30
Lįŭ'ĨđŪƟƉƁĒ cbSVSVIJÓOÔ?èVäëè cbSVÓOñÒƊƢƌƤĬ ĉ¨ Lįŭ'Ĩđ ƅžƢƎżƢƂ åPēŃ ńörƣń]rūēŃś8ă ÌX + ÎÒ« nI3şźťŽƙƤƈ pòCŭYś\ HÜÎŭ üĎƚƎƠ HÜÎŭńčrX HĚüĎVŬŶŹ ìĭĈĭ ô1ÛƄƤƢę#ēŃ ƉžſƤƎƢtƅžƢƎżƢƂ Ĺ´tƄƤƢę#ēŃ ĆĽ¾« ŽƢƎżƃƤƌƇ ƗƜơƤƇƝƢ

L / m' ( j EU()x =μ()x +σ()x ψ(x)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L / m' ( j EU()x =μ()x +σ()x ψ(x)

+

Page 2: L / m' ( j EU()x =μ()x +σ()x ψ(x)

BsAc1As1As2

CPT SMW( )

CPT SMW( )

qt

fs pw

0.05m 5m

Page 3: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Ic = 3.47− logQt( )2 + 1.22+ logFR( )2{ }0.5

Qt = qt −σ v0( ) /σ v0'

FR = f s / qt −σ v0( )

Nc = 0.341Ic1.94 qt − 0.2( ) 1.34−0.0927Ic( ) qt > 0.2MPa( )

Nc = 0 qt ≤ 0.2MPa( ) Fc =1.0Ic

4.2 (%)

qt: fs: σv0: MPa σ‘v0 MPa

Robertson (1995)

Page 4: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Ic

Robertson, P. K. (1990). Soil classification using the cone penetration test, Canadian Geotechnical Journal, Vol.28, No.1, 151-158

Nc: CPT N Nd: N

Page 5: L / m' ( j EU()x =μ()x +σ()x ψ(x)

S N

N =10−2.2645 ×Vs1.2477

CPTVs Nc

CPT SWM

Page 6: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Nc Nspt

NSPT = (1.36Nc )(1+ 0.752εr ) εr: N(0,1)

Page 7: L / m' ( j EU()x =μ()x +σ()x ψ(x)

x

s

x μ σ2 μ a%

: n-1 t- a%

n

CV = s x

x x =1

nxi

i

n

( )∑ −−

=n

ii xx

ns 22

11

μ1−α = x − tα 2, n−1 ⋅s

n;x + tα 2, n−1 ⋅

s

n

⎣ ⎢ ⎤

⎦ ⎥

tα 2, n−1

μ = x ± tα 2, n−1 ⋅s

n

Page 8: L / m' ( j EU()x =μ()x +σ()x ψ(x)

( )( )

( ){ } ( ){ }∑ −Δ+−−

=Δn

iii UzzUUzU

nzC

21

( ) ( )zlzzr Δ−=Δ exp

( )( )

( ){ } ( ){ }∑ −Δ+−−

=Δn

iii UzzUUzU

snzr 22

1

lz:

Page 9: L / m' ( j EU()x =μ()x +σ()x ψ(x)

( ) ( ) ( )XXX ψμ +=U

μ(X)

ψ(X):X = x, y,z( ) or X = x,z( )

U

Page 10: L / m' ( j EU()x =μ()x +σ()x ψ(x)

U x( )= μ x( )+σ x( )ψ x( )

Covψ x i( ),ψ x j( )[ ]=Cψ r( )

U z( )= c0 + c1z( )+ d0 + d1z( )ψ z( )

c0, c1, d0, d1: regression constants ψ(z): N(0,1) random variable

μ z( )= c0 + c1z

σ z( )= d0 + d1z

Distribution of undrained shear strength

Cov Ui,U j[ ]=CU r( )=CU −r( ) r = Xi − Xj

( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎦

⎤⎢⎣

⎡−= ∑

=

2/1

12

22 exp

d

i i

iUU l

rrC σ

( ) ⎥⎦

⎤⎢⎣

⎡−= ∑

=

d

i i

iUU l

rrC1

2

22

4exp π

σ

( ) ⎥⎦

⎤⎢⎣

⎡−= ∑

=

d

i iUU l

rrC

1

2 expσ

GaussσU:

l:

Page 11: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Su (VST) C h( )=σ 2 exp −h aθ( ), aθ =aV aH

aV2sin2θ + aH

2 cos2θ( )2

aV =1m, aH =10mSu Scale of fluctuation δV = 2.5 m (δ =2a) Clayqc Scale of fluctuation δV = 0.9 m (δ =2a) Sand, claySu (VST) Scale of fluctuation δV = 3.8 m (δ =2a) ClayN Scale of fluctuation δV = 2.4 m (δ =2a) Sandqc Scale of fluctuation δH = 47.9 m (δ =2a) Sand, claySu (VST) Scale of fluctuation δH = 50.7 m (δ =2a) Clayqc C h( )=σ 2 exp −h bH( )2{ }, bH = 30m

Su (VST) C h( )=σ 2 exp −h aH( ), aH = 23mN C h( )=σ 2 exp −h aH( ), aH = 23m

(σ2: V H

(CPT Nc)

s=(s1,s2,..., sM) : probabilistic parameter vector

m=(m1,m2,...,mM) : mean value vector

(xk, yk, zk) : coordinate of kth measure point

(a0, a1, …, a6): regression constants

fS s( ) = 2π( )−M2 C

−12 exp −1

2s−m( )tC−1 s−m( )

⎧⎨⎩

⎫⎬⎭

mk = a0 + a1xk + a2yk + a3zk + a4xk2 + a5zk

2 + a6xkzk

Page 12: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Ne =1 i = j( )Ne ≤1 i ≠ j( )

