectiveprovidingvesselsandpipesareinaneasyconditiontoscani.e.,long

lengthsofpipewith“ultrasonicfriendly”claddingoreasilyaccessiblevessels.

Limitations• Maynotworkonallvessels;

Page 119: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

119

• Islimitedtolengthsofpipewithfewjointsorbends;• Limitedbyinsulationcladding.Aluminiumcladdingmakespenetrationdifficult;• Datainterpretationrequiresskilledpersonnel,althoughthereareanumberofhighlydeveloped

proceduresandcodeswhichreducetheneedforexpertinterpretation.

Sources• Rocsole

Readiness AssessmentWeestimatethatthistechnology’sscoreontheNASATRLscaleis:NASA TRL 2 – Technology concept and/or application formulated.

Page 120: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

120

SECTION 6

MANAGEMENT AND CULTURAL IMPEDIMENTS

Page 121: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

121

InadditiontophysicalandtechnicalconstraintsoneffectiveCUIandvesselinspectiontherecanbeconstraintsinvolvingpeopleandprocesses.Whilstphysicalandtechnicalconstraintsareusuallyeasytoidentifyifnotnecessarilyresolve,managementandculturalconstraintsaresometimeslessobviousandhencehardertoquantify.

ManagementandCulturalconstraintscaninclude:

• Knowledgeoflatesteffectiveprocessesandtechniquesandtheskillstousethem;• Financial;• Supervision;• Training;• Requirementsmanagement;• AvailabilityofresourcesandWorkscheduling;• Competencyofstaff;• InformationManagement;• Contractual.

Management and Cultural factors may exist at different levels including the activity, facility andorganisationallevels,andaneffectivereviewprocessneedstolookatthewholepicturenotjustthetechnicalmethodsforinspection.

Effective training and regular competency assessments, quality supervision and recognition bymanagement of the importance of regular inspection regimes are vital to timely prevention anddetectionofcorrosionanditsconsequences.

Somefactorsaremorespecifictooffshoreoperations.Thehighlevelofcontractorandsub-contractorusecoupledwithahighrotationofstaffbetweenplatformscanintroducealackofcommunicationbetweengroupsandpreventa joinedupapproach.Routine inspectionscanbedelayedormissedentirelywhenstaffaremovedfromtheplatformtomakeroomforhigherprioritywork,orstaffmaybedivertedintounplannedmaintenanceactivitiesatthecostoftheplannedinspectionprocess.

Page 122: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

122

SECTION 7

TECHNOLOGY GAPS

Page 123: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

123

7.1 Technology GapsThecurrenttechniquesusedintheoilandgasindustryforvesselinspectiondonotcurrentlypermitinternalinspectionwithoutmanualentry,andforCUImanagementanddetectionthecurrentlyusedtechniqueseitherhavelimitedcoverageorresolution,and/orrequiretheremovalofinsulation.

There are some promising techniques described in the study which can potentially close thesetechnology gaps and Lockheed Martin recommends that a shortlist is drawn by the relevantstakeholdersforfurtherpursuit.Werecommendthatstakeholders:

• review the scoring guidelines and Lockheed Martin suggested scores contained within thisdocument;

• forshort-termpossibilities(i.e.,thosemore-or-lessreadytogo),identifyopportunityforrealisticplant trial andprovide thenecessary funding, technical supportand logistics toallow this toprogress;

• forlongertermprospects,providetechnicalandfundingsupportsothatthesecanbemovedtowardsthe‘trial-ready’state.

Adefinite‘gap’thatcanbeclosedquitequicklyisthatofcombiningsomeofthesensingtechnologiesreviewedwithremotemobileandautonomousinspectionplatforms.Itislikelythatthiswillrequiresomeencouragementandsupporttogetthedifferentvendorsanddeveloperstoworktogether.

Page 124: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

124

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

Page 125: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

125

8.1 General conclusions and recommendationsThestudyteambelievesthattheassessmentmethodologyadoptedissound,althoughthematurity,applicability,cost,riskandbenefitscoresandassociatedguidelineswouldbenefitfromwiderreviewandvalidationbytherelevantstakeholders.

The studywas undertakenwithin an agreedtimeperiodwhich allowed sufficient interactionwithrelevantstakeholders,butdidnotallowforexhaustiveidentificationandinteractionwithalltechniquesandtheirproviders.

