Click here to load reader

Ngan… ·  · 2013-11-051 Đề cương môn học Toán cho vật lý 1. Mã môn học/chuyên đề: PHY2300 2. Số tín chỉ: 3 3. Môn học tiên quyết: Giải tích

  • View
    219

  • Download
    3

Embed Size (px)

Text of Ngan… ·  · 2013-11-051 Đề cương môn học Toán cho vật lý 1. Mã môn học/chuyên...

  • 1

    cng mn hc

    Ton cho vt l

    1. M mn hc/chuyn : PHY2300

    2. S tn ch: 3

    3. Mn hc tin quyt: Gii tch 1, Gii tch 2, i s.

    4. Ngn ng ging dy: Ting Vit

    5. Ging vin: Ph gio s, Tin s L Vn Trc

    Ph gio s, Tin s, Khoa Vt l, Trng HKHTN, i hc QGHN

    6. Mc tiu mn hc/ chuyn kin thc, k nng, thi :

    - Mc tiu kin thc: Mn hc cung cp cho sinh vin cc khi nim c bn ca l

    thuyt gii tch vc t. l cc khi nim rt cn thit khi phn tch cc bi ton vt

    l.

    Ngoi ra mn hc cn cung cp cho sinh vin cc khi nim c bn ca l thuyt hm

    bin s phc. l lnh vc ton hc c nhiu ng dng v rt hiu qu trong vt l

    hc.

    - Mc tiu k nng: Sinh vin c th tnh thng tho cc bi ton tnh phn.

    - Cc mc tiu khc: Hnh thnh thi nghim tc trong hp tp v t nghin cu

    ca sinh vin.

    7. Phng php kim tra nh gi:

    - Chuyn cn: 10%.

    - Kim tra gia k: 30%.

    - Thi cui k: 60%.

    8. Gio trnh bt buc:

    [1] Nguyn Vn Hng, L Vn Trc: Phng php ton cho Vt l, T1, NXB i hc

    Quc gia H Ni - 2008 (In ln th ba).

    [2] L Vn Trc, Nguyn Vn Tha: Phng php ton cho Vt l, T2, NXB i hc

    Quc gia H Ni - 2008 (In ln th ba).

    9. Tm tt ni dung mn hc:

    Gio trnh c hai ni dung chnh.

    Ni dung th nht trnh by chi tit cch tnh tch phn ng, tch phn mt v c s

    ca gii tch vc t.

    Ni dung th hai gii thiu cc khi nim c bn ca hm bin phc, lin tc, o

    hm, tch phn ca hm bin phc. Khi nim l thuyt thng d v p dng ca l

    thuyt thng d vo vic tnh cc tch phn.

    10. Ni dung chi tit mn hc/ chuyn (Chng/mc/tiu mc/)

  • 2

    Chng 1: Cc nh l tch phn

    1.1 . Tch phn ng loi 1

    1.2 . Tch phn ng loi 2

    1.3 . Tch phn mt loi 1

    1.4 . Tch phn mt loi 2.

    1.5 . nh l Green cho mi lin h gia tch phn ng v tch phn hai lp

    1.6 . nh l Stokes cho mi lin h gia tch phn ng v tch phn mt loi 2

    1.7 . nh l Ostrogradski cho mi lin h gia tch phn ba lp v tch phn mt loi

    2

    Chng 2: Gii tch vecto

    2.1 . Trng v hng v trng vecto

    2.2 . Gradien ca trng v hng

    2.3 . Thng lng ca trng vecto

    2.4 . Diva ca trng vecto

    2.5 . Rota ca trng vecto

    2.6 . Lu thng ca trng vecto

    Chng 3: Khi nim v hm gii tch

    3.1. iu kin Cauchy Rieman

    3.2. ngha hnh hc ca o hm. nh x bo gic

    3.3. Hm s ngc

    3.4. Khi nim v php bin hnh s cp

    Chng 4: Tch phn ca hm bin phc

    4.1. nh ngha v cch tnh

    4.2. Cc nh l Cauchy

    4.3. Cc cng thc tch phn Cauchy v cc cng thc tch phn loi Cauchy

    4.4. Thng d

    4.5. Tnh cc tch phn suy rng nh thng d

  • 3

    CNG MN HC

    C hc ( Mechanics)

    (Ghi tn mn hc/chuyn )

    1. M mn hc/chuyn : : PHY2301

    2. S tn ch: 4

    3. Mn hc tin quyt: Gii tch 1

    4. Ngn ng ging dy: Ting Anh

    5. Ging vin (h v tn, chc danh, hc v, n v cng tc):

    - GS.TS. Bch Thnh Cng, Khoa Vt l, trng HKHTN

    - TS. Nguyn Ngc nh, Khoa Vt l, trng HKHTN

    - TS. Nguyn Vit Tuyn, Khoa Vt l, trng HKHTN

    - ThS. Trn Vnh Thng, Vt l i cng, trng HKHTN

    - TS Nguyn Quc Thnh, Trng chuyn HQGHN

    6. Mc tiu mn hc/chuyn (kin thc, k nng, thi ):

    - Mc tiu kin thc: Nm c quy lut c bn ca c hc v chuyn ng v nguyn nhn chuyn

    ng ca cht im, h cht im, vt rn v cht lu trong h quy chiu qun

    tnh v phi qun tnh. Hiu c, p dng c cc nh lut bin thin v bo

    ton ng lng, m men ng lng, nng lng trong vic gii thch cc hin

    tng c hc v t nhin. Hiu c nguyn nhn, bit cch m t dao ng,

    sng c hc v qu trnh truyn sng.

    Trang b nhng kin thc Vt l c s u tin sinh vin c th hc tp v

    nghin cu cc mn hc khc ca cc ngnh khoa hc t nhin, k thut v cng

    ngh.

    - Mc tiu k nng:

    + Vn dng l thuyt gii cc bi tp thuc chng trnh mn hc.

    + Gp phn rn luyn phng php t duy khoa hc , t duy lgch,

    phng

    php nghin cu thc nghim, tc phong khoa hc cho ngi lm cng

    tc

  • 4

    nghin cu/ k s tng lai.

    + Gp phn xy dng th gii quan khoa hc duy vt bin chng.

    - Mc tiu v thi ngi hc:

    Thy c ngha, s cn thit v gi tr khoa hc ca mn hc, qua c

    c thi hc tp nghim tc, tm ti vn dng cc kin thc m mn hc mang

    li trong thc t i sng.

    7. Phng php kim tra nh gi:

    -Kim tra nh gi thng xuyn:

    + Kim tra qu trnh chun b bi tp v gi sinh vin t cha bi tp v nh

    + Cho sinh vin vit mt tiu lun trong qu trnh hc vi mt s ti cho

    trc

    - Kim tra nh gi nh k:

    + im nh gi thng xuyn (Cha bi tp, tiu lun, seminar): H s 0,2

    + Kim tra - nh gi gia k: H s 0,2

    + Kim tra nh gi cui k: H s 0,6

    8. Gio trnh bt buc (tc gi, tn gio trnh, nh xut bn, nm xut bn):

    - Hc liu bt buc

    1. R. A. Serway, J. W. Jewett, Physics for scientists and engineer, Thomson

    Brooks/Cole, 2004, 6th edition.

    2. Kittel C., Knight W. D., Ruderman M. A., Helmholz A. C., Mechanics,

    "Berkeley Physics Course, Vol.1, Second edition, McGraw-Hill 1973.*)

    3. Bch Thnh Cng, Gio trnh c hc, NXBGD, 2009.

    - Hc liu tham kho

    4. David Halliday, Robert Resnik, Jearl Walker, C s Vt l hc, tp

    I + II: C hc, bn dch ting Vit NXBGD, 1996.

    5. Minchen, Physics problems with solution, university of California,

    Berkeley. Prentice Hall of India 1987.

    6. Lim Yung -Kuo, Problems and solution in mechanics, World Scientific,

    Singapore 2002.*)

    9. Tm tt ni dung mn hc (mi mn hc tm tt khong 120 t):

    Trang b nhng kin thc c bn v Vt l v C hc : n v, th nguyn, h

    qui chiu qun tnh, phi qun tnh; m t chuyn ng v nguyn nhn ca chuyn

  • 5

    ng cht im, h cht im; cc nh lut c bn ca Vt l nh: bo ton nng

    lng, nh lut v bin thin v bo ton ng lng, mmen ng lng ca cht

    im h cht im; cht lu tnh v chuyn ng; dao ng t iu ho mt chiu t

    do, tt dn, cng bc, khi nim v phm cht; phng trnh truyn sng, giao

    thoa sng, sng dng, hiu ng Doppler.

    10. Ni dung chi tit mn hc/chuyn (trnh by cc chng, mc, tiu mc):

    Ch thch: nhng phn nh du sao *) l c ni dung nng cao cho CNKHTN Vt l

    Chng 1: M u v Vt l hc

    1.1. i tng, phng php nghin cu ca Vt l hc. Quan h gia Vt

    l hc v cc ngnh khoa hc, k thut khc.

    1.2. Khng gian, thi gian, khi lng. o lng, n v v th nguyn ca

    cc i lng Vt l. H n v quc t SI.

    1.3. S lc v gii tch vc t (tch v hng, c hng hai vect, tch hn

    hp v tch c hng 3 vc t). Biu th mt s i lng Vt l di

    dng vct.*)

    + Bi tp

    Chng 2 : ng hc cht im

    2.1. Chuyn ng c hc, cht im, h quy chiu, vc t dch chuyn. Qu

    o v phng trnh chuyn ng ca cht im trong khng gian 3

    chiu.

    2.2. Vn tc v gia tc. Gia tc tip tuyn v gia tc php tuyn.

    2.3. Th d v cc chuyn ng c hc thng gp:

    +Chuyn ng theo ng trn, vn tc gc v gia tc gc.

    + Chuyn ng ca ht c nm xin gc vi phng nm

    ngang khi c lc cn.

    + Chuyn ng xycloid, chuyn ng xon c.*)

    + Bi tp

    + Bi tp tng cng *)

    Chng 3: ng lc hc cht im

    3.1. Lc v khi lng. Cc nh lut c hc ca Newton:

    3.1.1. nh lut I ca Newton. H quy chiu qun tnh.

  • 6

    3.1.2. nh lut II ca Newton. ng lng, xung lng ca lc.

    Dng

    tng qut ca nh lut II Newton.

    3.1.3. nh lut III ca Newton. Lc v phn lc.

    3.2. Mt s lc c hc thng gp:

    3.2.1 Trng lc, lc n hi ca l xo, lc cng ca dy, phn lc

    ca

    gi

    3.2.2 Lc ma st, ma st tnh, ma st trt, gc ma st, ma

    st ln. Tc dng ca lc ma st.

    3.3. Nguyn tc chung gii bi ton ng lc hc, mt s th d c th:

    3.3.1 Bi ton chuyn ng ca thang my. Trng thi phi

    trng lng v siu trng lng.

    3.3.2 Chuyn ng ca ht trong in t trng, tn s xyclotron *)

    3.3.3 Chuyn ng ca ht khi c lc cn t l vi vn tc *)

    + Bi tp

    + Bi tp tng cng *)

    Chng 4: Chuyn ng trong h quy chiu phi qun tnh

    4.1. H qui chiu qun tnh, phi qun tnh.

    4.2. Php bin i Galille. Nguyn l tng i Galille.Vn tc v gia tc

    ca chuyn ng tng i.

    4.3. Chuyn ng ca vt trong h quy chiu phi qun tnh:

    4.3.1. H quy chiu phi qun tnh chuyn ng thng, lc qun tnh

    v c im.

    4.3.2. H quy chiu phi qun tnh quay, lc qun tnh ly tm v lc

    Coriolis.

    4.4. Th d c th:

    4.4.1 Con lc Foucault.

    4.4.2 S thay i trng lng theo v .

    4.4.3 S lch v pha ng trong chuyn ng ri t do.

    + Bi tp

    + Bi tp tng cng *)

  • 7

    Chng 5: Cng v nng lng

    5.1. Nng lng, cng v cng sut.

    5.2. ng nng. nh l ng nng

    5.3. Lc th. Th nng, bin thin th nng v cng ca lc th.

    5.4. C nng. nh lut bo ton c nng ca ht chuyn ng trong trng

    th. nh lut bo ton nng lng cho h vt l c lp. nh lut bo

    ton

    nng lng dng tng qut.

    + Bi tp

    + Bi tp tng cng *)

    Chng 6: H cht im, nh l bin thin v bo ton ng lng, mmen ng

    lng ca h cht im

    6.1. H cht im. Khi tm ca h cht im

    6.2. nh lut bin thin v bo ton ng lng ca h cht im.

    6.3. Chuyn ng ca vt c khi lng thay i.

    6.4. Va chm:

    6.4.1. Va chm n hi.

    6.4.2. Va chm mm. Con lc th n.

    6.4.3. Va chm gia cc vt tht.

    6.5. Mmen ng lng ca cht im, h cht im.

    6.6. Mmen lc. nh lut bin thin v bo ton mmen ng lng ca

    h cht im.

    + Bi tp

    + Bi tp tng cng *)

    Chng 7: Vt rn

    7.1. Vt rn l tng, bc t do ca vt rn

    7.2. Chuyn ng ca vt rn:

    7.2.1. Chuyn ng tnh tin (ba bc t do).

    7.2.2. Chuyn ng ca vt rn quay quanh mt trc c nh (ba bc t do).

    7.3. Phng trnh c bn ca chuyn ng quay vt rn xung quanh mt

    trc, mmen qun tnh ca vt rn.

    7.4. Mmen qun tnh ca mt s vt: thanh di, hnh tr rng, hnh tr c,

  • 8

    hnh cu ng cht.

    7.5. nh l Huygens Steiner (nh l v mment qun tnh i vi cc trc

    quay song song)

    7.6. Mmen ng lng ca vt rn. nh l bin thin v bo ton mmen

    ng lng ca vt rn.