⎧ ⎨ ⎪

⎩ ⎪

C = Cij⎡⎣ ⎤⎦=

σ 2 exp − xi − x j lx − yi − yj ly − zi − zj lz( ) (a)

σ 2 exp − xi − x j( )2lx

2 − yi − yj( )2ly

2 − zi − zj( )2lz

2{ } (b)

σ 2 exp − xi − x j( )2lx

2 + yi − yj( )2ly

2 + zi − zj( )2lz

2{ } (c)

Neσ2 exp − xi − x j lx − yi − yj ly − zi − zj lz( ) (d)

i, j =1, 2, ⋅ ⋅ ⋅,M

MAIC (Minimizing Akaike's Information Criterion)

S S1,S2,..., SM : Measured data

AIC = −2 ⋅max ln fS S( ){ }+ 2L

=M ln2π +min ln C + S−m( )tC−1 S−m( ){ }+ 2L

Page 13: L / m' ( j EU()x =μ()x +σ()x ψ(x)

m = 0.783− 0.006x − 0.016y− 0.053z+ 0.00002x2 + 0.020z2 + 0.0004xz

C Δx,Δy,Δz( ) = 0.597( )2 exp −Δx10.0

⎝⎜

⎠⎟2

+Δy10.0

⎝⎜

⎠⎟2

+Δz0.48

⎝⎜

⎠⎟2⎧

⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

Nc

Page 14: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Indicator simulation method 1

i u;rk( ) =1, R u( )≤ rk( )0, R u( ) > rk( )

⎧ ⎨ ⎪

⎩ ⎪ k = 1,...,K

u = (x, z): the positions where the data were measured rk (k=1, 2, ..., K): K specific values of R, and the threshold value for the binary parameter i

Indicator value for a parameter, R

Page 15: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Probability distribution function of the variable R

( )( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )k

n

kk

n

kk

kk

rwrrirrF

nnrRnnrF

;;;;

'Prob';

'

'

1''

10 α

ααα

αα νλλ uuuu

uu

∑∑==

++=

+≤=+

( ) ( )∑∑==

−−='

1''

10 ;;1

n

k

n

k rrα

αα

α νλλ uu

i(uα,rk): binary value of the hard data at the point uα and for the threshold value rk. w(uα,rk) : probability distribution of the soft data n and n′ are the numbers of the hard and the soft data

Indicator simulation method 2

Hard data Soft data

Parameter λ and ν: weighting parameters and determined related to the covariance function

Indicator simulation method 3

( )( ) ( ) ( )( )';1 nnpFr ll += − uu

p: uniform random number from 0 to 1.0 l : iteration number for the Monte Carlo method r(l), is assigned as a N-value.

Page 16: L / m' ( j EU()x =μ()x +σ()x ψ(x)

CPT SWM

Page 17: L / m' ( j EU()x =μ()x +σ()x ψ(x)

(1) SWM CPT

(2)  SWM CPTN 5

(3) 

CPT

CPT → Nc (CPT N s

Pp,lab

hc

CPT kcpt

CPTPp,cpt

Pp,cpt = f kcpt,Nc, s,hc( )

Page 18: L / m' ( j EU()x =μ()x +σ()x ψ(x)

1

Page 19: L / m' ( j EU()x =μ()x +σ()x ψ(x)
Page 20: L / m' ( j EU()x =μ()x +σ()x ψ(x)
Page 21: L / m' ( j EU()x =μ()x +σ()x ψ(x)
Page 22: L / m' ( j EU()x =μ()x +σ()x ψ(x)

21

Page 23: L / m' ( j EU()x =μ()x +σ()x ψ(x)
Page 24: L / m' ( j EU()x =μ()x +σ()x ψ(x)

( ) +

( ) 5.01 98'υσSPTNN =

fN εφ 0.320)20(' 5.01 ++=

μ = 1.89+ 0.175zN

NSPT φ′

εf: N(0, 1) σv‘ : (kPa)

N

Cij = 0.604 ⋅ 1.24( )2exp −

yi − y j

6.14−hi − h j

0.63

⎝ ⎜ ⎜

⎠ ⎟ ⎟ i ≠ j( )

Cij = 1.24( )2 i = j( )

Page 25: L / m' ( j EU()x =μ()x +σ()x ψ(x)

g = τ fi −τ si( )lii=1

n

F = Probability g < 0( )

Slip surface across an element

σ n '=σ z '+σ x '( )2

+σ z '−σ x '( )2

cos2θ − τ xz sin2θ

τ f = c'+σ n 'tanφ'

τ s =σ z '−σ x '( )2

sin2θ + τ xz cos2θ

(a)

(b)

Page 26: L / m' ( j EU()x =μ()x +σ()x ψ(x)

*: Nswsより推定

Page 27: L / m' ( j EU()x =μ()x +σ()x ψ(x)

72

1952 19601976 2009 44

a

72

x , X i mm h

F(x)

ax x-F(x)

Page 28: L / m' ( j EU()x =μ()x +σ()x ψ(x)
Page 29: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Qout =Cd ⋅ B ⋅ h3 / 2

Qin =1

3.6⋅ re ⋅ A

re = fp ⋅ r

Qout (m3/s) Qin (m3/s) Cd B (m) h (m) re: A (km2)

fp: 0.7~0.8

72 hp

Pfo = Prob hd < hp⎡⎣ ⎤⎦ hd (m)

Cf

Page 30: L / m' ( j EU()x =μ()x +σ()x ψ(x)

Pfe50 = − H a( )0

∫ F a( )da Pfo50 =1− 1−Pfo( )50

Pall = Pfe50 +Pfo50 −Pfe50 ⋅Pfo50

50

50

R = Pall ×Cf

(1)  50

0.76 0.432

6,600

(2)