8.2 TLB Asset Integrity Theme WorkshopsTheTLBorganisedthemeworkshopsonvesselinspectionanddetectionofcorrosionunderinsulationatMaryculterHouseHotelAberdeenon24thand25thFebruary2016.

TheLockheedMartinAssetIntegrityLandscapeDraftReportwasusedasapre-readfortheworkshops.Theaimoftheworkshopswasto informfurtherworktodevelopproductsandserviceswhichcanreducecosts,increaseproductionefficiencyand/orimprovesafetywhencarryingoutprocessvesselinspectionsanddetectionofcorrosionunderinsulation.ThisfurtherworkwillbecoordinatedbytherecentlyannouncedOil&GasTechnologyCentre.

For furtherdetailsplease refer to theTLB IntegrityTheme–WorkshopOutputReport,whichwasissuedbyOGICtoallworkshopattendeeson17thMarch2016.

8.3 Vessel InspectionThelowfrequencyelectromagnetictechniqueappearstooffergoodprospectsatmoderatecostandriskandhasahighmaturityscore.

Fullmatrixcapture(FMC)hasasimilarprofile,butislessmaturesocouldbeseenasagoodlonger-termprospect.

Althoughrobotsandremotelyoperatedvehiclesontheirownhavearelativelylowbenefitscore,suchdevices are becoming increasingly common (e.g., in the nuclear industry) andmight be profitablycombinedwithothersensortechnologiestoallowasignificantreductionintheneedformanualentryintoprocessvesselsandotherconfinedspaces.

8.4 CUI DetectionThepulsededdycurrenttechniqueappearstooffergoodprospectsatmoderatecostandrisk.Ithasahighmaturityscoreandthereisasenseofsignificantindustrycommitmenttoproductdevelopment,marketinganddeployment.

Vapourphasecorrosioninhibitorstandsoutasbeingaprevention(asopposedtodetection)technique.Themainconcernhereisthenatureofthechemicalsrequiredfortheprocess,especiallyoffshore.Nevertheless,thistechniqueseemsworthyoffurtherinvestigationasitofferstheprospectofreducingtheextentandnatureoftheunderlyingproblemofCUI.

Aswith vessel inspection, someof the sensing techniques identified in this studymightprofitablybecombinedwithremotelyoperatedvehiclessuchaspipeandvesselcrawlers.Ofparticularbenefitwouldbeanycombinedtechniquethatreducedtherequirementforscaffolding.

8.5 Further ResearchLockheedMartinrecommendsthatfurtherresearchisundertakenintoclosingperceivedtechnologygapsthatcouldpreventtheuptakeofsomeofthemethodsandtechnologiesdescribedinthestudy.WerecommenddevelopinganITarchitecturethatfacilitatesthedevelopmentanduseofnewvesselinspectionandCUIdetectionandmonitoringtechniquesastheybecomeavailable.Inparticularthearchitectureshouldincludethefollowing.

Page 126: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

126

Open StandardsDeveloping open standards is key tomaximising the rapid take up of any new techniques, it alsofacilitatesthedevelopmentofopenmarketsandminimisesvendorlock-in.

Werecommendthattomaximisetheimpact,newstandardsshouldbedevelopedinconjunctionwiththeappropriatenationalandinternationalstandardsbodies.

Secure Sharing of DataWerecommendthattechniquesaredevelopedacrosstheoilandgasindustrytosharetherawdatafrommultiple installations in a securemanner. This data can be provided to all stakeholders andprovideaplatformforfutureinnovation.

Automatedatacollection,transformationandstorage

Make use of existing technologies such as COTS data historians, IP protocols, and transmissiontechnologiessuchasWIFIandLowPowerBluetooth,coupledwithnewdevelopmentsinlowcost/lowpowersensorsbeingdevelopedfortheInternetOfThings.

Develop standard analysis techniquesTomaximisere-useandportability,standardanalysistechniquesshouldideallycomeintheformofopen-sourcelibrary/softwaredevelopmentkitsofstandardtechniquesoptimisedforusewithvesselinspectionandCUIdetectionandmonitoring.

Develop standard visualisation techniquesStandardvisualisationtechniquesshouldbedevelopedwithtwomainaudiences inmind–controlroomstaffandmaintenance/supportengineers.

Controlroomstaffwanttoknowaboutsuddenchangesinplantconditions,typicallythroughscreensandalarmsondistributedcontrolsystems(DCS)andsupervisorycontrolanddataacquisition(SCADA)systems.Thereforeappropriatestandardsshouldbedevelopedforvisualisationincollaborationwiththeleadingcontrolsystemsproviders.