    7.7. ng nng ca vt rn chuyn ng tu , nh l Cnic.

    7.8. Con lc vt l. Chuyn ng tin ng ca con quay i xng trong

    trng

    trng lc. *)

    7.9. iu kin cn bng ca vt rn t do. Cn bng ca vt rn trn mt

    phng

    ngang.

    + Bi tp

    + Bi tp tng cng *)

    Chng 8: Hp dn

    8.1. nh lut hp dn v tr, lc hp dn. Th nghim Cavendish xc nh

    hng s hp dn.

    8.2. Bi tan hai ht tng tc hp dn. Cch a bi ton hai ht v bi

    ton 1 ht vi khi lng rt gn chuyn ng trong trng hp dn xuyn

    tm.*)

    8.3. Cc tc v tr cp mt, hai, ba*).

    8.4. Cc nh lut Kepler.

    8.5. nh l Virial cho cht im, h cht im.*)

    + Bi tp

    + Bi tp tng cng *)

    Chng 9: C hc cht lu

    9.1. Khi lng ring, p sut trong lng cht lng. Nguyn l Pascal. Lc

    y Archimede.

    9.2. ng dng, ng dng, phng trnh lin tc.

    9.3. Phng trnh Bernoulli. ng dng phng trnh Bernoulli: hin tng

    Venturi, ng Pito.

    9.4. Lc ni ma st. Chuyn ng ca cht lng nht.

    9.5. Chuyn ng ca vt rn trong cht lu, cng thc Stock. Dng cht

    lng

  • 9

    nht chuyn ng trong mt ng trn, cng thc Poazi.

    + Bi tp

    + Bi tp tng cng *)

    Chng 10: Dao ng

    10.1. Dao ng t iu ho 1 chiu: cht im gn u l xo n hi. Mch

    LC.

    10.2. Dao ng tt dn ca Dao ng t mt chiu khi c lc ma st.

    10.4. Dao ng cng bc ca Dao ng t.

    10.5. Nguyn l chng chp.

    10.6. Tng hp hai dao ng c chu k khc nhau cht t, hin tng phch.

    + Bi tp

    + Bi tp tng cng *)

    Chng 11: Sng c hc

    11.1. S truyn kch ng, sng dc, sng ngang. Phng trnh sng.

    11.2. Sng dng sin trn dy, vn tc truyn sng trong dy.

    11.3. Sng truyn qua v sng phn x.

    11.4. Cng sut truyn nng lng ca sng dng sin trong dy.

    11.5. Phng trnh truyn sng

    11.6. Vn tc sng m. p sut cng sng m

    11.7. Chng chp v giao thoa.

    11.8. Sng dng trong dy c nh hai u*)

    11.9. Cng hng

    11.10. Sng dng trong thanh rn v mng*)

    11.11. Hiu ng Doppler *)

    + Bi tp tng cng *)

  • 10

    CNG MN HC

    Nhit ng lc hc v vt l phn t

    (Ghi tn mn hc/chuyn )

    1. M mn hc/chuyn : PHY2302

    2. S tn ch: 3

    3. Mn hc tin quyt:

    4. Ngn ng ging dy: Ting Vit

    5. Ging vin (h v tn, chc danh, hc v, n v cng tc):

    PGS.TS. L Th Thanh Bnh, b mn Vt l i cng

    6. Mc tiu mn hc/chuyn (kin thc, k nng, thi ):

    Sau khi hc xong mn hc ny, sinh vin phi nm c cc vn

    chnh sau y:

    - Nm vng cc kin thc vt l c lm sng t bi Thuyt ng

    hc cht kh. Hiu bit v gii thch c mt s hin tng ng hc trong

    cht kh.

    - Phn bit c nhng khi nim c bn nh nhit , nhit lng, cng,

    nng lng, entropy v hiu r mi quan h gia chng. Nm vng v bit vn

    dng cc nguyn l c bn ca nhit ng hc gii thch mt s hin tng

    vt l.

    - Nm vng nguyn l cu to, hot ng ca ng c nhit v my lnh.

    Hiu r khi nim, biu thc v ngha ca i lng Entropy.

    - Hiu bit v kh thc v ng dng ca n.

    - Hiu c mt s hin tng quan trng xy ra vi cht lng nh cc

    hin tng mt ngoi, mao dn, thm thu, v vai tr ca chng trong thc t.

    - Bit vn dng nhng kin thc v nhit ng hc v vt l phn t

    gii thch cc hin tng t nhin, c k nng tt gii cc bi tp, bit th

  • 11

    hin nhng hiu bit ca mnh v nhng kin thc thu c sau khi hc mn

    ny.

    7. Phng php kim tra nh gi:

    * Kim tra nh gi thng xuyn:

    - Kim tra qu trnh chun b bi tp v gi sinh vin t cha bi tp v nh

    - Cho sinh vin vit mt tiu lun trong qu trnh hc vi mt s ti cho

    trc

    * Kim tra nh gi nh k:

    - im nh gi thng xuyn (Cha bi tp, tiu lun, seminar): H s:

    0,2

    - Kim tra - nh gi gia k: H s: 0,2

    - Kim tra nh gi cui k: H s: 0,6

    * Lch thi, kim tra: Theo lch chung ca khoa v trng.

    8. Gio trnh bt buc (tc gi, tn gio trnh, nh xut bn, nm xut bn):

    [1] David Halliday, Robert Resnik and Jearl Walker, fundamentals of

    physics, (2010) ISBN - 10: 0470469080.

    [2] Serway and Jewett, Principles of Phyics, (2006) ISBN 0-534-

    46479-3.

    [3] David Halliday, Robert Resnik v Jearl Walker, C s vt l, tp 3,

    Nhit hc, NXBGD, 1998 (bn dch ting Vit).

    [4] Nguyn Huy Sinh, Gio trnh Vt l C - Nhit i cng, tp 2

    Nhit ng hc v vt l phn t, Nh xut bn Gio dc Vit

    Nam. S XB 195 2010/ CXB/ 21 249/ GD. M s 7B784 YO

    DAI. Nm 2010

    [5] Lng Duyn Bnh (ch bin) Vt l i cng- tp 1 C - Nhit,

    Nh xut bn Gio dc, nm 1997, (ti bn ln th 5).

    [6] Nguyn Ngc Long (ch bin)Vt l hc i cng- tp 1 C -

    Nhit, Nh xut bn i hc Quc gia H Ni, nm 1997.

    9. Tm tt ni dung mn hc (mi mn hc tm tt khong 120 t):

    Mn nhit ng hc v vt l phn t nghin cu cc vn trong cc h

    nhit ng phc tp. l cc h nhit ng bao gm s ht rt ln v chng

  • 12

    ng gp vo nng lng ca ton h bng nhiu con ng khc nhau.

    nghin cu nhng h nh vy, ta phi s dng cc nguyn l c bn ca nhit

    ng lc hc l: nguyn l s 0, nguyn l th nht, nguyn l th 2 v

    nguyn l th 3, m c s ca n bao gm cc nh lut t nhin c tng

    qut ho v c ton th nhn loi xc nhn bng thc nghim. Trong cc

    nguyn l ny c cp n cc khi nim v bn cht ca nhit , p sut,

    cc dng nng lng v mi quan h gia chng. Nhng vn nh tnh v

    nh lng trong Nhit ng hc c gii quyt bng thuyt ng hc phn t.

    Cc biu thc ton hc v cc nh lut trong cht kh, cc qu trnh nhit ng

    v cht kh v cht lng cng c trnh by chi tit. Phn vt l phn t cn

    a vo mt s hm phn b ca cc phn t theo vn tc v th nng. Cc hm

    nhit ng c lin quan n vn c bn ca vt l thng k.

    10. Ni dung chi tit mn hc/chuyn (trnh by cc chng, mc, tiu

    mc):

    Chng 1: Nhit v nguyn l 0 ca nhit ng lc hc

    1.1. Nhit

    1.2. Php o nhit

    1.2.1. Nhit nghim

    1.2.3. Cc thang o nhit

    1.2.3. Nguyn tc hot ng ca mt s loi nhit k

    1.2.4. Nhit k kh c th tch khng i

    1.3. Nguyn l 0 ca nhit ng lc hc

    1.3.1. Khi nim v cn bng nhit

    1.3.2. Nguyn l 0

    1.4. S n v nhit ca cht rn v cht lng.

    1.4.1. S n di v s n khi

    1.4.2. Gii thch s n v nhit theo quan im nguyn t

    1.4.3. Nhng ng dng v dn n nhit trong thc t

    Chng 2: Nhit v nguyn l I ca nhit ng lc hc

    2.1. Mt s khi nim

  • 13

    2.1.1. H nhit ng v mi trng

    2.1.2. Cc thng s trng thi nhit ng ca h

    2.1.3. Qu trnh, chu trnh

    2.2. Ni nng ca h nhit ng

    2.3. Nng lng trao i gia h v mi trng: nhit lng v cng

    2.4. Nhit dung, nhit chuyn pha ca vt cht

    2.5. Mi quan h gia cng v nhit trong mt qu trnh

    2.6. Nguyn l I ca nhit ng lc hc

    2.7. p dng nguyn l I trong mt s qu trnh nhit ng ca kh l tng

    (ng tch, ng nhit, on nhit, dn n on nhit vo chn khng)

