13
© Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element analysis Stefan Wessels Michael Strobel Dr. Arno van Wingerde Isabel Koprek Dr. Hans-Gerd Busmann

© Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

Embed Size (px)

Citation preview

Page 1: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element analysis

Stefan Wessels

Michael Strobel

Dr. Arno van Wingerde

Isabel Koprek

Dr. Hans-Gerd Busmann

Page 2: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Outline

Idea & Motivation

Used Fundamentals

Structural Model

Programming the fatigue Analysis based on NLGD´s

Validation

Fatigue Analysis on a rotor blade model

Conclusion & Outlook

Page 3: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Idea & Motivation

Square – Cube – Law leads to increasing blade weights

Conservative approaches in blade design

Material properties of fiber composites can be exploited further

Goal:

Weight & Cost reduction in the early design stage

Track:

Damage calculation using FEM and Non-Linear-Goodman-Analysis

http://www.enercon.de

Sa(R3=-1)

Sm(R=1)

N=1R1

R2R4

UTSUCS

Page 4: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Used Fundamentals

Non-Linear-Goodman-Diagram (NLGD)

Rain-Flow-Counting

Miner-Sum

Sa(R3=-1)

Sm(R=1)

N=1R1

R2R4

UTSUCS

N=x

Smi

Sai

-12

-1Time

elem

ents

tres

ses

orst

rain

s

1

i i

i

N

nD

Page 5: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Structural Model

FEM-Rotor-Blade-Model

Model generated with FOCUS

ANSYS-Solver

8-noded SHELL99-Elements

4-noded SHELL181-Elements

Loads applied on arbitrary cross section

CARDS (JAVA - Open-Source Postprocessor)

z

M(z)

z1 z2 z3

M(z1)

M(z2)

M(z3)

Page 6: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Principal procedure

-12

-1 time

loading

-12

-1

loading

time

-12

-1

loading

time

-12

-1

loading

time

Programming the fatigue Analysis based on NLGD´s

-12

-1Time

ele

me

nt

stre

sse

so

rst

rain

s

Am

pli

tud

e-C

las

s

Mean-Class

1 2 3 4 5

1

2 3

3 2

4 0.5 2

5 1

Sa

Sm

i i

i

N

nD

Page 7: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Programming the fatigue Analysis based on NLGD´s

Programming the NLGD

Transforming S-N-curve data

Determination of maximum number of cycles out of NLGD

Using method to find a point in a triangle

Logarithmic interpolation

Sm

*P

Sa

*P

P1

P2

P3

P4

Sa(R3=-1)

Sm

N=1

R2R4 N=10

N=100

*P

UTSUCS

N100 101 102 103 104

87.56.55.5

4.5

71.50

Ms As -6.19 5.07 -5.80 4.75 -5.03 4.12 -4.26 3.48 -3.48 2.85

10R N

100 8 101 7.5 102 6.5 103 5.5 104 4.5

10R

UCS

1R

.....Sm

Sa

φ

Page 8: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Validation

Results are compared with FOCUS

FOCUS beam model

Improved method 3D FEM-Model

Four points on an arbitrary cross section are investigated

Comparison of damage for UD-Laminate and +/- 45°-Laminate

Three different approaches1

2

3

4

UD-Laminat

+/-45°Laminat

+/-45°Laminat

Spar Caps

examined cross section

M(z)

zz0 z1 z2 ze z3

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

0 2000 4000 6000 8000 10000 12000

Mo

men

t in

[N

mm

]

Position am Radius in [mm]actual load progression (1): actual load

(2): non conservative (3): conservative

9650mm

Page 9: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Validation

Comparison of the results

Big deviationsComparison of strain-time-series Factor k to adjust the damage calculation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 3 4

da

ma

ge

D

Element Number

+/-45° Laminate

FOCUS (1): actual load (2): non conservative (3): conservative

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

1 2 3 4

da

ma

ge

D

Element Number

UD Laminate

FOCUS (1): actual load (2): non conservative (3): conservative

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

1 2 3 4

da

ma

ge

D

Element Number

+/-45° Laminate

FOCUS (1): actual load (2): non conservative (3): conservative

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

1 2 3 4

da

ma

ge

D

Element Number

UD Laminate

FOCUS (1): actual load (2): non conservative (3): conservative

Page 10: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Fatigue Analysis on a rotor blade model

Transition zone of webs of particular interest

Analysis of:

UD-Laminate in spar caps

+/-45°-Laminate for outer shell

Adhesive bonding

webs

Page 11: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Fatigue Analysis on a rotor blade model

Results of the damage calculation

Damage of UD-Lamiante in the spar caps

Increasing damage towards the tip due to:Deceasing thickness and cross section area

Constant load on the blade section

Change from two to one web

Damage of +/-45°-Lamiante Damage of adhesive bonding

Page 12: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Conclusion & Outlook

The Improved fatigue design method helps:

Enhancing the material usage

Detecting critical areas in terms of fatigue

Increases the accuracy of the material prediction (using NLGD´s)

Issues to improve

Check other approaches for damage accumulation

The way of applying loads on 3D-FEM-Models

Page 13: © Fraunhofer Improved fatigue design methods for offshore wind turbine rotor blades considering non-linear Goodman analysis combined with finite element

© Fraunhofer

Thank you for your attention!

Dziękuję bardzo!