Maintenance /Support engineers want to know in more depth about gradual changes in plantconditions,eithercontinuouslymonitoredorthroughanalysisresultingfromspotchecks.Thereforeappropriate standards for visualisation should be developed in collaborationwith leading desktopvisualisationandanalysisproviders.

Page 127: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

127

AggregationAsouranalysisindicatesthatnoonemethodisprevalentforeithervesselinspectionorCUIdetectionandmanagement,itislikelythatoperatorswillemployseveraldifferent,possiblyoverlappingmethods.Thereforeanalysistechniquesshouldbedevelopedinsuchawayastopermitaggregationofresults,andvisualisationtechniquesshouldincludetheabilitytooverlayresultsfromseveraldifferentsources.

ThediagrambelowshowstheproposedstandardsbasedITarchitecture

8.6 Industry collaborationThestudyfoundthattherelationshipsbetweenthevariousstakeholdersarecomplex,andthatthereisalackoffocusonvesselinspectionandCUIdetectiontechnologieswithintheoilandgasindustry.Wealsonotethatsomeofthetechnologybeingdevelopedinitiallyoriginatedinotherindustrysectors.

LockheedMartin recommends that a single leading organisation is given overall responsibility forfocussingvesselinspectionandCUIresearchanddevelopmenteffortswithintheoilandgasindustry.Thisorganisationshouldfocusonseveralstrands:

• Developmentofthestandards-basedITarchitectureasdescribedabove;• DevelopmentofpromisingvesselinspectionandCUIresearch;• Cross-sectorinitiativeswithrelationtovesselinspectionandCUIresearch.

Page 128: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

128

APPENDIX A

ORGANISATIONS CONTACTED

Page 129: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

129

ORGANISATIONS CONTACTEDLockheedMartincontactedthefollowingorganisationsduringthecourseofthestudy.Organisations who have contributed to study

Organisation Category

Technologysupplier

Technologysupplier

Technologysupplier

Engineeringcontractor

Technologysupplier

Engineeringcontractor

Oilandgasoperator

AcademicInstitution

Technologysupplier

Technologysupplier

Technologysupplier

Academicinstitution

Engineeringcontractor

Engineeringcontractor

Technologysupplier

Industrybody

Industrybody

Industrybody

Technologysupplier

Academicinstitution

Research

Industrybody

Technologysupplier

Academicinstitution

Industrybody

Technologysupplier

Industrybody

Engineeringcontractor

Technologysupplier

Technologysupplier

Technologysupplier

Researchinstitution

ABB

Absoft

AdvancedCorrosionTechnologiesandTraining

AmecFosterWheeler

ArnleaSystems,Aberdeen

BilfingerSalamis

BP

CranfieldUniversity

CortecCorporation

Cosasco

Cyberhawk

DepartmentofMechanicalEngineering,ImperialCollege

DetNorskeVeritas

DoosanBabcock

Eddyfi

EnergyInstitute

EPSRC

ESRTechnology

GuidedUltrasonicsLtd.(GUL)

Heriot-WattUniversity

HighValueManufacturingCatapult

HOIS

HydrasonSolutionsLtd

ImperialCollegeLondon.

InnovateUK

InphaseSolutions,Norway

InstituteofCorrosion

ForsysSubseaLtd

Intertek

JentekSensors

LockheedMartin

NationalPhysicalLaboratory(NPL)

Page 130: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

130

ORGANISATIONS CONTACTED CONTINUED

Organisation Category

Industrybody/research

Oilandgasoperator

Technologysupplier

Technologysupplier

Academicinstitution

Technologysupplier

Technologysupplier

Technologysupplier

Oilandgasoperator

Technologysupplier

Researchinstitution

Engineeringcontractor

Oilandgasoperator

Technologysupplier

Engineeringcontractor

Technologysupplier

Engineeringcontractor

Technologysupplier

Industrybody

Technologysupplier

Researchinstitution

Oilandgasoperator

Technologysupplier

Technologysupplier

Industrybody

Academicinstitution

Academicinstitution

Academicinstitution

Academicinstitution

Academicinstitution

Academicinstitution

Academicinstitution

Technologysupplier

Technologysupplier

NERC

NexenPetroleumUKLtd

Permasense

PixelThermographics

RobertGordonUniversity

Rocsole

RohrbackCosasco

RussellTech

Shell

SIGTechnicalInsulation

SINTEF

Sonomatic

StatoilTechnologyInvest(STI)