    2.8. Cc hin tng truyn nhit: dn nhit, i lu, bc x nhit

    Chng 3: Thuyt ng hc cht kh

    3.1. Cc gi thuyt ca thuyt ng hc phn t

    3.2. Kh l tng

    3.2.1. nh lut Boyle -Mariotte

    3.2.2. nh lut Charles

    3.2.3. nh lut Gay Lussac

    3.2.4. Phng trnh trng thi ca kh l tng

    3.3. p sut v nhit theo quan im ca thuyt ng hc phn t

    3.4. ng nng trung bnh ca phn t kh trong chuyn ng tnh tin

    3.5. nh lut Maxwell v phn b phn t theo vn tc

    3.5.1. Hm phn b Maxwell

    3.5.2. S dng hm phn b Maxwell tnh mt s gi tr vn tc c

    bit

    3.5.3. ngha thc tin ca hm phn b

    3.6. nh lut Boltzmann v phn b phn t theo th nng

    3.6.1. Cng thc kh p

    3.6.2. Hm phn b Boltzmann

    3.7. S phn b u nng lng theo cc bc t do

    3.7.1. Khi nim bc t do

    3.7.2. nh l Maxwell v phn b u nng lng theo bc t do

    3.8. Nhit dung ca kh l tng

  • 14

    3.8.1. Biu thc ni nng ca kh l tng

    3.8.2. Nhit dung mol ng tch

    3.8.3. Nhit dung mol ng p

    3.8.4. H thc Mayer, ch s on nhit

    3.9. Cng trong cc qu trnh ng nhit, on nhit. Phng trnh on nhit

    Chng 4: Cc hin tng ng hc trong cht kh

    4.1. Qung ng t do trung bnh ca cc phn t kh

    4.2. Hin tng khuch tn

    4.2.1. nh lut Fick

    4.2.2. Cng thc tnh h s khuch tn

    4.3. Hin tng ni ma st

    4.3.1. nh lut Newton

    4.3.2. Cng thc tnh h s ni ma st

    4.4. Hin tng dn nhit

    4.4.1. nh lut Fourier

    4.4.2. Cng thc tnh h s dn nhit

    4.5. Phng trnh truyn, mi lin h gia cc h s truyn

    4.6. Mt vi tnh cht ca kh km

    Chng 5: Entropy v nguyn l II nhit ng lc hc

    5.1. Nhng hn ch ca nguyn l I

    5.2. Qu trnh thun nghch v bt thun nghch.

    5.3. ng c nhit v nguyn l II ca nhit ng lc hc

    5.3.1. M hnh nguyn l hot ng ca ng c nhit

    5.3.2. Biu thc hiu sut ca ng c nhit

    5.3.3. Nguyn l II ca nhit ng lc hc theo cch pht biu ca

    Thomson

    5.4. My lm lnh v nguyn l II ca nhit ng lc hc

    5.4.1. M hnh nguyn l hot ng ca my lm lnh

    5.4.2. Biu thc h s lm lnh ca my lnh

    5.4.3. Nguyn l II ca nhit ng lc hc theo cch pht biu ca

    Claudius

  • 15

    5.5. S tng ng ca hai cch pht biu nguyn l II nhit ng lc hc theo

    Thomson v theo Clausius

    5.6. Chu trnh Carnot

    5.6.1. Cu to ca mt chu trnh Carnot

    5.6.2. Hot ng ca mt chu trnh Carnot

    5.6.3. Hiu sut ca ng c Carnot. H s lm lanh ca my lnh Carnot

    5.6.4. nh l Carnot v hiu sut ca ng c nhit

    5.7. Nguyn l tng entropy

    5.7.1. Biu thc nh lng ca nguyn l II nhit ng lc hc

    5.7.2. Bin thin entropy trong mt qu trnh thun nghch

    5.7.3. Bin thin entropy trong mt qu trnh bt thun nghch

    5.7.4. Cch pht biu nguyn l II ca nhit ng lc hc da trn khi

    nim entropy - Nguyn l tng entropy

    5.7.5. S tng ng ca hai cch pht biu nguyn l II nhit ng lc

    hc theo Thomson v theo Clausius vi cch pht biu da trn khi nim

    entropy

    5.8. Tnh bin thin entropy trong mt s qu trnh. Gin TS

    5.9. ngha vt l ca entropy

    5.10. Cc hm th nhit ng

    Chng 6: Kh thc v hi

    6.1. Lc tng tc v th nng tng tc phn t trong kh thc

    6.2. Phng trnh trng thi ca kh thc

    6.2.1. Hng s hiu chnh v th tch

    6.2.2. Hng s hiu chnh v p sut

    6.2.3. Phng trnh Van der Waals

    6.3. H ng ng nhit l thuyt Van der Waals

    6.4. H ng ng nhit thc nghim Andrew

    6.5. Trng thi ti hn

    6.5.1. ngha thc tin ca trng thi ti hn

    6.5.2. Cc thng s ca trng thi ti hn

    6.5.2. Phng trnh Van der Waals rt gn

    6.6. Ni nng ca kh thc

  • 16

    6.7. Hiu ng Joule Thomson

    6.7.1. Th nghim v gii thch

    6.7.2. Hiu ng Joule Thomson m

    6.7.3. Hiu ng Joule Thomson dng

    6.7.4. Cc ng o

    Chng 7: Cht lng

    7.1. M hnh cu trc cht lng

    7.1.1. Trng thi lng ca cc cht

    7.1.2. Cu to v chuyn ng phn t ca cht lng

    7.2. Cc hin tng mt ngoi ca cht lng

    7.2.1. p sut phn t

    7.2.2. Nng lng mt ngoi ca cht lng

    7.2.3. Lc cng mt ngoi ca cht lng

    7.2.4. Hin tng lm t v khng lm t

    7.3. Hin tng mao dn

    7.3.1. p sut ph di mt cong

    7.3.2. Cng thc Jurin

    7.3.3. Vai tr ca hin tng mao dn trong t nhin

    7.4. Hin tng thm thu

    7.4.1. Dung dch long v p sut thm thu

    7.4.2. nh lut Van't hoff

    7.4.3. Vai tr ca hin tng thm thu trong t nhin

    7.5. S gim p sut hi bo ha. nh lut Raun

    Chng 8: S chuyn pha

    8.1. Khi nim v s chuyn pha v phn loi chuyn pha

    8.2. Mt vi tnh cht ca chuyn pha loi I.

    8.3. Quy tc pha. iu kin cn bng pha. Gin pha: ng nng chy,

    ng bay hi, ng thng hoa, im ba

    8.4. Mt s hin tng chuyn pha trong cht lng: Cc hin tng si, bay hi

    v ha lng t hi bo ha

    8.5. Mt s hin tng chuyn pha trong cht rn: Thng hoa, nng chy, kt

    tinh

  • 17

    8.5. S bay hi v hi bo ha: Bay hi, ngng t, hi bo ha, hi kh, m

    khng kh

  • 18

    CNG MN

    IN V T HC

    (ELECTRICITY AND MAGNETISM, PHY2323)

    1. M mn hc/chuyn : PHY2303

    2. S tn ch: 04

    3. Mn hc tin quyt:

    1. Gii tch 1 (MAT 1094)

    2. Gii tch 2 (MAT 1095)

    3. i s (MAT )

    4. C hc (PHY 1088)

    5. Nhit ng hc v Vt l phn t (PHY 1089)

    4. Ngn ng ging dy: Ting Anh

    5. Ging vin

    TT H v tn Chc danh, hc v n v cng tc

    1 Ngc An Bang TS. GV B mn Vt l i cng,

    Khoa Vt l, H KHTN

    2 Nguyn Mu Chung TS.GVC B mn Vt l Ht nhn,

    Khoa Vt l, H KHTN

    3 c Thanh PGS.TS B mn Vt l a cu,

    Khoa Vt l, H KHTN

    4 Th Kim Anh TS. GV B mn Vt l Nhit thp,

    Khoa Vt l, H KHTN

    5 Trung Kin TS.GV B mn Vt l V tuyn,

    Khoa Vt l, H KHTN

    6 ng Thanh Thy ThS.GV B mn Vt l V tuyn,

    Khoa Vt l, H KHTN

  • 19

    6. Mc tiu mn hc

    a. Mc tiu kin thc

    Mc tiu kin thc chnh ca mn hc l nhm trang b cho ngi hc

    nhng kin thc c bn nht v tng tc in t. Trn c s ca mt s

    nh lut vt l v hc thuyt c bn, ngi hc c th hiu v gii thch

    c mt s hin tng vt l trong t nhin. S dng cc kin thc

    ton c bn v gii tch, vector v phng trnh vi phn, ngi hc c

    th p dng cc nh lut vt l c bn v tng tc in t tnh ton

    v m t mt cch nh lng mt s hin tng vt l c bn v gii

    c cc bi tp lin quan.

    Mn hc cng nhm chun b kin thc c s v b tr cho mt s mn

    hc chuyn su tip theo trong chng trnh nh Ht nhn nguyn t,

    in ng lc, C hc Lng t ... thuc cc chuyn ngnh khc nhau

    ca Vt l v Khoa hc t nhin.

    b. Mc tiu k nng

    Trn c s trnh by tng tc in t c in mt cch cht ch v khoa

    hc, mn hc cung cp v rn luyn ngi hc k nng phn tch v gii

    quyt vn ni chung.

    Ngi hc c kh nng vn dng cc kin thc c bn ca mn hc

    gii thch nh tnh cc hin tng thng gp trong t nhin. ng

    thi, ngi hc cng c trang b k nng gii cc bi tp vt l p

    dng cho cc ni dung c th ca chng trnh hc.

    K nng m hnh ha cc hin tng vt l bng ton hc v d on

    cc kt qu thc nghim cng c ch trng nhm chun b cho cc

    mn hc Thc hnh v Th nghim tip theo trong chng trnh.

    c. Mc tiu nhn thc thi

    Mn hc gip cho ngi hc thy c ngha v gi tr khoa hc ca

    mn hc ni ring v ca Vt l hc ni chung. Thng qua cc hot

    ng nh nghe ging, tho lun trn lp, lm bi tp c nhn, bi tp

    nhm, thuyt trnh, sinh vin c khuyn khch v to iu kin pht

    trin t duy khoa hc, nghim tc v sng to trong hc tp.

    7. Phng php kim tra nh gi:

  • 20

    Kt qu hc tp ca ngi hc c nh gi thng qua cc hnh thc: Kim tra nh

    gi thng xuyn, Kim tra nh gi gia k v Kim tra nh gi cui k.

    7.1.Kim tra nh gi thng xuyn

    Kt qu kim tra nh gi thng xuyn chim 20 % tng s im mn hc.

    Ni dung v hnh thc kim tra bao gm:

    - Kim tra vic chun b bi c yu cu c trc ca sinh vin,

    - Kim tra vic chun b bi tp c yu cu i vi tng chng,

    - Kim tra Quiz trong qu trnh hc.

    7.2. Kim tra nh gi gia k

    Kt qu kim tra nh gi gia k chim 20 % tng s im mn hc. Ni dung

    v hnh thc kim tra bao gm:

    - Hc sinh phi hiu su v l thuyt ca cc ni dung 1,2,3 v 4.

    - Vn dng c nhng c s l thuyt gii bi tp Vt l.

    - Hnh thc kim tra nh gi: Lm bi kim tra t lun.

    - Thi gian: Mt (01) gi tn ch vo tun th 8 ca hc k.

    7.3. Kim tra nh gi cui k

    Kt qu kim tra nh gi gia k chim 60 % tng s im mn hc. Ni dung

    v hnh thc kim tra bao gm:

    - Hc sinh phi hiu su sc tt c cc ni dung ca mn hc.

    - Vn dng c nhng c s l thuyt gii bi tp hoc gii thch

    c cc hin tng vt l

    - Hnh thc kim tra nh gi: Lm bi thi t lun

    - Thi gian: 120 pht, lch thi do phng o to b tr.

    8. Gio trnh bt buc

    Ti liu tham kho bt buc:

    1. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers, 6th Edition, Thomson Brooks/Cole, 2004, ISBN: 0534408427

    2. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 8th edition. ISBN: 9780470895399.

    Mt s ti liu tham kho:

    1. P.M. Fishbane, S.G. Gasiorowicz and S.T. Thornton, Physics for Scientists and Engineers, 3rd Ed., Pearson, Upper Saddle River, NJ,

    2005, ISBN: 10-130352993.

    2. D. C. Giancoli, Physics for Scientists and Engineers with Modern Physics, 3rd Edition, Prentice-Hall Inc. ISBN: 0130215171.

  • 21

    3. Nguyn Chu, Nguyn Hu X, Nguyn Khang Cng, in v t, NXB B GD&T, 1973.

    4. Tn Tch i, in v t, NXB HQGHN, 2004. 5. Lng Duyn Bnh, D Tr Cng, Nguyn Hu H, Vt l i cng

    tp II, NXB Gio dc, 2001.

    6. V Thanh Khit, in v t, NXB Gio dc 2004.

    9. Tm tt ni dung mn hc

    Ni dung c bn ca mn in v T l nhng kin thc c bn nht v tng

    tc in t c in. Xut pht t cc khi nim c bn v in tch v tng tc tnh

    in Coulomb gia cc in tch im, in trng tnh v in th sinh ra bi h in

    tch c tho lun chi tit. nh l Gauss, cc tnh cht in c bn ca in mi v

    khi nim v in dung vt dn, t in ln lt c cp n. in trng dng,

    dng in v cc c trng c bn ca dng in, nh lut Ohm v khi nim v in

    tr v in tr sut, nh lut Joule, ngun in v sut in ng, cc quy tc

    Kirchhoff c tho lun k trong cc chng v dng in v mch in mt chiu

    DC. Nhng kin thc c s v tng tc t nh khi nim t trng sinh ra bi h

    in tch chuyn ng v t lc, lc Lorentz, cc nh lut Biot- Savart, Ampre v

    Gauss c tho lun trong cc chng tip theo. Chuyn ng ca ht tch in trong

    t trng vi nhiu v d p dng trong thc t cng c cp ti.

    Hin tng cm ng in t, t cm v nng lng trng t c trnh by

    chi tit trc khi mch in xoay chiu AC, s chuyn ha nng lng gia in v t

    trng v cc hin tng lin quan n k thut in, dao ng in trong mch AC

    c tho lun.

    C s l thuyt ca in t trng c in vi h phng trnh Maxwell v

    sng in t c trnh by s lc trong phn cui ca mn hc.

    10. Ni dung chi tit mn hc/chuyn (trnh by cc chng, mc, tiu mc)

    Chng 1. in tch v in trng

    1.1. in tch, in tch nguyn t, nh lut bo ton in tch, vt dn in v vt cch in

    1.2. Tng tc tnh in v nh lut Coulomb 1.3. in trng v Nguyn l chng cht in trng 1.4. in trng ca cc h in tch phn b gin on v lin tc 1.5. ng sc in trng 1.6. Chuyn ng ca ht tch in trong in trng

    Chng 2. nh l Gauss

  • 22

    2.1. Thng lng in trng

    2.2. nh l Gauss

    2.3. Mt s v d p dng ca nh l Gauss

    2.4. Vt dn trong trng thi cn bng tnh in

    Chng 3. in th

    3.1. Cng ca in trng v Th nng in

    3.2. in th v Hiu in th, Mt ng th

    3.3. in th ca h in tch phn b gin on

    3.4. in th ca h in tch phn b lin tc

    3.5. Mi lin h gia in th v Vector cng in trng

    3.6. in th ca vt dn tch in

    Chng 4. in dung, T in v cht in mi

    4.1. in dung

    4.2. T in v in dung ca t in

    4.3. Xc nh in dung ca mt s loi t in c bn

    4.4. Ghp t in

    4.5. Nng lng in trng tch tr trong t in tchin, Mt nng lng

    4.6. Lng cc in trong in trng

    Chng 5. Dng in v in tr

    5.1. Dng in v Mt dng in

    5.2. nh lut Ohm

    5.3. in tr sut, in tr v s ph thuc ca chng vo nhit

    5.4. Cng v Cng sut in

    5.5. Cht bn dn v siu dn

    5.6. Dng in trong cht kh v cht lng

    Chng 6. Mch in mt chiu

    6.1. Ngun in mt chiu v Sut in ng ca ngun in

    6.2. in tr mc song song v ni tip

    6.3. Cc quy tc ca Kirchhof

    6.4. Mch in RC

    6.5. Cc dng c o in c bn

    Chng 7. T trng v T lc

    7.1. T trng v tng tc t

    7.2. Lc Lorentz v chuyn ng ca ht tch in trong t trng u

    7.3. Mt s v d p dng: B lc vn tc, Khi ph k, Cyclotron ...

    7.4. Hiu ng Hall

    7.5. T lc tc dng ln dy dn c dng in chy qua

    7.6. Khung dy in trong t trng

    Chng 8. T trng ca dng in

  • 23

    8.1. nh lut Biot-Savart v mt s v d p dng

    8.2. T lc gia hai dy dn song song c dng in chy qua

    8.3. nh lut Ampere

    8.4. T trng ca cun Solenoid v Toroid

    8.5. T thng

    8.6. nh l Gauss

    8.7. Dng in dch v nh lut Ampere

    8.8. T tnh ca vt cht

    8.9. T trng tri t

    Chng 9. Hin tng cm ng in t

    9.1. nh lut Faraday

    9.2. nh lut Lenz v Bo ton nng lng

    9.3. Sut in ng cm ng trong mch

    9.4. in trng cm ng

    9.5. My pht in v ng c in

    9.6. Dng in xoy Foucault

    Chapter 10. in cm

    10.1. Hin tng t cm

    10.2. Mch RL

    10.3. Nng lng t trng

    10.4. Hin tng h cm v h s h cm

    10.5. Mch dao ng LC

    10.6. Mch RLC

    Chng 11. Mch in xoay chiu

    11.1. Ngun in xoay chiu

    11.2. in tr trong mch in xoay chiu

    11.3. Cun cm trong mch in xoay chiu

    11.4. T in trong mch in xoay chiu

    11.5. Cng v Cng sut ca mch in xoay chiu

    11.6. Mch cng hng RLC ni tip

    11.7. Mch cng hng RLC song song

    11.8. Bin th v truyn ti nng lng in

    Chng 12. Sng in t

    12.1. H phng trnh Maxwell

    12.2. Sng in t

    12.3. Nng lng sng in t

    12.4. Phn x v khc x

    12.5. Hp th v bc x sng in t

    12.6. Lng tnh sng-ht

  • 24

    CNG MN HC

    QUANG HC

    1. M mn hc: PHY 2304

    2. Thng tin chung v mn hc

    - Tn mn hc: C s Quang hc v Vt L hin i

    - M mn hc: PHY2304

    - S tn ch: 03

    - Mn hc: bt buc

    - Cc mn hc tin quyt: in v T hc m s PHY 1098

    - Cc mn hc k tip:

    + Vt l nguyn t

    - Gi tn ch i vi cc hot ng:

    + L thuyt: 39

    + Bi tp: 13

    + T hc xc nh: 6

    + Kim tra, nh gi: 2

    - a ch khoa/b mn ph trch mn hc:

    + Khoa Vt L Trng i hc KHTN, HQG H Ni

    3. Mc tiu mn hc

    3.1 Mc tiu chung

    3.1.1 Mc tiu kin thc:

    - Xy dng cho sinh vin kin thc su sc v Quang hc, c s l lun

    v phng php lun ng n tip cn ni dung ca Quang hc hin i,

    Vt l hin i v cc khoa hc lin quan khc.

    - Hiu c nguyn nhn v bn cht ca cc hin tng quang hc, bit

    phn tch, nh gi, phn bit c cc hin tng phc tp trong thc tin ng

    dng quang hc.

    - Nm c mi quan h ca Quang hc i vi cc ngnh khoa hc

    khc, cc cng ngh hin i v cc ng dng trong cc lnh vc thc tin khc

    nhau, nhanh chng tip cn c vi s pht trin khng ngng ca khoa hc

    v cng ngh hin i.

    3.1.2 Mc tiu k nng:

    - Nhanh chng nm c cc nguyn l hot ng v vn hnh cc dng

    c quang hc, cc mch quang hc, linh kin quang hc, cc ng dng ca

  • 25

    quang hc nh giao thoa ,nhiu x, phn cc, hp th tn sc, tn x, cc hiu

    ng quang in

    -Bit vn dng kin gii thch mt cch su sc cc hin tng quang

    hc lin quan trong thc tin hc tp, nghin cu khoa hc v ng dng cng

    ngh.

    - C c k nng gii quyt cc bi ton kh trong xy dng, thit k

    cc h quang hc phc tp v cc bi ton ng dng quang hc trong thc tin.

    -C kh nng sng to, pht huy ng dng ca Quang hc trong cc lnh

    vc khc nhau.

    tng cng k nng ca sinh vin C nhn Ti nng, phn bi tp c c

    bit ch hn vi nhiu bi tp nng cao.

    S khc bit c bn ca chng trnh C nhn Ti nng l rn luyn k nng

    phn tch , nh gi, gii quyt cc vn phc tp lin quan n cc ni dung c bn

    ca mn hc.

    3.1.3 Mc tiu v thi ngi hc:

    - Say m tm ti, o su suy ngh v cc ni dung c hc.

    - C thc m rng kin thc, xut cc gii php sng to cho cc bi ton

    c t ra.

    3.2. Mc tiu chi tit ca mn hc

    Mc tiu

    Ni dung

    Bc 1

    (Nh) Bc 2

    (Hiu) Bc 3

    (Phn tch, nh gi)

    Ni dung 1.

    Chng 1.

    C s quang

    sng

    I.A.1. Phng trnh

    sng

    I.A.2 Biu din phc

    ca sng nh sng

    I.A.3 Chm Gauss

    I.B.1 Cc loi sng

    s cp

    I.B.2 c im ca

    s truyn sng qua

    mi trng bt ng

    hng

    I.B.3 Khi nim

    chm Gauss v

    quang hc chm tia

    (beam optics)

    I.C.1 Vn dng

    kho st s truyn

    sng nh sng qua

    mt s h quang hc

    nh thu knh chit

    sut bin i (graded

    index lens) v si

    quang, s truyn

    sng qua tinh th

    Ni dung 2.

    Chng 2.

    S phn cc

    ca nh sng

    II.A.1 nh ngha v

    phn loi nh sng

    phn cc

    II.A.2 Cc biu din

    cc trng thi phn cc

    ca nh sng .

    II.A.3 Cc knh phn

    II.B.1 Hiu c

    mt s nguyn nhn

    dn n phn cc

    nh sng: Phn cc

    do truyn qua tinh

    th lng chit, do

    phn x trn b mt

    II.C.1 Bn cht ca

    nh sng t nhin v

    nh sng phn cc

    II.C.2 Phng php

    lm thay i trng

    thi phn cc ca

    nh sng

  • 26

    cc

    II.A.4 Hin tng phn

    cc quay

    II.A.5 Cc bn bc

    sng (/4, /2. )

    in mi

    II.B.2 Gii thch

    hin tng phn cc

    quay v ng dng

    II.B.3 Nguyn l cu

    to v hot ng ca

    cc bn bc sng

    Bit vn dng cc

    bn bc sng

    thay i trng thi

    phn cc nh sng.

    II.C.3. S truyn

    sng qua mt phn

    cch hai mi trng,

    cc cng thc

    Fresnel v ngha,

    ng dng ca cc

    cng thc Fresnel

    Ni dung 3.

    Chng 3.

    Giao thoa nh

    sng

    III.A.1 M t hin

    tng giao thoa vi hai

    khe hp, phn b

    cng nh sng

    giao thoa 2 khe.

    iu kin giao thoa

    nh sng v tnh kt

    hp ca nh sng.

    II.A.2 Hin tng giao

    thoa bn mng, vn

    ng nghing, vn

    ng dy

    III.A.3 S ca cc

    giao thoa k

    III.B.1 Gii thch

    cc hin tng giao

    thoa nh sng (giao

    thoa hai khe v giao

    thoa bn mng)

    III.B.2 nh hng

    ca s khng n

    sc ln nh giao

    thoa.

    III.B.3 Nguyn tc

    hot ng ca cc

    giao thoa k

    III.B.4 Giao thoa nh

    sng phn cc

    III.C.1 Phn bit

    c nguyn nhn

    v bn cht ca cc

    loi giao thoa nh

    sng khc nhau:

    Giao thoa vi hai

    khe, giao thoa trn

    bn mng ng

    dy, bn mng

    dy thay i.

    III.C.2 Gii thch

    mu sc bn mng

    III.C.3 ngha ng

    dng ca giao thoa

    nh sng trong thc

    tin

    III.C.4 Tiu chun

    Rayleigh v nng

    sut phn gii ca

    giao thoa k Fabry-

    Perot

    Ni dung 4

    Chng 4.

    Nhiu x nh

    sng

    IV.A.1 Nguyn l

    Huygens-Fresnel v

    phn loi hin tng

    nhiu x nh sng

    IV.A.2 Phng php

    i cu Fresnel

    IV.A.3 M t nhiu x

    Fresnel qua mt l trn

    v mt a trn nh

    chn sng.

    IV.A.4 Cc biu thc

    cng nh sng

    nhiu x v m t hin

    tng nhiu x

    IV.B.1 Gii thch

    cc hin tng nhiu

    x Fraunhofer v

    nhiu x Fresnel

    IV.B.2 Nguyn l

    hot ng ca cch

    t nhiu x, cc c

    trng v cch dng

    cch t nhiu x

    IV.B.3 . Nhiu x tia

    X v nh lut

    Bragg.

    IV.B.4 Bn cht ca

    hin tng nhiu x

    IV.C.1 Phng php

    th v k nng

    gii thch bc tranh

    nhiu x qua cc vt

    gy nhiu x hnh

    dng khc nhau

    (cch t i, hnh

    vung, si dy)

    IV.C.2 ng dng

    kin thc nhiu x

    nh sng trong thit

    k cc h quang hc

    IV.C.3 Bit vn

    dng l thuyt nhiu

  • 27

    Fraunhofer qua mt l

    trn, mt khe hp, hai

    khe hp v nhiu khe

    hp.

    IV.5 Cch t nhiu x-

    phng trnh cch t

    nh sng

    x nh sang hc

    gii thch cc

    hin tng nhiu x

    nh sng khc nhau

    trong thc t m

    quang hnh khng

    th cho gii thch

    y

    IV.C.4 ngha ca

    nng sut phn gii,

    gii hn phn ly.

    Ni dung 5.

    Chng 5

    Tn sc, hp th

    v tn x nh

    sng

    V.A.1 M t hin

    tng tn sc, hp th

    v tn x nh sng

    V.A.2 Cc quy lut ca

    hin tng tn sc, hp

    th v tn x nh sng

    v ng dng.

    V.B.1 Gii thch

    hin tng tn sc,

    hp th v tn x

    nh sng

    V-B.2 Chng minh

    v bit vn dng

    cng thc tn sc,

    cng thc h s hp

    th.

    V.C.1 Ngun gc

    ca cng thc tn

    sc v hp th, tn

    sc thng v d

    thng.

    V.C.2 Phn bit, so

    snh v ngha ng

    dng ca cc hin

    tng tn x nh

    sng.

    V.C.3 Tn sc v

    vn tc nhm ca

    sng nh sng.

    Ni dung 6.

    Chng 6

    Lng t quang

    hc

    VI.A.1 Pht biu cc

    nh lut v bc x

    nhit

    VI.A.2 Thuyt lng

    t nng lng Planck

    v thuyt lng t nh

    sng ca Einstein.

    VI.A.3 M t hiu ng

    quang in v hiu ng

    Compton.

    VI.A.4 Khi nim v

    bc x t pht, bc x

    cng bc v hp th

    theo quan im lng

    t quang hc

    VI.B.1 Vn dng cc

    nh lut v bc x

    nhit.

    VI.B.2 Dng thuyt

    lng t quang hc

    gii thch cc quy

    lut trong hiu ng

    quang in, hiu ng

    Compton.

    VI.B.3 Phn bit bc

    x t pht, bc x

    cng bc v hp

    th

    VI.B.4 Nguyn l

    hot ng ca laser

    VI.C.1 S khc bit

    ca l thuyt

    Boltzmann v thuyt

    Planck . Ngun gc

    ca khng hong t

    ngoi trong l

    thuyt bc x nhit

    VI.C.2 Nhng bt

    lc ca l thuyt

    sng trong vic gii

    thch cc quy lut

    quang in.

    VI.C.3 Bn cht

    lng tnh sng ht

    ca anh sng

    VI.C.4 Ngun gc

    tnh kt hp ca nh

    sng laser.

    Ni dung 7.

    Chng 7:

    Quang hc phi

    VII.A.1 Khi nim v

    cm phi tuyn

    VII.A.2 Mt s hiu

    ng phi tuyn bc hai

    VII.B.1 Gii thch

    c hiu ng phi

    tuyn bc hai: pht

    ha ba bc hai, pht

    VII.C.1 Ngun gc

    ca cm phi

    tuyn

    VII.C.2 ngha ca

  • 28

    tuyn

    v bc ba

    VII.A.3 Mt s ng

    dng ca quang hc

    phi tuyn

    tn s tng, tn s

    hiu

    VII.B.2 Gii thch

    c cc hiu ng

    quang phi tuyn bc

    ba: T hi t, t iu

    pha

    tng hp pha trong

    cc hiu ng quang

    hc phi tuyn.

    Ni dung 8.

    Chng 8:

    Holography

    VIII.A.1 Nguyn l

    holography

    VII.A.2 Phn loi

    hologram

    .

    VIII.B.1 Mt s ng

    dng ca

    Holography

    -Hologram khi

    -Giao thoa k

    holography

    -Holography sng

    m

    - Cc linh kin

    quang hc

    holography

    VII.C.1

    Nm c nguyn

    tc hot ng ca

    mt s s to nh

    v hi phc nh

    holography

    4. Tm tt ni dung mn hc

    Ni dung mn hc cung cp cho ngi hc cc kin thc c s v Quang hc

    gm cc hin tng quang hc th hin tnh cht sng v cc hin tng quang hc

    th hin tnh cht ht ca nh sng v mi quan h ca Quang hc vi Vt l hin i.

    c th din t tnh cht sng ca nh sng mt cch y , chng u nhc li

    c s ca quang sng nh cc phng trnh sng, cch biu din phc ca sng, cc

    sng s cp , s truyn sng nh sng qua cc h quang hc c bit nh thu knh

    chit sut bin i (graded index lens) v si quang cng nh s truyn sng qua mi

    trng bt ng hng. Mt kin thc quan trng c cp l l thuyt v

    quang chm (Beam Optics). Chm Gauss c gii thiu nh l mt trng hp in

    hnh vi cc c trng cn bit khi kho st quang hc ca cc chm tia laser- mt

    ngun sng c ng dng ph bin hin nay. Cc hin tng rt c trng ca quang

    hc v c nhiu ng dng thc tin l s phn cc nh sng, giao thoa, nhiu x,

    tn x, hp th, tn sc... s c trnh by. Phn tm hiu tnh cht ht ca nh sng

    bt u t cc nh lut v bc x nhit dn dt ti khi nim lng t nng lng

    ca Planck v sau l thuyt photon ca Einstein. L thuyt ht v nh sng c

    vn dng gii thch mt s hin tng quang hc in hnh m l thuyt sng

    khng gii thch c.Vn c bn ca vt l hin i l khi nim sng-ht c

    cp trong gio trnh ny. Nguyn l v bc x v hp th ca nguyn t theo quan

  • 29

    in c in v lng t c kho st v t gii thiu my pht lng t quang

    hc (laser) - mt ng dng ni bt ca l thuyt lng t nh sng.

    Hai ni dung cui (7 v 8) vi thi lng mt tn ch l phn m rng gii thiu

    Quang hc phi tuyn vi rt nhiu ng dng quan trng (ni dung 7) v Holography

    (ni dung 8) c trnh by nh mt ng dng ca quang hc hin i v l s tng

    hp, nng cao cc kin thc giao thoa, nhiu x, tn sc hc trc .