SteerEnergy

Stork

Tech27SystemsLtd

Technip

TesTex

TheNationalBoardofBoiler&PressureVesselInspectors

ThermalImagingLimited

TNO,ScienceandIndustry,BusinessUnit:OilandGas

Total

Trac

Tracerco(International)

TWI

UniversityofAberdeen

UniversityofCambridge(ChemEngDept)

UniversityofCambridge(EngDept)

UniversityofCambridge(InstituteofManufacturing)

UniversityofCambridge(MaterialScienceDept)

UniversityofManchester(IncludingBP-ICAM)

UniversityofStrathclyde

VREOInnovation

XamenTechnologies

Page 131: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

131

OTHER ORGANISATIONS ONTHE LANDSCAPE

Organisation Category

Technologysupplier

Engineeringcontractor

Researchinstitution

Researchinstitution

Technologysupplier

Oilandgasoperator

Governmentbody

Engineeringcontractor

Engineeringcontractor

Academicinstitution

Technologysupplier

Technologysupplier

Technologysupplier

Technologysupplier

Oilandgasoperator

Oilandgasoperator

Technologysupplier

AspenAerogels,Incs

Capeplc

ChristianMichelsenResearch

CorrosionDoctors

FjellangerDetectionandTrainingAcademy

Gassco

HSE

Innospection

Keir

LondonSouthBankInnovationCentre

MetalcareInspectionServicesInc.

QSAGlobal

ReeceInnovation

SEInnovation

TalismanSinopec

Taqa

ThorCorrosion

Page 132: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

132

APPENDIX B

SURVEY QUESTIONNAIRE

Page 133: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

133

B.1 Initial Questions (all respondents)• Whichsectordoesyourorganisationworkin?• Whichbestdescribesyourremit?

B.2 Oil & Gas Operator Questions• IsyourorganisationawareoftheWoodReport?• DidyouoryourorganisationreviewtheWoodReport?• Wereanyactionsgeneratedwithinyourorganisationfollowingreviewofthereport?• DoesyourorganisationsufferfromCUI?• WhatcausesofCUIaffectyourorganisationsassets?• Whichofthefollowingcausesofvesseldegradationoccurswithinyourorganisation?• HasfundingbeenapprovedoralreadyinplacewithinyourorganisationforCUItesting

and/orVesselinspections?• DoesyourorganisationhavecurrentmaintenanceplansinplacetodealwithCUIand/or

vesselinspections?• Isyourcurrentmaintenanceplaneffective?• Isyourorganisationcurrentlyinvestigatingwaystoundertakesafervesselinspections?• Whichofthebelowtechniques,ifany,doesyourorganisationcurrentlyemploytodetect

potentialCUI?• Doyou feelyourorganisationhas implementedaneffectivesolution fordetectionof

CUI?• DoesyourorganisationutilisethirdpartiesforCUItesting?• DoesyourorganisationuseaHazardratingforinspectionofpartssusceptibletoCUI?• IstrainingprovidedforCUItestingandvesselinspectiontechniques?• Hasconsiderationbeengiventonewinstallationswithreferencetoanti-corrosion?

B.3 Solution Provider Questions• IsyourorganisationawareoftheWoodReport?• DidyouoryourorganisationreviewtheWoodReport?• IsyourorganisationawareofthedifferenttypesofCUIthatcanoccur?• WhichcausesofCUIdoesyourorganisationstechniquesdetect?• Which of the below techniques does your organisation currently employ to detect

potentialCUI?• Whichofthefollowingcausesofvesseldegradationdoyouprovidesolutionsfor?• DoesyourorganisationresearchthedifferentNDT/inspectionmethodsfor identifying

CUI?• Isadequatefundingandresourcesbeenapprovedormadeavailabletoconsidertheuse

ofanyalternativeinspectionmethodsforCUI?• Are the potential impacts of implementing alternative solutions for CUI testing,

understoodandquantified?• IstrainingprovidedforCUItestingandvesselinspectiontechniques?Do you think that all the potential hazards for undertaking CUI inspections and vessel

inspectionsusingyoursolutionsareunderstood?