    5. Ni dung chi tit mn hc

    Ni dung 1

    Chng 1: C s quang sng (3/0/1)

    1.1 Biu din sng ca nh sng

    1.1.1 Phng trnh sng v nng lng sng.

    1.1.2 Biu din phc ca sng

    1.1.3 Cc sng s cp

    1.2 S truyn sng qua mt s h quang hc n gin

    1.2.1 Thu knh chit sut bin i (graded - index lens)

    1.2.1 S truyn sng trong si quang

    1.3 S truyn sng nh sng qua mi trng bt ng hng

    1.3.1 Mt s tnh cht chung

    1.3.2 Khc x trn bin mi trng bt ng hng

    1.3.3 S truyn sng qua tinh th n trc

    1.4 Chm Gauss

    1.4.1 Biu thc ca chm Gauss

    1.4.2 Tnh cht ca chm Gauss

    Ni dung 2

    Chng 2: S phn cc ca nh sng (7/ 3/1)

    2.1. Hin tng phn cc nh sng qua bn Tourmaline

    2.1.1 Th nghim

    2.1.2 Gii thch

    2.2 Bn cht ca nh sng phn cc v biu din nh sng phn cc.

    2.2.1 Phn cc thng

    2.2.2 Phn cc trn

    2.2.3 Phn cc ellip

    2.2.4 nh sng t nhin.

    2.3. nh lut Malus.

    2.4. Phn cc nh sng khi truyn tinh th lng chit. Cc loi knh phn cc.

  • 30

    2.5. Phn cc do phn x

    2.6. S truyn sng qua mt phn cch hai mi trng-Cc cng thc Fresnel

    2.7 Cc bn bc sng (/4, /2, )

    2.8 Cc hiu ng quang cm ng

    2.8.1 Hiu ng in quang

    2.8.2 Hiu ng t-quang Faraday

    2.9 Hin tng phn cc quay v ng dng

    Bi tp

    Ni dung 3

    Chng 3 : Giao thoa nh sng (5/3/0)

    3.1 Th nghim Young

    3.2 S phn b cng nh sng trong giao thoa vi hai khe

    3.2.1 Biu thc cng nh sng giao thoa

    3.2.2 Giao thoa ca nh sng khng n sc

    3.3. Giao thoa bn mng

    3.3.1 Bn mng song song v vn ng nghing.

    3.3.2 Bn mng c dy thay i v vn ng dy.

    3.4 Giao thoa nhiu chm tia - Giao thoa k Fabry-Perot

    3.5 Mt s giao thoa k khc

    3.5.1 Giao thoa k Michelson

    3.5.2 Giao thoa k Mach-Zehnder

    3.5.3 Giao thoa k Sagnac

    Bi tp

    Ni dung 4

    Chng 4: Nhiu x nh sng (5/3/0)

    4.1Hin tng nhiu x - Nguyn l Huygens-Fresnel

    4.1.1 Hin tng nhiu x nh sng

    4..1.2 Nguyn l Huygens-Fresnel

    4.1.3 Nhiu x Fresnel v nhiu x Fraunhofer

    4.2 Nhiu x Fresnel

    4.2.1Phng php i cu Fresnel.

    4.2.2 Nhiu x nh sng qua l trn v a trn nh

    4.3 Nhiu x Fraunhofer

    4.3.1 Nhiu x qua mt khe hp

    4.3.2 Nhiu x qua mt l trn

  • 31

    4.3.3 Nhiu x qua 2 khe

    4.3.4 Nhiu x qua nhiu khe

    4.3.5. Cch t nhiu x- my quang ph cch t

    4.3.6 Nhiu x tia X

    Bi tp

    Ni dung 5

    Chng 5: Tn sc, hp th v tn x nh sng (4/0/0)

    5.1 S tn sc nh sng

    5.2. S hp th nh sng

    5.3. L thuyt v tn sc v hp th

    5.4 S tn sc v vn tc nhm

    5.5 Tn x nh sng

    Ni dung 6

    Chng 6: Lng t quang hc (5/3/0)

    6.1 Bc x nhit

    6.1.1 c trng ca bc x nhit

    6.1.2 Cc nh lut v bc x nhit

    6.1.3 Thuyt lng t nng lng Planck v cng thc Planck

    6.2. Tnh cht ht ca nh sng

    6.2.1. Thuyt photon ca Einstein

    6.2.2. Hiu ng quang in

    6.2.3 Hiu ng Compton

    6.3 Quan im lng t v s bc x v hp th

    6.3.1 Bc x t pht v hp th

    6.3.2 Bc x cng bc

    6.4 My pht lng t quang hc (Laser)

    6.4.1 Nguyn l hot ng ca laser

    6.4.2 Mt s tnh cht ca laser v ng dng

    Bi tp

    Ni dung 7

    Chngg 7: Quang hc phi tuyn. (6/0/2)

    7.1 cm phi tuyn

    7.2 Mt s hiu ng quang hc phi tuyn bc hai

    7.2.1Hiu ng chnh lu quang hc

    7.2.2 Hiu ng pht ha ba bc hai quang hc

    7.2.3 Hiu ng pht tham s quang hc

  • 32

    7.3 Mt s hiu ng quang hc phi tuyn bc 3

    7.3.1 Hiu ng t hi t

    7.3.2 Hiu ng t iu pha

    7.4 S tng hp pha trong hiu ng pht ha ba bc hai v tn s tng

    7.5 Mt s ng dng ca quang hc phi tuyn

    Ni dung 8

    Chng 8: Holography (4/1/2)

    8.1 Nguyn l holography

    8.2 Phn loi hologram

    8.3 Mt s ng dng ca Holography

    8.3.1 Hologram khi

    8.3.2 Giao thoa k holography

    8.3.2 Holography sng m

    8.3.3 Cc linh kin quang hc holography.

    6. Hc liu

    6.1 Hc liu bt buc

    1. Nguyn Th Bnh, Quang hc Nh XN HQG H ni 2007

    2. David Halliday

    C s Vt l, Tp 6, Nh xut bn gio dc 1998

    3. L Thanh Hoch,

    Gio trnh Quang hc, T sch Trng i hc KHTN 1980

    6.2 Hc liu tham kho

    4. Ng Quc Qunh,

    Quang hc, Nh xut bn i hc v Trung hc chuyn nghip 1972

    5. Eugent Hecht

    Optics , 4th edition, (World student series edition), Adelphi University Addison

    Wesley, 2002

    6. Joses-Philippe Perez

    Optique, 7th edition, Dunod ,Paris, 2004

    7. B.E.A.Saleh, M.C. Teich

    Fundamentals of Photonics,

    Wiley Series in pure and applied Optics, New York (1991)

    8. Nguyn Th Bnh

    Quang hc hin i, T sch i hc Khoa hc t nhin (2009)

    7. Hnh thc t chc dy hc

    7.1 Lch trnh chung

  • 33

    Ni dung

    Hnh thc t chc dy hc

    Tng Ln lp T hc

    xc nh

    Kim tra,

    nh gi L

    thuyt Bi tp

    Ni dung 1 3 1 4

    Ni dung 2 7 3 1 11

    Ni dung 3 5 3 8

    Ni dung 4 5 3 8

    Ni dung 5 4 4

    Ni dung 6 5 3 8

    Ni dung 7 6 2 8

    Ni dung 8 4 1 2 7

    Kim tra gia k 2 2

    Tng 39 13 6 2 60

    7.2 Lch trnh c th

    Tun 1 Ni dung 1

    Chng 1: C s quang sng

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1 Biu din sng ca nh sng

    1.1 Phng trnh sng v nng

    l

    n

    g

    s

    n

    g

    .

    1.2 Biu din phc ca sng

    1-c ti liu s 1

    (tr.48-55 ; tr 62-80 v

    335-341 )

    2-c ti liu s 4

    (tr.150-162)

    3-c thm ti liu s

    7 (tr.80-92) nng

    cao v chm Gauss

  • 34

    1.3 Cc sng s cp

    2. S truyn sng nh sng qua mi

    trng bt ng hng

    2.1 Mt s tnh cht chung

    2.2 Khc x trn bin mi trng

    bt ng hng

    2.3 S truyn sng qua tinh th n

    trc

    3. Gii thiu chm Gauss

    3.1 Biu thc chm Gauss

    3.2 Tnh cht chm Gauss

    T hc

    1 gi nh

    1. S truyn sng qua mt s h

    q

    u

    a

    n

    g

    h

    c

    n

    g

    i

    n

    2. Thu knh chit sut bin i

    (graded index lens)

    3. S truyn sng trong si quang

    4. Chm Gauss v ng dng

    1-c ti liu s 1

    (tr.56-80)

    2-c ti liu s 7 (tr

    92-100)

    Kim tra,

    nh gi

    -Kim tra sinh vin chun b bi trc

    khi n lp

    -Tm tt phn t hc di dng tiu

    lun

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Tun 2 Ni dung 2

    Chng 2: S phn cc ca nh sng

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

  • 35

    L thuyt

    3 gi

    Ging

    ng

    1. Th nghim phn cc nh

    sng vi bn Tourmaline

    2. Gii thch

    3. Bn cht ca hin tng

    phn cc nh sng

    4. Biu din cc trng thi

    phn cc nh sng

    5. nh lut Malus

    6. Phn cc nh sng khi

    truyn tinh th lng chit.

    Cc loi knh phn cc

    1- c ti liu s 1

    (tr.81-105)

    2-c thm ti liu s

    5 (tr.290-296 v tr.309-

    313)

    Kim tra,

    nh gi

    Kim tra sinh vin chun b

    bi trc khi n lp

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Tun 3 Ni dung 2

    Chng 2: S phn cc ca nh sng

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1. Phn cc do phn x

    2. Xc lp cc cng thc

    Fresnel

    3.Gii thiu hiu ng in

    quang v t quang

    1- c ti liu s 1

    (tr.121-129)

    2- c ti liu s

    5(tr.300-305)

    3-c ti liu s 4

    (tr.173-177)

    T hc 1

    gi

    nh 1-Hiu ng t-quang

    2-Hiu ng in quang c

    thm

    1-c ti liu s 5

    (tr.316-318)

    2-Ti liu 1(tr.137-140)

    3-Ti liu s 7 (tr.699-

    708)

    Kim tra,

    nh gi

    -Chun b bi trc khi n

    lp ca sinh vin

    - Tm tt ni dung t hc

    di dng tiu lun

    c, ghi chp ti liu

    theo yu cu ca ging

    vin

    Bi tp

    1,5 gi tn

    ch

    Ging

    ng

    -Hng dn lm bi tp v

    phn cc nh sng trong ti

    liu 1.

    -Gio vin cho thm bi tp

    v tho lun

    Lm bi tp ti liu 1

    (tr.144-148)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin.

    -C bi gii cc bi tp

    cho

    Tun 4 Ni dung 2 v 3

    Chng 2: S phn cc ca nh sng (1gi l thuyt; 1,5 gi bi tp)

  • 36

    Chng 3: Giao thoa nh sng (2 gi l thuyt)

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    Tip chng 2:

    1.Cc bn bc sng (/4,

    /2 v ) v ng dng

    2. Hin tng phn cc quay

    v ng dng

    Chng 3: Giao thoa nh

    sng

    1. Th nghim Young

    2. S phn b cng nh

    sng trong giao thoa vi hai

    khe

    3. Biu thc cng nh

    sng giao thoa

    4.Giao thoa ca nh sng

    khng n sc

    5. Giao thoa bn mng

    - Bn mng song song v

    vn ng nghing.

    1-c ti liu s 2

    (tr.68-83)

    2-c ti liu s 1 (

    tr.149-189)

    Bi tp

    1,5 gi tn

    ch

    Ging

    ng

    -Tip tc bi tp v phn

    cc nh sng trong ti liu 1.

    -Gio vin cho thm bi tp

    v tho lun

    Lm tip bi tp ti liu

    1 theo hng dn ca

    gio vin(tr.144-148)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin.

    -C bi gii cc bi tp

    cho

    Tun 5 Ni dung 3

    Chng 3: Giao thoa nh sng

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1. Giao thoa bn mng (tip)

    Bn mng c dy thay

    i v vn ng dy

    2. Giao thoa nhiu chm tia

    - Giao thoa k Fabry-Perot

    3. Mt s giao thoa k khc

    3.1 Giao thoa k

    Michelson

    3.2 Giao thoa k Mach-

    Zehnder

    1-c ti liu s 1 (

    tr.190-193)

    2-c thm ti liu 5

    (tr.378-387)

  • 37

    3.3 Giao thoa k Sagnac

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Bi tp

    1,5 gi

    Ging

    ng

    -Hng dn lm bi tp v

    giao thoa nh sng trong ti

    liu 1

    -Gio vin cho thm bi tp

    v tho lun

    Chun b bi tp theo

    ti liu s 1 (tr.194-

    200)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    Lm bi tp y

    Tun 6 Ni dung 3 v 4

    Chng 3: Giao thoa nh sng (bi tp)

    Chng 4: Nhiu x nh

    sng (l thuyt)

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1.Hin tng nhiu x -

    Nguyn l Huygens-Fresnel

    1.1 Hin tng nhiu x

    nh sng

    1.2 Nguyn l Huygens-

    Fresnel

    1.3 Nhiu x Fresnel v

    nhiu x Fraunhofer

    2. Nhiu x Fresnel

    2.1 Phng php i cu

    Fresnel.

    2.2 Nhiu x Fresnel qua

    l trn v a trn nh

    3. Nhiu x Fraunhofer

    3.1 Nhiu x qua mt khe

    hp

    3.2 Nhiu x qua mt l

    trn

    3.3 Nhiu x qua 2 khe

    1- c ti liu s 2 (tr.

    99-128)

    2-c ti liu s 1

    (tr.201-225)

    3- c thm ti liu s

    5(tr.445-459)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Lm bi tp y

    Bi tp

    1,5 gi

    Ging

    ng

    -Tip bi tp v giao thoa

    nh sng trong ti liu 1

    Chun b tip bi tp

    ti liu s 1 (tr.194-

  • 38

    -Gio vin cho thm bi tp

    v tho lun

    200)

    theo hng dn ca

    gio vin

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    Lm bi tp y

    Tun 7 Ni dung 4 v 5

    Chng 4: Nhiu x nh

    sng (2 gi l thuyt; 1,5 gi bi tp)

    Chng 5: Tn sc, hp th v tn x nh sng (1gi l thuyt)

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    Chng 4:

    1. Nhiu x qua nhiu khe

    2..Cch t nhiu x truyn

    qua v phn x: nh ngha,

    cu to

    3. Cc c trng tn sc,

    nng sut phn gii ca cch

    t.

    4. Nhiu x tia X v ng

    dng

    Chng 5:

    1 S tn sc nh sng

    2. S hp th nh sng

    1-c ti liu s 2

    (tr.127-130)

    2-c ti liu s 1

    ( tr.226-233)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Bi tp

    1,5 gi

    Ging

    ng

    -Hng dn lm bi tp v

    Nhiu x nh sng trong ti

    liu 1

    -Gio vin cho thm bi tp

    v tho lun

    Chun b bi tp theo

    ti liu s 1(tr.234-239)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    -Lm bi tp y

    Tun 8 Ni dung 4 v5

    Chng 4: Nhiu x

    nh sng (1,5 gi bi tp)

    Chng 5: Tn sc, hp th v tn x nh sng (3 gi l thuyt)

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt Ging 1. L thuyt v tn sc v 1-c ti liu s 1(tr.

  • 39

    3 gi ng hp th

    2.Tn sc v vn tc nhm

    3. Tn x nh sng

    3.1 Tn x Tyndal

    3.2 Tn x phn t

    3.3 Tn x Mie

    3.4 Tn x Raman

    3.5 Tn x Mandelstam-

    Brillouin

    240-265)

    2-c thm ti liu s

    5(tr.250-258)

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    c, ghi chp tm tt

    theo yu cu ca ging

    vin

    Bi tp

    1,5 gi

    Ging

    ng

    -Tip tc bi tp v Nhiu x

    nh sng trong ti liu 1

    -Gio vin cho thm bi tp

    v tho lun

    Chun b tip bi tp

    ti liu s 1(tr.234-239)

    theo hng dn ca

    gio vin

    Kim tra,

    nh gi

    Chun b bi trc khi n

    lp ca sinh vin

    -Lm bi tp y

    Tun 9 Kim tra gia k

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    Kim tra

    2 gi

    Ging

    ng

    Lm bi kim tra n tp cc chng

    1,2,3,4,5 hc

    Tun 10 Ni dung 6

    Chng 6: Lng t quang hc

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1 Bc x nhit

    1.1 c trng ca bc x

    nhit

    1.2 Cc nh lut v bc x

    nhit

    1.3 Thuyt lng t nng

    lng Planck v cng thc

    Planck.

    2. Tnh cht ht ca nh

    sng

    2.1 Thuyt photon ca

    Einstein

    2.2 Hiu ng quang in

    1-c ti liu s 2

    (tr.191-206)

    2-c ti liu s 1

    (tr.270- 287).

  • 40

    2.3 Hiu ng Compton

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp

    Theo yu cu c th

    ca ging vin

    Tun 11 Ni dung 6 v 7

    Chng 6: Lng t quang hc (2 gi l thuyt;1,5 gi bi tp)

    Chng 7: Quang hc phi tuyn.

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    Chng 6:

    1. Bc x t pht, bc x

    cng bc v hp th theo

    quan im lng t

    2. Nguyn l hot ng ca

    laser

    2.1 Nghch o tch ly

    2.2 Cc s laser 3 mc, 4

    mc.

    3 Gii thiu mt s loi

    laser.

    4.Mt s tnh cht v ng

    dng ca laser

    Chng 7:

    1.Khi nim v quang hc

    phi tuyn v cm phi

    tuyn

    1- c ti liu s 2 (

    tr.85-91)

    2- c ti liu s 1

    (tr.288-318)

    Bi tp

    1,5 gi

    Ging

    ng

    -Hng dn lm bi tp v

    cc nh lut bc x nhit,

    hiu ng quang in v hiu

    ng Compton trong ti liu

    1.

    - Gio vin cho thm bi tp

    v tho lun

    Lm bi tp ti liu s

    1( tr.220-222)

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp

    - Lm bi tp y

    Tun 12 Ni dung 6 v 7

    Chng 6: Lng t quang hc (1,5 gi bi tp)

    Chng 7: Quang hc phi tuyn.

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    2 Mt s hiu ng quang

    hc phi tuyn bc hai

    2.1Hiu ng chnh lu

    1. c ti liu s 1 (tr.323-328)

    2. c ti liu s 8

  • 41

    quang hc

    2.2 Hiu ng pht ha ba

    bc hai quang hc

    2.3 Hiu ng pht tham s

    quang hc

    3. S tng hp pha trong

    hiu ng pht ha ba bc hai

    v tn s tng

    (tr. 98-105)

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp

    Theo yu cu c th

    ca ging vin

    Bi tp

    1,5 gi

    Ging

    ng

    -Tip tc bi tp v cc nh

    lut bc x nhit, hiu ng

    quang in v hiu ng

    Compton trong ti liu 1.

    - Gio vin cho thm bi tp

    v tho lun

    Lm tip bi tp ti

    liu s 1( tr.220-222)

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp

    - Lm bi tp y

    Tun 13 Ni dung 7 v 8

    Chng 7: Quang hc phi tuyn.(2 gi l thuyt)

    Chng 8: Holography (1 gi l thuyt)

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt

    3 gi

    Ging

    ng

    1 Mt s hiu ng quang

    hc phi tuyn bc 3

    1.1 Hiu ng t hi t

    1.2 Hiu ng t iu pha

    Chng 8:

    1. Nguyn l holography

    1. c ti liu s 1 (tr.229-242)

    2. c ti liu s 8 (tr.72-86)

    3. c ti liu s 2

    (tr.143-148)

    T hc ni

    dung 7

    2 gi

    nh Mt s ng dng ca quang

    hc phi tuyn

    1- c ti liu s 8

    (tr.72-103)

    2- c ti liu s 7

    (tr.737-782)

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp, bn tm

    tt ni dung t hc di

    dng tiu lun.

    c v chun b theo

    yu cu c th ca

    ging vin

    Tun 14 Ni dung 8

    Chng 8: Holography

    Hnh thc

    t chc

    dy hc

    Thi gian,

    a im Ni dung chnh

    Yu cu sinh vin

    chun b

    Ghi

    ch

    L thuyt Ging 1. Phn loi hologram 1- c ti liu s 1

  • 42

    3 gi ng 2.Mt s ng dng ca

    Holography

    2.1 Hologram khi

    2.2 Giao thoa k

    holography

    2.3 Holography sng m

    2.4 Cc linh kin quang hc

    holography.

    (tr.343-361)

    2- c ti liu s 5

    (tr 593-604)

    T hc xc

    nh

    2 gi

    nh Cc s to v hi phc

    nh Hologram khc nhau

    1-c ti liu s 8

    (tr.200-211)

    2-c ti liu s 5

    (tr.605-610)

    Bi tp

    1 gi

    Ging

    ng

    -Sinh vin trnh by cc vn

    gio vin giao t c

    -Tho lun trn lp

    c v chun bi theo

    yu cu c th ca

    ging vin

    Kim tra,

    nh gi

    Chun b bi ca sinh vin

    trc khi n lp.

    Tm tt phn t hc di

    dng tiu lun.

    c v chun bi theo

    yu cu c th ca

    ging vin

    8. Chnh sch i vi mn hc v yu cu khc ca ging vin

    - i vi sinh vin: Sinh vin c d thi kt thc mn hc khi c cc iu

    kin sau:

    + C mt trn lp khng di 80% s gi l thuyt ca mn hc

    + C y cc im thnh phn ca mn hc

    - i vi ging vin: Mn hc c ging dy trong 1 hc k.

    9. Phng php, hnh thc kim tra, nh gi kt qu hc tp mn hc

    9.1. Mc ch v trng s kim tra - nh gi

    Hnh thc Tnh cht ca ni dung

    kim tra Mc ch kim tra Trng s

    Kim tra

    thng xuyn

    Bi tp c nhn: Mc tiu

    bc 1: Cc vn l

    thuyt.

    Tho lun nhm: Mc

    tiu bc 1 v 2: Ch yu

    v l thuyt, bc u i

    hi hiu su.

    nh gi kh nng nh v

    ti hin cc ni dung c bn

    ca mn hc.

    nh gi k nng lm vic

    nhm, kh nng trnh by,

    thuyt trnh mt vn l

    lun c bn.

    20%

    Kim tra gia k

    (Phn 1)

    Mc tiu bc 1, 2 v 3:

    Ch yu v l thuyt, hiu

    su v c lin h thc t.

    nh gi k nng nghin

    cu c lp v k nng trnh

    by.

    20%

    Thi kt thc Mc tiu bc 1, 2 v 3: nh gi trnh nhn thc 60%

  • 43

    hiu su l thuyt, nh

    gi c gi tr ca l

    thuyt trn c s lin h l

    lun vi thc t.

    v k nng lin h l lun

    vi thc tin.

    Tng: 100%

    9.2. Tiu ch nh gi cc loi bi tp v kim tra nh gi

    Cc tiu ch nh gi cc loi bi tp ny bao gm:

    + Nm c c ni dung c bn ca tng chng.

    + Bit vn dng gii thch cc hin tng.

    + Kh nng phn bit, so snh, lin h kin thc vi ng dng thc tin . S

    dng cc ti liu do ging vin hng dn (c th s dng thm ti liu do ngi hc t

    tm) m rng kin thc.

    * Biu im trn c s mc t 3 tiu ch:

    im Tiu ch

    9 10 - t c 3 tiu ch.(mc tiu A,B,C)

    7 8 - t 2 tiu ch u.

    - Tiu ch 3: c s dng cc ti liu, song cha y , su sc, cha c bnh

    lun.

    5 6 - t tiu ch 1.

    - Tiu ch 2: sc thuyt phc ca cc lun c, lun chng cha tht cao, vn

    cha c gii quyt trn vn.

    - Tiu ch 3: cn mc mt vi li nh.

    Di 5 - Khng t c 3 tiu ch.

    9.3. Lch kim tra, lch thi ln 1, lch thi li:.........................................................

  • 44

    C HC LNG T 1

    (Ghi tn mn hc/chuyn )

    1. M mn hc/chuyn : PHY2404

    2. S tn ch: 4

    3. Mn hc tin quyt: Ton cao cp , C hc l thuyt

    4. Ngn ng ging dy: Ting Anh , Ting Vit.

    5. Ging vin (h v tn, chc danh, hc v, n v cng tc):

    +GS.TSKH. Nguyn Xun Hn , B mn Vt l l thuyt , Khoa Vt l

    +GS.TS. H Huy Bng, Phng Vt l nng lng cao v V tr hc, Khoa Vt l

    + TS. Cao Th Vi Ba , B mn Vt l l thuyt , Khoa Vt l

    +TS. H Thy Long, B mn Vt l Ht nhn, Khoa Vt l

    6. Mc tiu mn hc/chuyn (kin thc, k nng, thi ):

    Trang b cho hc vin cc kin thc hin i v vt l vi m , vt l lng t . Sau khi

    hc xong mn hc, cc hc vin c th c hiu cc vn c lin quan ca vt l

    hin i ngy nay, c hiu cc cng trnh khoa hc ng trn cc Tp ch khoa hc

    quc t, v cc bi bo vt l c lin quan.

    7.Phng php kim tra nh gi:

    Bi tp ln (20%)

    Kim tra gia k (20%)

    Kim tra (thi) ht mn hc (60%)

    8.Gio trnh bt buc (tc gi, tn gio trnh, nh xut bn, nm xut bn):

    + A. X. a-v-v, C hc lng t, Ngi dch ng Quang Khang, NXB,

    H&THCN, H Ni, 1974. A. S. Davydov, Quatum Mechanics, 2 nd edition, Great

    Britain, Pergmon Press, 1991.

    +Nguyn Xun Hn. C hc lng t. NXB HQG H Ni(2002)

    +Claude Cohen-Tannoudji, Bernard Diu, Franck Lalo, C hc lng t, Wiley-

    Interscience; 2 Volume Set edition (October 9, 2006)

    + Gordon Baym, Lectures on Quantum Mechanics, University of Illinois, 1989;

    + L. Schiff, Quantum Mechanics, McGraw-Hill, NeW York, 1968,.

    9.Tm tt ni dung mn hc (mi mn hc tm tt khong 120 t):

    Mn hc cung cp cho hc vin: Nhng khi nim c bn ca c hc lng t

    ;Thuyt biu din v mt s bi ton c hc lng t n gin; Thuyt nhiu lon v

  • 45

    chuyn di lng t. Thuyt lng t chun tng i tnh v chuyn ng ca ht

    trong trng ngoi.

    10.Ni dung chi tit mn hc/chuyn (trnh by cc chng, mc, tiu mc):

    Chng 1 : Nhng khi nim c bn ca c hc lng t.

    1.M u : Nhng s kin thc nghim mu thun vi c hc c in. Thuyt lng

    t Bohr. Bc x vt en tuyt i v gi thuyt Planck. Hiu ng quang in v gi

    thit ca Einstein. Hiu ng Compton.

    2.Gi thuyt ca de Broglle v hm sng ca ht chuyn ng t do.

    3. Nguyn l chng cht cc trng thi, b sng.

    4. ngha thng k ca hm sng.

    5.Ht chuyn ng trong khng gian b gii hn.

    6. Cc gi tr trung bnh. Tnh cc gi tr trung bnh ca ta v xung lng.

    7. Ton t ca cc bin ng hc.

    8.Cc hm ring v tr ring.