B.4 Contractor Questions• AreyouawareoftheWoodReport?• DidyoureviewtheWoodReport?• AreyouawareofthedifferenttypesofCUIthatcanoccur?• WhichofthefollowingcausesofCUIareyoufamiliarwith?• Whichofthefollowingcausesofvesseldegradationareyoufamiliarwith?• Pleaseprovidedetailsof themain issues you feel therearewith testing forCUI and

vesselinspection

Page 134: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

134

• WhatdoyoufeelarethemainimpactsonsiterelatingtoCUItestingandvesselinspection?• AreyouawareofthehazardsrelatedtoCUItestingandvesselinspections?• HaveyoureceivedanytrainingforCUItestingandvesselinspectiontechniques?

B.5 Researcher/Academic Questions• AreyouawareoftheWoodReport?• DidyoureviewtheWoodReport?• DoyouagreewiththefindingsintheWoodReport?• AreyouawareofthedifferenttypesofCUIthatcanoccur?• Pleaseprovidedetails,ifany,ofthemainissuesyoufeeltherearewithtestingforCUI.• WhichcausesofCUIdoyouoryourorganisationcurrentlyresearch?• WhichofthebelowCUIdetectiontechniquesdoyouoryourorganisationcurrentlyresearch?• AreyouoryourorganisationresearchingdifferentNDT/inspectionmethodsforvessels?• Which of the following causes of vessel degradation are you or your organisation currently

researching?• Areyouoryourorganisationcurrentlyinvestigatingwaystoundertakesaferand/ormoreefficient

vesselinspections?• HaveyoureceivedanytrainingforCUItestingandvesselinspectiontechniques?

B.6 CUI and Vessel Inspection Questions (all respondents)• Isinformationsourcedandreviewedfromothersuitableindustriesthatyouoryourorganisation

maybeabletoutilise?• Isknowledgesharedwithothersorsimilarorganisations,withreferencetoCUItestingandvessel

inspections?• DoyouoryourorganisationutiliseorreferencestandardsandguidestoassistinundertakingCUI

testing,e.g.BS5970• Ifstandardsandguidesareutilised,doyoufindtheseuseful?• Pleaseprovideanyothercommentsyoufeelarevalid.

Page 135: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

135

APPENDIX C

GLOSSARY

Page 136: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

136

APPENDIXC:GLOSSARYTermsusedwithinthisdocumentarelistedbelow Term

3-D

3DLaserScanning

AcousticEmission(AE)

AcousticResonanceTechnology(ART)

AST

ATEX

AUV

BS5970

CAPEX

CCTV

COTS

CSC

CUI

DAC

DIFCAM

DigitalImageCorrelation(DIC)

FDTA

FullMatrixCapture(FMC)

GuidedWaveUltrasonicTesting(GWUT)

HOIS

Explanation

Threedimensional

Technique typically using a tripodmounted laserscannertotakeseriesofimagesin360oformingadatasetcalledapointcloud

Technique involving measurement of naturallyoccurring stress waves in material to determinelocationandsizeofanomalies

Technique using propagation of acoustic signalthroughmetalanddetectingtheresponse

AboveGroundStorageTank

AppareilsdestinésàêtreutilisésenATmosphèresEXplosibles – European directive on use ofequipmentinexplosiveatmospheres

AutonomousUnderwaterVehicle

Codeofpracticeforthermalinsulationofpipework

CapitalExpenditure

CloseCircuitTelevision

CommercialOffTheShelf

CrossSectionChange

CorrosionUnderInsulation

DistanceAmplitudeCurves

DigitalImagingForConditionAssetManagement

Methodofdetectingchangesbycomparingimages

FjellangerDetectionandTrainingAcademy

Dataacquisition techniqueused toenhancedatacapturefromaPhasedArrayTransducer

Technique involves inducing stress waves thatpropagate along the material and measuringresponse to determine location and size ofanomalies

HOIS is a joint industry project (JIP) focussed onnondestructivetestingwhichhasbeenrunningformorethanthirtyyears.TheprojectismanagedbyESRTechnology

Page 137: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

137

GLOSSARY CONTINUED

HSE

ITF

LowFrequencyElectromagneticTechnique(LFET)

MER

MicrowaveSensing

Microwave

NASA

NDE

NDT

NPL

OGA

OGIC

OGUK

OPEX

PhasedArrayProbe

PMMA

PulseEddyCurrent(PEC)

RGB

ROV

RST

SacrificialWire

HealthandSafetyExecutive

IndustryTechnologyFacilitator

Worksbyinjectinglowfrequencymagneticfieldintometaltargetanddetectsdistortionsinthemagneticfieldduetovariancesinthetarget

MaximisingEconomicRecovery

Techniquethatworksonprinciplethatmicrowavesareabsorbedatdifferentratesbydifferentmaterials.Canbeusedtodetectwaterwithininsulationandareasofcorrosion

Electromagneticradiationwithwavelengthsrangingfromonemetertoonemillimetre;withfrequenciesbetween300MHz(100cm)and300GHz(0.1cm)

NationalAeronauticsandSpaceAdministrationoftheUnitedStatesofAmerica

NonDestructiveExamination

NonDestructiveTesting

NationalPhysicalLaboratory

OilandGasAuthority

OilandGasInnovationCentre

OilandGasUK

OperationalExpenditure

Aprobewhosesignalcanbefocusedandsteeredelectronicallywithoutmovingtheprobe

PolyMethylMethacrylate

Measureseddycurrentswithinasteeltarget,wherethecurrentsaredistortedbychangesinmaterialthicknessormakeup

RedGreenBlue

RemotelyOperatedVehicle

RemoteScentTracing

Techniquewherethinwireislocatedadjacenttothetargetmaterialandcorrodesatthesameratecausingthewiresresistancetochangewhichcanbedetectedusingameter

Page 138: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ENERGY // ASSET INTEGRITY THEME LANDSCAPING STUDY

REPORT // ENERGY

138

GLOSSARY CONTINUED

Spider,RadarPlotorGraph

TDR

THzSpectralImaging

THz,Terahertz

TLB

Tomography

TRL

UAV

UKCS

UltrasonicNDTSurveys

Ultrasonic,Ultrasound

UltrasoundTomography(UST)

VapourPhaseCorrosionInhibitor(VPCI)

VI

VNA

WoodReport

Agraphicalplotwithmultipleaxesdesignedforquickcomparisonbetweensubjects

TimeDomainReflectometry–amathematicalprocessusedtotransformfrequencydomaininformationintothetimedomain

Techniqueusingterahertzradiationandspectroscopytocapturehighresolutionscansofmetalwithinconcrete

ElectromagneticradiationwithintheITU-designatedbandoffrequenciesfrom0.3to3terahertz(THz;1THz=1012Hz)

OilandGasTechnologyLeadershipBoard

Imagingbysectionsorsectioningthroughtheuseofanykindofpenetratingwave

TechnologyReadinessLevel

UnmannedAerialVehicle

UKContinentalShelf

TechniqueusingdetectionofreflectedultrasonicwavestodeterminelocationandsizeofanomaliesSoundwavesgreaterthanhumanhearingrangei.e.,>20KHz

Soundwavesgreaterthanhumanhearingrangei.e.,>20KHz

Techniquebasedonintroducingultrasoundtotargetmaterialandrecordingthetimeandamplitudeoftheresponse.Multiplesensorsareusedtoprovidea3Dimageofthetarget.

Techniqueusedtopreventcorrosionbycoatingmetalobjectswithawaterrepellent(hydrophobic)chemical

VesselInspection

VectorNetworkAnalyser,adeviceusedtotransmitandreceivemicrowaves

SirIanWood’sreportonMaximisingEconomicRecoveryfortheUKContinentalShelf

Page 139: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

139

APPENDIX D

REFERENCES

Below is a list of references used throughout the study. References specific to individuals and technologies are

detailed in the section relating to that technology.

1. “UKCS Maximising Recovery Review: Final Report” - Sir Ian Wood, 24 February 2014 and available to

download from www.gov.uk

2. “RR659 Evaluation of the effectiveness of non-destructive testing screening methods for in-service

inspection” – prepared by Doosan Babcock Energy Limited for the Health and Safety Executive, 2009 and

available to download from hse.gov.uk

3. “HOIS RP2 HOIS Recommended Practice for the Non-destructive Inspection of Weld Corrosion” – HOIS,

2012. Available to download from hoispublications.com

Page 140: 0&'(%$1.*theogtc.com/media/1887/asset_integrity_landscaping_study.pdf · !"!#$% &''&())!*&+"*!$#+*%&*,!-!&.("/)0(1+"$&)*2/%!"#$!%&''&"("!)*! +$(%"(%,,"+%-$(&. & /"#$%&'()*+),)%-.,"+%-$(&0

ISBN 1 903 004 72 4© 2016 The UK Oil and Gas Industry Association Limited, trading as Oil & Gas UK