    9.Tnh cht cc hm ring ca cc ton t trong ph gin on

    10. Tnh cht cc hm ring ca cc ton t trong ph lin tc.

    11.iu kin mt vi i lng vt l cng c gi tr xc nh.

    12.Cc phng php xc nh trng thi cc h lng t.

    13.Nguyn l bt nh Heisenberg.

    14.Phng trnh Schrodinger.

    15.Cc trng thi dng.

    16.S bin i gi tr trung bnh cc i lng vt l theo thi gian.

    17.Phng trnh chuyn ng trong biu din Heisenberg. Mc Poisson.

    18.S chuyn t c hc lng t v c hc c in.

    19.S truyn qua hng do th. S chuyn ng ca ht trn hng ro th v trn h

    th.

    Chng 2:Thuyt biu din v mt s bi ton c hc lng t n gin.

    1.Cc biu din khc nhau ca vect trng thi.

    2.Cc biu din khc nhau ca ton t.

  • 46

    3.Xc nh cc hm ring v tr ring ca cc ton t c dng ma trn.

    4.L thuyt tng qut v cc php bin i Unite.

    5.Ht trong h th vung gc

    6.Dao ng t iu ha.

    7.Cc tnh cht chung ca chuyn ng ca ht trong trng i xng cu.

    8.Chuyn ng t do vi gi tr momen xung lng qu o xc nh.

    9.Chuyn ng trong trng h th vung gc i xng cu.

    10.Chuyn ng trong trng Coulomb. Ph gin on v ph lin tc.

    11.Cng vect ca hai momen xung lng.

    Chng 3: Thuyt nhiu lon v chuyn di lng t.

    1.Php tnh nhiu lon trong cc trng thi dng c ph gin on(trng hp khng

    suy bin).

    2.Php tnh nhiu lon cho cc trng hp khi xut hin hai mc nng lng gn

    nhau.

    3.Php tnh nhiu lon dng trong trng hp c suy bin.

    4.Nhiu lon ph thuc vo thi gian. Biu thc v xc sut chuyn ri t mt trng

    thi ny n mt trng thi khc.

    5.Xc sut chuyn ri trong mt n v thi gian.

    6.L thuyt tng tc ca h lng t vi bc x in t.

    7.Cc quy tc lc la cho bc x v hp th nh sng.

    Chng 4: Thuyt lng t chun tng i tnh v chuyn ng ca ht trong trng

    ngoi.

    1.Ht c bn trong c lng t.

    2.Phng trnh tng i tnh ca ht c spin bng khng.

    3.Chuyn ng t do ca ht c spin bng khng.

    4.Tng tc gia ht spin bng khng vi trng in t.

    5.Phng trnh Dirac.

    6.Chuyn ng t do ca cc ht m t bng phng trnh Dirac.

    7.Momen xung lng ca in t trong l thuyt Dirac.

  • 47

    8.Tng tc Spin-qu o.

    9.Nguyn t Hydro c k n spin ca in t.

    10.Nguyn t trong t trng ngoi. Hiu ng Zeemann.

    11.Nguyn t Hydro trong in trng ngoi. Hiu ng Stark.

    12. S chuyn t phng trnh Dirac sang phng trnh Pauli.

  • 48

    CNG MN HC

    VT L HT NHN NGUYN T

    (Ghi tn mn hc/chuyn )

    1. M mn hc/chuyn : PHY2305

    2. S tn ch: 4

    3. Mn hc tin quyt: C hc lng t v L thuyt tng i hp

    4. Ngn ng ging dy: Ting Anh

    5. Ging vin (h v tn, chc danh, hc v, n v cng tc): Nguyn Mu

    Chung, Tin s, B mn Vt l Ht nhn, khoa Vt l

    6. Mc tiu mn hc/chuyn (kin thc, k nng, thi ):

    Mc tiu v kin thc: Gip sinh vin nm c cc khi nim c bn ca Vt l Ht nhn Nguyn t : cc lp electron ca nguyn t; cc loi

    nucleon : neutron v proton; phn r phng x; phn hch v nhit hch.

    Sinh vin cn hiu c cc nh lut c bn ca Vt l Ht nhn Nguyn

    t, bit cch ng dng chng gii cc bi tp v lm cc bi thc tp

    tng ng trong phng th nghim. Cung cp cho sinh vin kin thc c s

    sinh vin c th gii quyt nhng vn thc t trong hot ng chuyn

    mn sau ny.

    Mc tiu v k nng: Bit vn dng cc kin thc l thuyt thu nhn t mn hc gii thch cc hin tng thng gp trong cuc sng, trong k

    thut. Gii c cc bi tp theo ni dung tng chng ca chng trnh.

    Cc mc tiu khc (thi hc tp): Yu cu sinh vin nghim tc, chm ch v sng to trong hc tp.

    7. Phng php kim tra nh gi:

    - Thi gia k : 30 %

    - Thi cui k : 70 %

    8. Gio trnh bt buc (tc gi, tn gio trnh, nh xut bn, nm xut bn):

    J.S. Lilley, Nuclear Physics : Principles and Applications, Wiley, 2001

    W.E. Burcham and M. Jobes, Nuclear and Particle Physics, Wiley, 1995

    W.S.C Williams, Nuclear and Particle Physics, Oxford Publication, 2002

    9. Tm tt ni dung mn hc (mi mn hc tm tt khong 120 t):

    L mn hc tip theo ca Vt l kinh in (C, Nhit, in, Quang) Vt l Ht nhn

    Nguyn t cung cp cho sinh vin nhng kin thc c bn v cu trc vt cht. Phn

  • 49

    u tin c dnh cho Vt l Nguyn t : m hnh nguyn t Bohr; nguyn t

    hydrogen; nguyn t nhiu electron. Cc chng tip theo cp n nhng vn

    c bn ca Vt l Ht nhn : phng x ht nhn; cc m hnh l thuyt v cu trc ht

    nhn; cc loi phn ng ht nhn, phn hch v tng hp ht nhn; che chn v an

    ton ht nhn. Nhng kin thc c bn lin quan n k thut thc nghim (ghi nhn

    bc x, detector bc x, my gia tc ht, l phn ng ht nhn, nh my in ht

    nhn) c trnh by trong cc chng tng ng vi mc ph hp trnh sinh

    vin i hc.

    10. Ni dung chi tit mn hc/chuyn (trnh by cc chng, mc, tiu mc):

    Chng 1: Ht v Sng (3 gi l thuyt; 1 gi bi tp)

    1.1. nh sng : sng in t.

    1.2. Bc x vt en.

    1.3. Hiu ng quang in.

    1.4. Hiu ng Compton.

    1.5. Ht nh sng : photon.

    1.6. Sng vt cht.

    1.7. Bi tp: Bi tp ht v sng.

    Chng 2: Nguyn t v m hnh Bohr (3 gi l thuyt; 2 gi bi tp)

    2.1. Tnh cht v cu trc nguyn t.

    2.2. M hnh nguyn t Bohr.

    2.3. Bn knh, nng lng v chuyn di nguyn t theo m hnh Bohr.

    2.4. p dng m hnh Bohr

    2.5. Bi tp: Bi tp nguyn t v m hnh Bohr.

    Chng 3:Moment xung lng v nguyn t hydrogne

    (4 gi l thuyt; 2 gi bi tp)

    3.1. Th xuyn tm

    3.2. Moment xung lng

    3.3. Cc trng thi electron trong nguyn t hydrogne

    3.4. Hiu ng Zeemann

    3.5. Spin

    3.6. Cu trc siu tinh t

    3.7. Bi tp: Bi tp chng moment xung lng v nguyn t hydrogne.

  • 50

    Chng 4: Cc c trng c bn ca ht nhn (4 gi l thuyt; 2 gi bi

    tp)

    4.1. Cu to ht nhn.

    4.2. Kch thc ht nhn.

    4.3. Nng lng lin kt.

    4.4. Spin v moment t.

    4.5. Moment in.

    4.6. Chn l.

    4.7. Bi tp: Bi tp cc c trng c bn ca ht nhn.

    Chng 5: Phn r phng x (6 gi l thuyt; 3 gi bi tp)

    5.1. nh lut phng x.

    5.5. Cc h phng x.

    5.6. Xc nh nin i bng phng x.

    5.7. Bi tp: Bi tp phn r phng x.

    Chng 6: Cc m hnh ht nhn (4 gi l thuyt; 3 gi bi tp)

    6.1. Mu git v cng thc khi lng bn kinh nghim.

    6.2. Mu kh Fermi.

    6.3. Mu lp.

    6.4. Mu mt ht.

    6.5. Bi tp: Bi tp cc m hnh ht nhn .

    Chng 7: Phng php thc nghim ht nhn (5 gi l thuyt; 3 gi bi

    tp)

    7.1. Tng tc bc x vi vt cht.

    7.2. Detector bc x.

    7.3. My gia tc.

    7.4. Bi tp: Bi tp phng php thc nghim ht nhn.

    Chng 8: Phn ng ht nhn (6 gi l thuyt; 3 gi bi tp)

    8.1. ng hc phn ng.

  • 51

    8.2. Phn hch ht nhn.

    8.3. Nh my in ht nhn.

    8.4. Tng hp ht nhn.

    8.5. Phn ng ht nhn trn cc v sao.

    8.6. Bi tp: Bi tp v phn ng ht nhn.

    Chng 9 : Vt l ht c bn (5 gi l thuyt; 2 gi bi tp)

    9.1. Vt cht : quark v lepton .

    9.2. Meson v baryon

    9.3. Tng tc v boson.

    9.4. Tng tc yu : neutrino v bt i xng vt cht phn vt cht.

    9.5. Khi lng v Higg.

    9.6. Siu i xng.

    9.7. Bi tp: Bi tp v vt l ht c bn.

  • 52

    CNG MN HC

    THC HNH VT L I CNG 1

    1. M mn hc: PHY 2307

    2. S tn ch: 02 (30 gi tn ch)

    3. Mn hc tin quyt: Nhit ng hc v Vt l phn t (PHY1089)

    4. Ngn ng ging dy: Ting Vit

    5. Ging vin

    TT H v tn Chc danh,

    hc v

    n v cng tc

    1 L Th Thanh Bnh PGS.TS.GVC B mn Vt l i cng,

    Khoa Vt l, HKHTN

    2 Ngc An Bang TS.GV B mn Vt l i cng,

    Khoa Vt l, HKHTN

    3 Trn Vnh Thng NCV.ThS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    4 Trnh Th Loan NCV.TS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    5 Nguyn T Nim NCV.ThS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    6 Th Kim Anh GV.TS. B mn Vt l nhit thp,

    Khoa Vt l, HKHTN

    7 Bch Hng Giang GV.TS. Phng Vt l tnh ton,

    Khoa Vt l, HKHTN

    8 Bi Th Hng Vn GV.ThS. B mn Quang lng t,

    Khoa Vt l, HKHTN

    9 Lu Mnh Qunh NCV Trung tm CMS,

    Khoa Vt l, HKHTN

    10 Si Cng Doanh NCV B mn Vt l i cng,

    Khoa Vt l, HKHTN

    6. Mc tiu mn hc

  • 53

    6.1. Mc tiu v kin thc

    Vt l hc l ngnh khoa hc thc nghim, sinh vin khng nhng cn nm vng

    v l thuyt m cn phi c quan st v hiu c cc hin tng Vt l xy ra

    trong thc t. Mn Thc hnh Vt l i cng 1 nhm gip cho sinh vin thc

    hnh th nghim, kim nghim li v hiu su cc kin thc l thuyt v C hc v

    Nhit ng hc c hc. Mn hc cng gip cho sinh vin c c hi c

    quan st, phn tch v qua hiu su sc thm v cc hin tng C v nhit

    trong t nhin.

    Trong qu trnh thc hnh, sinh vin c trang b mt s kin thc v cc phng

    php o, nguyn l hot ng, cu to, vn hnh ca mt s thit b v h o

    quang c bn.

    6.2. Mc tiu v k nng

    Rn luyn cho sinh vin mt k nng lm vic khoa hc, chnh xc, t duy thc

    nghim, gip cho sinh vin bit gn l thuyt c hc vi thc t thc nghim,

    p ng c nhu cu cng vic trong x hi hin i.

    Mn hc cng nhm o to phng php nghin cu thc nghim, kh nng phn

    tch v gii quyt vn , rn luyn k nng thc hnh v x l s liu thc

    nghim cho sinh vin. Bn cnh , vic thc hnh theo nhm gm t 2 n 3 sinh

    vin cng tng cng v rn luyn kh nng phi hp lm vic theo nhm. K

    nng lm vic theo nhm l mt k nng hin i m sinh vin cn phi c trang

    b trc khi ra trng.

    6.3. Mc tiu v thi

    Mn hc nhm khuyn khch ng vin sinh vin nghin cu Vt l ni chung v

    C hc c in ni ring. Cc gi thc hnh th nghim cng rn luyn cho sinh

    vin c tnh nghim tc, tn trng k lut v cc ni quy an ton trong phng th

    nghim.

    7. Phng php kim tra nh gi

    7.1. Tiu ch nh gi cc kt qu thc hin nhim v ca sinh vin

    - Tham d y cc bui thc hnh theo lch trnh.

    - Hng tun hon thin v trnh bo co theo quy nh.

    - nh gi sinh vin v kin thc, kh nng thc hnh v thc trong mi bui

    thc hnh.

    7.2. Lch thi v kim tra

    - Kim tra cui k: sau tun 10 theo b tr ca Nh trng.

    7.3. Cc loi im kim tra v trng s ca tng loi im

    - Phn chun b thc hnh v bo co thc hnh: 20%

    - Phn thc hnh ti Phng Thc hnh: 20%

    - Kim tra nh gi cui k: 60%

  • 54

    8. Gio trnh bt buc

    Gio trnh bt buc:

    L Th Thanh Bnh (Ch bin), Nguyn Ngc Long. Thc tp Vt l i cng

    phn C - Nhit. Nh xut bn i hc Quc gia H Ni, nm 2007.

    Ti liu tham kho:

    L Th Thanh Bnh (Ch bin), L Khc Bnh. Thc tp Vt l i cng phn

    in - T. Nh xut bn i hc Quc gia H Ni, nm 2007.

    1. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers, 6th

    Edition, Thomson Brooks/Cole, 2004, ISBN: 0534408427

    2. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 8th edition.

    ISBN: 9780470895399.

    3. Physics Experiments, General Catalogue of Physics Experiments, 1991,

    Leybold didactic GMBH.

    9. Tm tt ni dung mn hc

    Mn Thc hnh Vt l i cng 1 bao gm 10 bi thc hnh lin quan n

    nhng kin thc c bn nht v cc hin tng C hc v nhit hc nh hin

    tng va chm mm, va chm n hi, dao ng iu ha, s truyn nhit. Bn

    cnh , sinh vin cng thc hnh nghin cu chuyn ng quay ca vt rn, s

    truyn sng m trong khng kh, cu to v nguyn l hot ng ca knh hin vi,

    pan me, thc kp v mt s dng c o khc nh my o nhit , my m thi

    gian, dao ng k, cp nhit in, sensor lc, ghp ni gia h o v my tnh...

    10. Ni dung chi tit mn hc

    Bi m u: S lc v l thuyt php o v sai s

    1. nh ngha php o v sai s

    2. Phng php xc nh sai s ca cc php o trc tip

    3. Phng php xc nh sai s ca cc php o gin tip

    4. Cch vit kt qu

    5. Phng php biu din kt qu bng th.

    Bi 1: Kho st s dn nhit v xc nh h s dn nhit ca vt liu

    1. Mc ch: Xc nh h s dn nhit ca mt s vt liu xy dng.

  • 55

    2. L thuyt

    3. Dng c th nghim

    3.1. Bung nhit

    3.2. Mu o

    3.3. Ngun in 2 12 v

    3.4. My khng ch nhit hin th s.

    3.5. My o nhit

    4. Thc hnh

    4.1. Hiu chnh nhit gia cc my o

    4.2. Xc nh hiu nhit gia cc mt ca tm vt liu

    4.3. Xc nh h s dn nhit ca vt liu

    5. X l s liu

    Bi 2: Nghin cu s bin i nng lng in thnh nhit

    1. Mc ch: Kim nghim s bin i nng lng in thnh nng lng nhit. Kim

    nghim s chnh xc ca ng lng in nhit.

    2. L thuyt

    3. Dng c th nghim

    3.1. Cc nhit lng k

    3.2. My o nhit hin s

    3.3. My o nng lng v cng sut

    4. Thc hnh

    4.1. Kim nghim s bin i nng lung in thnh nng lng nhit

    4.2. Kim nghim s chnh xc ca ng lng in nhit

    5. X l s liu

    Bi 3: Kho st qu trnh dao ng iu ho

    1. Mc ch: Xc nh h s n hi ca l xo. Kho st dao ng iu ha v xc nh

    chu k dao ng ca con lc l xo.

    2. L thuyt

    3. Dng c th nghim

    3.1. My tnh

  • 56

    3.2. Sensor o lc

    3.3. Sensor kho st chuyn ng

    3.4. Cc l xo v cc vt nng

    4. Thc hnh

    4.1. Xc nh h s n hi ca l xo

    4.2. Kho st dao ng iu ho ca con lc l xo

    5. X l s liu

    Bi 4: Nghin cu sng trn dy

    1. Mc ch: Tm hiu s hnh thnh sng ng trn dy. Xc nh vn tc truyn sng.

    2. L thuyt

    3. Dng c th nghim

    3.1. My pht m tn

    3.2. Nam chm vnh cu

    3.4. Dy v cc vt nng ko cng dy

    4. Thc hnh

    4.1. Nghin cu s hnh thnh sng ng trn dy

    4.2. Xc nh vn tc truyn sng trn dy

    5. X l s liu

    Bi 5: Xc nh nhit nng chy v nhit ho hi ca nc

    1. Mc ch: Xc nh nhit nng chy v nhit ho hi ca nc

    2. L thuyt

    3. Dng c th nghim

    3.1. Ngun to hi nc

    3.2. Nhit lng k

    3.3. B chia hi

    3.4. Cn th nghim

    4. Thc hnh

    4.1. Xc nh nhit nng chy ca nc

    4.2. Xc nh nhit ho hi ca nc

    5. X l s liu

  • 57

    Bi 6: Xc nh gia tc trng trng bng con lc thun nghch

    1. Mc ch:

    Nghin cu dao ng iu ha, trn c s xc nh gia tc trng trng

    bng con lc thun nghch.

    2. L thuyt

    3. Dng c th nghim

    3.1. Con lc thun nghch

    3.2. My m t ng hin s

    4. Thc hnh

    4.1. Nghin cu dao ng iu ha ca con lc vt l

    4.2. Xc nh gia tc trng trng bng con lc thun nghch

    5. X l s liu

    Bi 7: Kho st hin tng va chm

    1. Mc ch: Kho st s va chm n hi v va chm mm ca h hai vt chuyn ng

    trn mt ng thng. Kim nghim li cc nh lut bo ton nng lng,

    bo ton ng lng trong qu trnh va chm ca cc vt.

    2. L thuyt

    3. Dng c th nghim

    3.1. My tnh

    3.2. H thng m khng kh

    3.3. Sensor o thi gian

    3.4. Xe nh v cc vt nng tham gia va chm

    4. Thc hnh

    4.1. Kho st s va chm n hi v va chm mm ca h hai vt

    chuuyn ng trn mt ng thng.

    4.2. Kim nghim li cc nh lut bo ton nng lng, bo ton ng

    lng trong qu trnh va chm ca cc vt

    5. X l s liu

    Bi 8: o di

    1. Mc ch:

    S dng mt s dng c o thng gp. Tm hiu nguyn tc ca mt s

    dng c cho php nng cao chnh c ca php o di

  • 58

    2. L thuyt

    3. Dng c th nghim

    3.1. Thc kp c du xch

    3.2. Panme

    3.3. Knh hin vi vi th knh trc vi

    4. Thc hnh

    4.1. S dng thc kp

    4.2. S dng panme

    4.3. S dng knh hin vi

    5. X l s liu

    Bi 9: Kho st chuyn ng quay ca vt rn

    1. Mc ch: Xc nh momen qun tnh ca mt s vt rn. Nghim li nh lut bo

    ton mmen ng lng ca vt rn.

    2. L thuyt

    3. Dng c th nghim

    3.1. My tnh

    3.2. Sensor o cc thng s chuyn ng quay

    3.4. H thng rng rc v cc vt rn cn kho st

    4. Thc hnh

    4.1. Nghin cu chuyn ng quay ca vt rn.

    4.2. Xc nh mmen qun tnh ca mt s vt rn

    4.3. Nghim li nh lut bo ton mmen ng lng

    5. X l s liu

    Bi 10: Xc nh vn tc truyn m trong khng kh

    1. Mc ch:

    Kho st s truyn sng m trong khng kh. Xc nh vn tc truyn sng

    m trong khng kh v ch s on nhit ca khng kh.

    2. L thuyt

    3. Dng c th nghim

    3.1. Dao ng k in t

    3.2. My pht m tn

    3.3. ng cha khng kh c th thay i chiu di

    4. Thc hnh

  • 59

    4.1. Kho st sng m truyn trong khng kh bng cch thit lp sng

    ng trong mt ng kn.

    4.2. Xc nh vn tc truyn m trong khng kh v ch s on nhit

    ca khng kh

    5. X l s liu

  • 60

    CNG MN HC

    THC HNH VT L I CNG 2

    1. M mn hc: PHY 2308

    2. S tn ch: 02 (30 gi tn ch)

    3. Mn hc tin quyt:

    1. in v t hc

    2. Thc hnh Vt l i cng 1

    4. Ngn ng ging dy: Ting Vit

    5. Ging vin

    TT H v tn Chc danh,

    hc v

    n v cng tc

    11 Ngc An Bang TS.GV B mn Vt l i cng,

    Khoa Vt l, HKHTN

    12 L Th Thanh Bnh PGS.TS.GVC B mn Vt l i cng,

    Khoa Vt l, HKHTN

    13 Trn Vnh Thng NCV.ThS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    14 Trnh Th Loan NCV.TS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    15 Nguyn T Nim NCV.ThS. B mn Vt l i cng,

    Khoa Vt l, HKHTN

    16 Nguyn Ngc nh NCV.ThS. B mn Vt l Cht rn,

    Khoa Vt l, HKHTN

    17 L Tun T TS. B mn Vt l Nhit thp,

    Khoa Vt l, HKHTN

    18 Si Cng Doanh NCV.CN B mn Vt l i cng,

    Khoa Vt l, HKHTN

    19 Nguyn Thy Trang NCV.ThS Phng Vt l tnh ton,

    Khoa Vt l, HKHTN

    6. Mc tiu mn hc

    6.1. Mc tiu v kin thc

  • 61

    Vt l hc l ngnh khoa hc thc nghim, sinh vin khng nhng cn

    nm vng v l thuyt m cn phi c quan st v hiu c cc hin tng

    Vt l xy ra trong thc t. Mn Thc hnh Vt l i cng 2 nhm gip cho

    sinh vin thc hnh cc th nghim c l thuyt chng minh, kim

    nghim li l thuyt in v t c hc. Mn hc cng gip cho sinh vin

    c c hi c quan st, phn tch v qua hiu su sc thm v cc hin

    tng in v t trong t nhin.

    Trong qu trnh thc hnh, sinh vin c trang b mt s kin thc v

    cc phng php o, nguyn l hot ng, cu to, vn hnh ca mt s thit b

    v h o c bn.

    6.2. Mc tiu v k nng

    Rn luyn cho sinh vin mt k nng lm vic khoa hc, chnh xc, t

    duy thc nghim, gip cho sinh vin bit gn l thuyt c hc vi thc t

    thc nghim, p ng c nhu cu cng vic trong x hi hin i.

    Mn hc cng nhm o to phng php nghin cu thc nghim, kh

    nng phn tch v gii quyt vn , rn luyn k nng thc hnh v x l s

    liu thc nghim cho sinh vin. Bn cnh , vic thc hnh theo nhm gm t

    2 n 3 sinh vin cng tng cng v rn luyn kh nng phi hp lm vic

    theo nhm. K nng lm vic theo nhm l mt k nng hin i m sinh vin

    cn phi c trang b trc khi ra trng.

    6.3. Mc tiu v thi

    Mn hc nhm khuyn khch ng vin sinh vin nghin cu Vt l ni

    chung v in v T ni ring. Cc gi thc hnh th nghim cng rn luyn

    cho sinh vin c tnh nghim tc, tn trng k lut v cc ni quy an ton

    trong phng th nghim.

    7. Phng php kim tra nh gi

    7.1. Tiu ch nh gi cc kt qu thc hin nhim v ca sinh vin

    - Tham d y cc bui thc hnh theo lch trnh.

    - Hng tun hon thin v trnh bo co theo quy nh.

    - nh gi sinh vin v kin thc, kh nng thc hnh v thc trong

    mi bui thc hnh.

    7.2. Lch thi v kim tra

    - Kim tra cui k: sau tun 10 theo b tr ca Nh trng.

    7.3. Cc loi im kim tra v trng s ca tng loi im

    - Phn chun b thc hnh v bo co thc hnh: 20%

    - Phn thc hnh ti Phng Thc hnh: 20%

    - Kim tra nh gi cui k: 60%

    8. Gio trnh bt buc

  • 62

    Gio trnh bt buc:

    L Th Thanh Bnh (Ch bin), L Khc Bnh. Thc tp Vt l i

    cng phn in - T. Nh xut bn i hc Quc gia H Ni, nm

    2007.

    Ti liu tham kho:

    4. L Th Thanh Bnh (Ch bin), Nguyn Ngc Long. Thc tp Vt l i

    cng phn C - Nhit. Nh xut bn i hc Quc gia H Ni, nm

    2007.

    5. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers, 6th

    Edition, Thomson Brooks/Cole, 2004, ISBN: 0534408427

    6. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 8th

    edition. ISBN: 9780470895399.

    7. Physics Experiments, Volume 2, Electricity Electronics. General

    Catalogue of Physics Experiments, 1991, Leybold didactic GMBH.

    9. Tm tt ni dung mn hc

    Mn Thc hnh Vt l i cng 2 bao gm 10 bi thc hnh lin quan n

    nhng kin thc c bn nht v cc hin tng in v T nh hin tng cm

    ng in t, dao ng in t tt dn v duy tr, hin tng cng hng trong

    cc mch RLC, t lc tc dng ln dng in v khung dy trong t trng,

    chuyn ng ca ht tch in trong in-t trng. Bn cnh , sinh vin

    cng thc hnh nghin cu s ph thuc ca in tr ca kim loi v bn dn

    vo nhit , c trng I-V ca quang tr v photodiode, cu to v nguyn l

    hot ng ca bin th, dao ng k in t, in k khung quay v mt s

    dng c o khc nh digital voltmeter, luxmeter

    10. Ni dung chi tit mn hc

    Bi m u: S lc v l thuyt php o v sai s

    1. nh ngha php o v sai s

    2. Phng php xc nh sai s ca cc php o trc tip

    3. Phng php xc nh sai s ca cc php o gin tip

    4. Cch vit kt qu

    5. Phng php biu din kt qa bng th

    Bi 1. Dao ng k in t v mt s ng dng

    1. Ni dung v mc ch bi thc hnh

  • 63

    - Tm hiu cu to v nguyn tc hot ng ca dao ng k in t.

    - S dng dao ng k in t o mt s c trng c bn ca dng xoay chiu.

    2. L thuyt

    2.1. S lc cu to ca dao ng k

    2.2. S lc hot ng ca ng phng in t v dao ng k.

    3. Dng c th ngh